In general, the broken stick model smoothes the observed growth trajectory. What happens of all observations are already aligned to the break ages? Does the model perfectly represent the data? Is the covariance matrix of the random effects (\(\Omega)\) equal to the covariance between the measurements? Is \(\sigma^2\) equal to zero?
We adapt code from http://www.davekleinschmidt.com/sst-mixed-effects-simulation/simulations_slides.pdf to generate test data:
## ------------------------------------------------------------------------------
## You have loaded plyr after dplyr - this is likely to cause problems.
## If you need functions from both plyr and dplyr, please load plyr first, then dplyr:
## library(plyr); library(dplyr)
## ------------------------------------------------------------------------------
##
## Attaching package: 'plyr'
## The following objects are masked from 'package:dplyr':
##
## arrange, count, desc, failwith, id, mutate, rename, summarise,
## summarize
library("mvtnorm")
make_data_generator <- function(resid_var = 1,
ranef_covar = diag(c(1, 1)), n = 100
) {
ni <- nrow(ranef_covar)
generate_data <- function() {
# sample data set under mixed effects model with random slope/intercepts
simulated_data <- rdply(n, {
b <- t(rmvnorm(n = 1, sigma = ranef_covar))
epsilon <- rnorm(n = length(b), mean = 0, sd = sqrt(resid_var))
b + epsilon
})
data.frame(
subject = rep(1:n, each = ni),
age = rep(1:ni, n),
simulated_data)
}
}
Let us first model the perfect situation where \(\sigma^2 = 0\) (so we set resid_var
to zero) and where the ages align perfectly.
set.seed(77711)
covar <- matrix(c(1, 0.7, 0.5, 0.3,
0.7, 1, 0.8, 0.5,
0.5, 0.8, 1, 0.6,
0.3, 0.5, 0.6, 1), nrow = 4)
gen_dat <- make_data_generator(n = 10000,
ranef_covar = covar,
resid_var = 1)
data <- gen_dat()
head(data)
## subject age .n X1
## 1 1 1 1 -0.948
## 2 1 2 1 -2.084
## 3 1 3 1 -2.651
## 4 1 4 1 -2.553
## 5 2 1 2 -0.083
## 6 2 2 2 -1.271
Check the correlation matrix of the \(y\)’s.
library("tidyr")
library("dplyr")
d <- as_tibble(data[,-3])
broad <- t(spread(d, subject, X1))[-1,]
cor(broad)
## [,1] [,2] [,3] [,4]
## [1,] 1.00 0.35 0.26 0.16
## [2,] 0.35 1.00 0.41 0.25
## [3,] 0.26 0.41 1.00 0.31
## [4,] 0.16 0.25 0.31 1.00
Fit broken stick model, with knots specified at ages 1:4
.
library("brokenstick")
knots <- 1:3
boundary <- c(1, 4)
fit <- brokenstick(X1 ~ age | subject, data,
knots = knots, boundary = boundary)
omega <- fit$omega
beta <- fit$beta
sigma2 <- fit$sigma2
round(beta, 2)
round(sigma2, 4)
# correlation random effects
round(covar, 3)
round(omega, 2)
# covariances measured data
round(omega + diag(sigma2, 4), 3)
round(cov(broad), 3)
# convert to time-to-time correlation matrix
round(cov2cor(omega + diag(sigma2, 4)), 3)
round(cor(broad), 3)
cov2cor()
to the time-to-time correlation matrix.lmer
and kr
methodsbrokenstick()
for model fittingpredict()
for trajectory plotting