Package ‘bsam’

September 1, 2020

Type Package
Title Bayesian State-Space Models for Animal Movement
Version 1.1.3
Date 2020-08-31
Depends R (>= 3.6.0), rjags (>= 4-10)
Imports coda (>= 0.19-3), dplyr (>= 1.0.0), ggplot2 (>= 3.3.2), gridExtra (>= 2.3), msm (>= 1.6.8), mvtnorm (>= 1.1-1), rworldxtra(>= 1.01), sp (>= 1.2-3), tibble (>= 3.0.1), lubridate (>= 1.7.9)
SystemRequirements JAGS (>= 4.3.0)
Description
Tools to fit Bayesian state-space models to animal tracking data. Models are provided for location filtering, location filtering and behavioural state estimation, and their hierarchical versions. The models are primarily intended for fitting to ARGOS satellite tracking data but options exist to fit to other tracking data types. For Global Positioning System data, consider the 'moveHMM' package. Simplified Markov Chain Monte Carlo convergence diagnostic plotting is provided but users are encouraged to explore tools available in packages such as 'coda' and 'boa'.
License GPL-2
URL <https://github.com/ianjonsen/bsam>
BugReports https://github.com/ianjonsen/bsam/issues
LazyData yes
Encoding UTF-8
RoxygenNote 7.1.1
NeedsCompilation no
Author Ian Jonsen [aut, cre], Sophie Bestley [ctb], Simon Wotherspoon [ctb], Michael Sumner [ctb], Joanna Mills Flemming [ctb]
bsam-package

Maintainer Ian Jonsen <ian.jonsen@mq.edu.au>
Repository CRAN
Date/Publication 2020-09-01 13:40:03 UTC

R topics documented:

bsam-package .. 2
 dat4jags ... 3
 diag_ssm .. 5
 ellie1 .. 5
 ellie2 .. 6
 fitSSM ... 6
 fit_ssm ... 6
 get_summary .. 9
 hssm .. 9
 map_ssm ... 10
 plot_fit .. 11
 simulate ... 11
 ssm .. 12
 tpar ... 13

Description

Models provided are DCRW (for location filtering), DCRWS (for location filtering and behavioural state estimation), and their hierarchical versions (hDCRW, hDCRWS) to estimate parameters jointly across multiple individual tracking datasets. The models are fit in JAGS using Markov chain Monte Carlo simulation methods. The models are intended to be fit to Argos satellite tracking data but options exist to allow fits to other tracking data types (type ?fit_ssm for details).

Details

<table>
<thead>
<tr>
<th>Package</th>
<th>bsam</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type</td>
<td>Package</td>
</tr>
<tr>
<td>Version</td>
<td>1.1.2</td>
</tr>
<tr>
<td>Date</td>
<td>2017-07-01</td>
</tr>
<tr>
<td>License</td>
<td>GPL-2</td>
</tr>
<tr>
<td>LazyLoad</td>
<td>yes</td>
</tr>
</tbody>
</table>

Fit Bayesian state-space models to Argos satellite tracking data. Models provided are DCRW - for location filtering; DCRWS - for location filtering and behavioural state estimation with 2 be-
havioural states; hDCRW and hDCRWS - hierarchical models for location filtering only, and location filtering with behavioural state estimation, respectively, across multiple animals. The hierarchical models may provide improved location and/or behavioural state estimates compared to fitting DCRW/DCRWS to individual datasets.

Author(s)

Ian Jonsen

Maintainer: Ian Jonsen <ian.jonsen@mq.edu.au>

References

Jonsen ID (2016) Joint estimation over multiple individuals improves behavioural state inference from animal movement data. Scientific Reports 6:20625

See Also

fit_ssm

Examples

Not run:
Fit DCRW model for state filtering and regularization -
using trivial adapt & samples values for speed
data(ellie1)
fit <- fit_ssm(ellie1, model = "DCRW", tstep = 1, adapt = 10, samples = 100,
 thin = 1, span = 0.2)
diag_ssm(fit)
map_ssm(fit)
plot_fit(fit)

End(Not run)
Arguments

- **d**: a data frame of observations (see details)
- **tstep**: the time step to predict to (in days)
- **tpar**: generalised t-distribution parameters for ARGOS location classes. By default dat4jags uses the parameters estimated in Jonsen et al (2005) Ecology 86:2874-2880 but users may specify other ARGOS error parameter values via the tpar function.

Details

This is an internal function used by fit_ssm to format track data for JAGS.

The input track is given as a dataframe where each row is an observed location and columns

- 'id': individual animal identifier,
- 'date': observation time (POSIXct, GMT),
- 'lc': ARGOS location class,
- 'lon': observed longitude,
- 'lat': observed latitude.

Location classes can include Z, F, and G; where the latter two are used to designate fixed (known) locations (e.g. GPS locations) and "generic" locations (e.g. geolocation data) where the user supplies the error standard deviations, either via the tpar function or as two extra columns in the input data.

From this dat4jags calculates interpolation indices idx and weights ws such that if x is the matrix of predicted states, the fitted locations are ws*x[idx+1,] + (1-ws)*x[idx+2,].

Value

A list with components

- **id**: the unique identifier for each dataset
- **y**: a 2 column matrix of the lon,lat observations
- **itau2**: a 2 column matrix of the ARGOS precision (1/scale) parameters
- **nu**: a 2 column matrix of the ARGOS df parameters
- **idx**: a vector of interpolation indices
- **ws**: a vector of interpolation weights
- **ts**: the times at which states are predicted (POSIXct, GMT)
- **obs**: the input observed data frame
- **tstep**: the time step specified in the fitSSM call

References

diag_ssm

Plot standard McMC convergence diagnostics to help determine lack of model convergence.

Description

Takes a fitted fit_ssm object and uses standard McMC convergence diagnostic plots to aid assessment of lack of convergence.

Usage

```r
diag_ssm(fit)
```

Arguments

- `fit` an output object from fit_ssm

Value

Uses plotting functions from Martyn Plummer’s coda package to help diagnose lack of convergence for the core model parameters. The traceplot shows the time series for both McMC chains; the density plot shows the density estimate for each parameter; the autocorrelation plots show the within-chain sample autocorrelation for each parameter; the G-B-R shrink factor plot shows the evolution of Gelman and Rubin’s shrink factor for increasing number of iterations. See the coda package for further details.

References

ellie1

Elephant seal Argos satellite data (1 individual)

Description

Example elephant seal Argos tracking data. Data were sourced from the Integrated Marine Observing System (IMOS) - IMOS is supported by the Australian Government through the National Collaborative Research Infrastructure Strategy and the Super Science Initiative.

Format

.RData
ellie2
Elephant seal Argos satellite data (2 individuals)

Description

Example elephant seal Argos tracking data. Data were sourced from the Integrated Marine Observing System (IMOS) - IMOS is supported by the Australian Government through the National Collaborative Research Infrastructure Strategy and the Super Science Initiative.

Format

- .RData

fitSSM
Deprecated functions.

Description

fitSSM, diagSSM, and plotSSM, have been deprecated. Instead use fit_ssm, diag_ssm and map_ssm.

Usage

- `fitSSM(...)`
- `diagSSM(...)`
- `plotSSM(...)`

Arguments

- `...` ignored

fit_ssm
Fit Bayesian state-space models to animal movement data

Description

Fits state-space models to animal tracking data. User can choose between a first difference correlated random walk (DCRW) model, a switching model (DCRWS) for estimating location and behavioural states, and their hierarchical versions (hDCRW, hDCRWS). The models are structured for Argos satellite data but options exist for fitting to other tracking data types.
fit_ssm

Usage

```r
fit_ssm(
  data,
  model = "DCRW",
  tstep = 1,
  adapt = 10000,
  samples = 5000,
  thin = 5,
  span = 0.2
)
```

Arguments

data A data frame containing the following columns, "id","date", "lc", "lon", "lat". "id" is a unique identifier for the tracking dataset. "date" is the GMT date-time of each observation with the following format "2001-11-13 07:59:59". "lc" is the Argos location quality class of each observation, values in ascending order of quality are "Z", "B", "A", "0", "1", "2", "3". "lon" is the observed longitude in decimal degrees. "lat" is the observed latitude in decimal degrees. The Z-class locations are assumed to have the same error distributions as B-class locations. Optionally, the input data.frame can specify the error standard deviations for longitude and latitude (in units of degrees) in the last 2 columns, named "lonerr" and "laterr", respectively. These errors are assumed to be normally distributed. When specifying errors in the input data, all "lc" values must be equal to "G". This approach allows the models to be fit to data types other than Argos satellite data, e.g. geolocation data. See [dat4jags](http://example.com) for other options for specifying error parameters.

WARNING: there is no guarantee that invoking these options will yield sensible results! For GPS data, similar models can be fit via the [moveHMM](http://example.com) package.

model name of state-space model to be fit to data. This can be one of "DCRW", "DCRWS", "hDCRW", or "hDCRWS"

tstep time step as fraction of a day, default is 1 (24 hours).

adapt number of samples during the adaptation and update (burn-in) phase, adaptation and updates are fixed at adapt/2

samples number of posterior samples to generate after burn-in

thin amount of thinning of to be applied to the posterior samples to minimize within-chain sample autocorrelation

span parameter that controls the degree of smoothing by stats::loess, used to obtain initial values for the location states. Smaller values = less smoothing. Values > 0.2 may be required for sparse datasets

Details

The models are fit using JAGS 4.2.0 (Just Another Gibbs Sampler, created and maintained by Martyn Plummer; http://martynplummer.wordpress.com/; [http://mcmc-jags.sourceforge.net/](http://mcmc-jags.sourceforge.net)). `fit_ssm` is a wrapper that first calls `dat4jags`, which prepares the input data, then calls `ssm` or `hssm`, which fit the specified state-space model to the data, returning a list of results.
Value

For DCRW and DCRWS models, a list is returned with each outer list elements corresponding to
each unique individual id in the input data. Within these outer elements are a "summary" data.frame
of posterior mean and median state estimates (locations or locations and behavioural states), the
name of the "model" fit, the "timestep" used, the input location "data", the number of location state
estimates ("N"), and the full set of "mcmc" samples. For the hDCRW and hDCRWS models, a list
is returned where results, etc are combined amongst the individuals.

Author(s)

Ian Jonsen

References

Jonsen ID, Mills Flemming J, Myers RA (2005) Robust state-space modeling of animal movement
data. Ecology 86:2874-2880

Block et al. (2011) Tracking apex marine predator movements in a dynamic ocean. Nature 475:86-
90

Research II DOI: 10.1016/j.dsr2.2012.07.008

Jonsen (2016) Joint estimation over multiple individuals improves behavioural state inference from
animal movement data. Scientific Reports 6:20625

Examples

Fit DCRW model for state filtering and regularization -
using trivial adapt & samples values for speed
data(ellie1)
fit <- fit_ssm(ellie1, model = "DCRW", tstep = 4, adapt = 10, samples = 100,
 thin = 1, span = 0.2)

Fit DCRWS model for state filtering, regularization and behavioural state estimation -
using trivial adapt & samples values for speed
fit.s <- fit_ssm(ellie1, model = "DCRWS", tstep = 2, adapt = 10, samples = 100,
 thin = 1, span = 0.2)
diag_ssm(fit.s)
map_ssm(fit.s)
plot_fit(fit.s)
result.s <- get_summary(fit.s)

fit hDCRWS model to > 1 tracks simultaneously
this may provide better parameter and behavioural state estimation
by borrowing strength across multiple track datasets -
using trivial adapt & samples values for speed
data(ellie2)
hfit.s <- fit_ssm(ellie2, model = "hDCRWS", tstep = 2, adapt = 10, samples = 100,
 thin = 1, span = 0.2)
diag_ssm(hfit.s)
map_ssm(hfit.s)
plot_fit(hfit.s)
result.hs <- get_summary(hfit.s)

get_summary

Extract summary output and optionally export as a .csv file.

Description

Takes a fitted `fit_ssm` object and extracts the summary data.frame, which includes the animal ids, POSIXct date/time (at increments specified by `tstep` in the `fit_ssm` call), posterior mean longitude and latitude, and the 2.5, 50, and 97.5 longitude and latitude. For the DCRWS and hDCRWS models, the posterior mean and median behavioural states corresponding to each estimated location are also provided.

Usage

```
get_summary(x, file = " ")
```

Arguments

- `x` an output object from `fit_ssm`. If not an error will be returned.
- `file` a character string naming a file. " " indicates output to the console (default)

Value

a summary data.frame printed either to the console (default) or written as .csv to a specified file.

hssm

Fits hierarchical state-space models to Argos data

Description

Takes output from `dat4jags`, sets up initial values, calls JAGS, and aggregates results. Intended for internal use, called by `fit_ssm`.

Usage

```
hssm(d, model = "hDCRWS", adapt, samples, thin, chains, span)
```
Arguments

- **d**: structured data from dat4jags to be passed to JAGS
- **model**: the state-space model to be fit: hDCRW or hDCRWS
- **adapt**: number of samples in adaptation/burnin phase
- **samples**: number of posterior samples
- **thin**: thinning factor to reduce posterior sample autocorrelation
- **chains**: number of parallel McMC chains to run
- **span**: span

Value

Returns a list of McMC samples from marginal posteriors and a summary data.frame of mean and median position estimates.

See Also

Function to be called by fit_ssm.

Description

Takes a fitted fit_ssm object and plots the observed (data) and estimated locations on a map. For the behavioural models (DCRWS, hDCRWS), the estimated locations are coloured according to the posterior mean behavioural state estimates.

Usage

map_ssm(fit, onemap = TRUE)

Arguments

- **fit**: an output object from fit_ssm
- **onemap**: If TRUE (default) then all estimated tracks are plotted on a single, combined map, if FALSE then tracks are plotted on separate maps.

Value

Observed locations are plotted as ‘+’ symbols and estimated locations as filled circles. Individual track id’s (for DCRW and DCRWS models) are displayed at the top of each plot, but only when onemap = FALSE. The model specified in fit_ssm is also displayed at the top. Takes advantage of ggplot2 plotting functions.

Currently, results from the hierarchical models (hDCRW, hDCRWS) can only be plotted on a combined map.
Examples

```r
## Not run:
data(ellie)
fit.s <- fitSSM(ellie, model = "DCRWS", tstep = 1, adapt = 100, samples = 100,
               thin = 1, span = 0.1)
map_ssm(fit.s, onemap = TRUE)

hfit.s <- fit_ssm(ellie, model = "hDCRWS", tstep = 1, adapt = 100, samples = 100,
               thin = 1, span = 0.1)
map_ssm(hfit.s)
## End(Not run)
```

Description

Takes a fitted `fit_ssm` object and plots the observed (data), estimated location and behavioural states (posterior means) as 1-D time-series. Each individual dataset is plotted separately.

Usage

```r
plot_fit(fit)
```

Arguments

- `fit`: an output object from `fit_ssm`

Value

Observed locations are plotted as filled circles and estimated locations as blue lines with the 95% credible interval as a ribbon. Uses `ggplot2` plotting functions.

simulate

Simulate from the DCRW model with Argos location errors

Description

For testing bsam models

Usage

```r
simulate(
  Nt = 100,
  gamma = 0.8,
  Sigma = matrix(c(0.01, 0, 0, 0.01), 2, 2),
  amf = tpar()
)
```
ssm

Fits state-space models to Argos data

Arguments

- **Nt**: number of time steps to simulate
- **gamma**: move persistence parameter
- **Sigma**: variance-covariance matrix for movement process
- **amf**: Argos error data, defined by default via the tpar function which uses the t-distribution scale and df estimates from Jonsen et al (2005)

Value

a data_frame of true locations and locations with Argos error

Description

Takes output from dat4jags, sets up initial values, calls JAGS, and aggregates results. Intended for internal use, called by fit_ssm.

Usage

```r
ssm(d, model = "DCRW", adapt, samples, thin, chains, span)
```

Arguments

- **d**: structured data from dat4jags to be passed to JAGS
- **model**: the state-space model to be fit: DCRW or DCRWS
- **adapt**: number of samples in adaptation/burnin phase
- **samples**: number of posterior samples
- **thin**: thinning factor to reduce posterior sample autocorrelation
- **chains**: number of parallel McMC chains to run
- **span**: span

Value

Returns a list of McMC samples from marginal posteriors and a summary data.frame of mean and median position estimates.

See Also

Function to be called by fit_ssm.
tpar

ARGOS Error Fixed Parameters

Description

ARGOS Error Fixed Parameters for Location Classes

Usage

tpar()

Details

This is an internal function used by dat4jags to specify measurement error parameters. These are the fixed parameters (t-distribution scale & df) for ARGOS error classes, from Jonsen et al (2005) Ecology 86:2874-2880.

Value

A dataframe with columns

- lc: ARGOS location class as an ordered factor
- itau2.lon: precision parameters for longitude in degrees
- itau2.lat: precision parameters for latitude in degrees
- nu.lon: df parameters for longitude
- nu.lat: df parameters for latitude
Index

* bsam
 bsam-package, 2
* data
 ellie1, 5
 ellie2, 6

bsam (bsam-package), 2
dsam-package, 2
dat4jags, 3, 7
diag_ssm, 5
diagSSM (fitSSM), 6

ellie1, 5
ellie2, 6

fit_ssm, 6, 10, 12
fitSSM, 6

gt_summary, 9

hssm, 9

map_ssm, 10

plot_fit, 11
plotSSM (fitSSM), 6

simulate, 11

ssm, 12

tpar, 13