R topics documented:

- `blq` ... 2
- `blr` ... 4
- `bsad` ... 6
- `bsaq` ... 9
- `bsaqdpm` .. 13
- `bsar` ... 17
- `bsarBig` ... 22
- `bsardpm` ... 24
- `cadmium` .. 28
- `Elec.demand` ... 29
- `fitted.blm` ... 30
- `fitted.bsad` ... 31
- `fitted.bsam` ... 32
- `fitted.bsamdpm` ... 33
- `fs` ... 34
- `gblr` ... 34
- `gbsar` ... 37
- `intgrat` ... 41
- `intsim` .. 42
- `London.Mortality` ... 43
- `plasma` ... 44
- `plot.blm` ... 45
- `plot.bsad` ... 46
- `plot.bsam` ... 46
- `plot.bsamdpm` .. 47
- `plot.fitted.bsad` ... 48
- `plot.fitted.bsam` ... 48
- `plot.fitted.bsamdpm` 49
- `predict.blm` .. 50
- `predict.bsam` .. 51
- `predict.bsamdpm` ... 53
- `rald` ... 54
- `traffic` .. 55
- `wage.union` ... 56

Index ... 58

`blq`
Bayesian Quantile Regression

Description

This function fits a Bayesian quantile regression model.
Usage

```r
blq(formula, data = NULL, p, mcmc = list(), prior = list(), marginal.likelihood = TRUE)
```

Arguments

- `formula` an object of class “formula”
- `data` an optional data frame.
- `p` quantile of interest (default=0.5).
- `mcmc` a list giving the MCMC parameters. The list includes the following integers (with default values in parentheses): `nblow` (1000) giving the number of MCMC in transition period, `nskip` (1) giving the thinning interval, `smcmc` (1000) giving the number of MCMC for analysis.
- `prior` a list giving the prior information. The list includes the following parameters (default values specify the non-informative prior): `beta_m0` and `beta_v0` giving the hyperparameters of the multivariate normal distribution for parametric part including intercept, `sigma2_m0` and `sigma2_v0` giving the prior mean and variance of the inverse gamma prior for the scale parameter of response.
- `marginal.likelihood` a logical variable indicating whether the log marginal likelihood is calculated. The methods of Gelfand and Dey (1994) is used.

Details

This generic function fits a Bayesian quantile regression model.

Let \(y_i \) and \(w_i \) be the response and the vector of parametric predictors, respectively. Further, let \(x_{i,k} \) be the covariate related to the response, linearly. The model is as follows.

\[
y_i = w_i^T \beta + \epsilon_i, \quad i = 1, \ldots, n,
\]

where the error terms \(\{\epsilon_i\} \) are a random sample from an asymmetric Laplace distribution, \(ALD_p(0, \sigma^2) \), which has the following probability density function:

\[
ALD_p(\epsilon; \mu, \sigma^2) = \frac{p(1-p)}{\sigma^2} \exp \left(- \frac{(x - \mu)(p - I(x \leq \mu))}{\sigma^2} \right),
\]

where \(0 < p < 1 \) is the skew parameter, \(\sigma^2 > 0 \) is the scale parameter, \(-\infty < \mu < \infty \) is the location parameter, and \(I(\cdot) \) is the indication function.

The conjugate priors are assumed for \(\beta \) and \(\sigma \):

\[
\beta \mid \sigma \sim N(m_{0,\beta}, \sigma^2 V_{0,\beta}), \quad \sigma^2 \sim IG\left(\frac{r_0}{\sigma^2}, \frac{s_0}{\sigma^2}\right)
\]

Value

An object of class `blm` representing the Bayesian parametric linear model fit. Generic functions such as `print` and `fitted` have methods to show the results of the fit.

The MCMC samples of the parameters in the model are stored in the list `mcmc.draws`, the posterior samples of the fitted values are stored in the list `fit.draws`, and the MCMC samples for the log marginal likelihood are saved in the list `loglik.draws`. The output list also includes the following objects:
post.est posterior estimates for all parameters in the model.
lmarg log marginal likelihood using Gelfand-Dey method.
rsquarey correlation between y and \hat{y}.
call the matched call.
mcmctime running time of Markov chain from system.time().

References

See Also

blr, gblr

Examples

```
# Simulated example

# Simulate data
set.seed(1)

n <- 100
w <- runif(n)
y <- 3 + 2*w + rald(n, scale = 0.8, p = 0.5)

# Fit median regression
fout <- blq(y ~ w, p = 0.5)

# Summary
print(fout); summary(fout)

# fitted values
fit <- fitted(fout)

# Plots
plot(fout)
```

blr

Bayesian Linear Regression

Description

This function fits a Bayesian linear regression model using scale invariant prior.
Usage

blr(formula, data = NULL, mcmc = list(), prior = list(), marginal.likelihood = TRUE)

Arguments

formula
an object of class "formula"
data
an optional data frame.
mcmc
a list giving the MCMC parameters. The list includes the following integers
(with default values in parentheses): nblow (1000) giving the number of MCMC
in transition period, nskip (1) giving the thinning interval, smcmc (1000) giv-
ing the number of MCMC for analysis.
prior
a list giving the prior information. The list includes the following parameters
(default values specify the non-informative prior): beta_m0 and beta_v0 giv-
ing the hyperparameters of the multivariate normal distribution for parametric
part including intercept, sigma2_m0 and sigma2_v0 giving the prior mean and
variance of the inverse gamma prior for the scale parameter of response.
marginal.likelihood
a logical variable indicating whether the log marginal likelihood is calculated.

Details

This generic function fits a Bayesian linear regression model using scale invariant prior.
Let y_i and w_i be the response and the vector of parametric predictors, respectively. The model for
regression function is as follows.

$$y_i = w_i^T \beta + \epsilon_i, \ i = 1, \ldots, n,$$

where the error terms $\{\epsilon_i\}$ are a random sample from a normal distribution, $N(0, \sigma^2)$.
The conjugate priors are assumed for β and σ:

$$\beta | \sigma \sim N(m_{0,\beta}, \sigma^2 V_{0,\beta}), \ \sigma^2 \sim IG\left(\frac{r_0, \sigma^2}{2}, \frac{s_0, \sigma^2}{2}\right)$$

Value

An object of class blm representing the Bayesian spectral analysis model fit. Generic functions such
as print and fitted have methods to show the results of the fit.
The MCMC samples of the parameters in the model are stored in the list mcmc.draws and the
posterior samples of the fitted values are stored in the list fit.draws. The output list also includes
the following objects:

descript post.est posterior estimates for all parameters in the model.
descript lmargin log marginal likelihood.
descript rsquarey correlation between y and \hat{y}.
descript call the matched call.
descript mcmctime running time of Markov chain from system.time().
See Also

blq, gblr

Examples

#####################
Simulated example
#####################

Simulate data
set.seed(1)

n <- 100
w <- runif(n)
y <- 3 + 2*w + rnorm(n, sd = 0.8)

Fit the model with default priors and mcmc parameters
fout <- blr(y ~ w)

Summary
print(fout); summary(fout)

Fitted values
fit <- fitted(fout)

Plots
plot(fout)

bsad

Bayesian Semiparametric Density Estimation

Description

This function fits a semiparametric model, which consists of parametric and nonparametric components, for estimating density using a logistic Gaussian process.

Usage

bsad(x, xmin, xmax, nint, MaxNCos, mcmc = list(), prior = list(), smoother = c('geometric', 'algebraic'), parametric = c('none', 'normal', 'gamma', 'laplace'), marginal.likelihood = TRUE, verbose = FALSE)

Arguments

x a vector giving the data from which the density estimate is to be computed.
xmin minimum value of x.
xmax maximum value of x.
nint number of grid points for plots (need to be odd). The default is 201.
MaxNCos maximum number of Fourier coefficients.
mcmc a list giving the MCMC parameters. The list includes the following integers (with default values in parentheses): kappa_loops (5) giving the number of MCMC loops within each choice of kappa, nblow (10000) giving the number of MCMC in transition period, nskip (10) giving the number of MCMC for analysis, and ndisp (1000) giving the number of saved draws to be displayed on screen (the function reports on the screen when every ndisp iterations have been carried out).
prior a list giving the prior information. The list includes the following parameters (default values specify the non-informative prior): gmax giving maximum value for gamma (default = 5), PriorProbs giving prior probability of parametric and semiparametric models, beta_m0 and beta_v0 giving the hyperparameters for prior distribution of the parametric coefficients, r0 and s0 giving the hyperparameters of \(\sigma^2 \) for the logits, u0 and v0 giving the hyperparameters of \(\tau^2 \) for Fourier coefficients, PriorKappa and KappaGrid giving prior on the number of cosine terms.
smoother types of smoothing priors for Fourier coefficients. See Details.
parametric specifying a distribution of the parametric part to be test.
marginal.likelihood a logical variable indicating whether the log marginal likelihood is calculated.
verbose a logical variable. If TRUE, the iteration number and the Metropolis acceptance rate are printed to the screen.

Details

This generic function fits a semiparametric model, which consists of parametric and nonparametric, for density estimation (Lenk, 2003):

\[
f(x|\beta, Z) = \frac{\exp[h(x)^T \beta + Z(x)]}{\int_{\chi} \exp[h(y)^T \beta + Z(y)]dG(y)}
\]

where \(Z \) is a zero mean, second-order Gaussian process with bounded, continuous covariance function. i.e.,

\[
E[Z(x), Z(y)] = \sigma(x, y), \quad \int_{\chi} ZdG = 0 \quad (a.s.)
\]

Using the Karhunen-Loeve Expansion, \(Z \) is represented as infinite series with random coefficients

\[
Z(x) = \sum_{j=1}^{\infty} \theta_j \varphi_j(x),
\]

where \(\{ \varphi_j \} \) is the cosine basis, \(\varphi_j(x) = \sqrt{2} \cos[j\pi G(x)] \).

For the random Fourier coefficients of the expansion, two smoother priors are assumed (optional),

\[
\theta_j|\tau, \gamma \sim N(0, \tau^2 \exp[-j\gamma]), \quad j \geq 1 \quad (geometric \ smoother)
\]
\[\theta_j | \tau, \gamma \sim N(0, \tau^2 \exp[-\ln(j + 1) \gamma]), \ j \geq 1 \] (algebraic smoother)

The coefficient \(\beta \) have the popular normal prior,

\[\beta | m_{0, \beta}, V_{0, \beta} \sim N(m_{0, \beta}, V_{0, \beta}) \]

To complete the model specification, independent hyper priors are assumed,

\[\tau^2 | r_0, s_0 \sim IGa(r_0/2, s_0/2) \]
\[\gamma | w_0 \sim Exp(w_0) \]

Note that the posterior algorithm is based on computing a discrete version of the likelihood over a fine mesh on \(X \).

Value

An object of class `bsad` representing the Bayesian spectral analysis density estimation model fit. Generic functions such as `print`, `fitted` and `plot` have methods to show the results of the fit.

The MCMC samples of the parameters in the model are stored in the list `mcmc.draws`, the posterior samples of the fitted values are stored in the list `fit.draws`, and the MCMC samples for the log marginal likelihood are saved in the list `loglik.draws`. The output list also includes the following objects:

- `post.est` posterior estimates for all parameters in the model.
- `lmarg` log marginal likelihood.
- `ProbProbs` posterior probability of models.
- `call` the matched call.
- `mcmctime` running time of Markov chain from `system.time()`.

References

Examples

```r
# Not run:
####################################
# Old Faithful geyser data #
####################################
data(faithful)
attach(faithful)

# mcmc parameters
mcmc <- list(nblow = 10000,
```
bsaq

smcmc = 1000,
nskip = 10,
ndisp = 1000,
kappaloop = 5)

fits BSAD model
fout <- bsaq(x = eruptions, xmin = 0, xmax = 8, nint = 501, mcmc = mcmc,
 smoother = 'geometric', parametric = 'gamma')

Summary
print(fout); summary(fout)

fitted values
fit <- fitted(fout)

predictive density plot
plot(fit, ask = TRUE)

detach(faithful)

End(Not run)

bsaq

Bayesian Shape-Restricted Spectral Analysis Quantile Regression

Description

This function fits a Bayesian semiparametric quantile regression model to estimate shape-restricted functions using a spectral analysis of Gaussian process priors.

Usage

bsaq(formula, xmin, xmax, p, nbasis, nint, mcmc = list(), prior = list(),
 shape = c('Free', 'Increasing', 'Decreasing', 'IncreasingConvex', 'DecreasingConcave',
 'IncreasingConcave', 'DecreasingConvex', 'IncreasingS', 'DecreasingS',
 'IncreasingRotatedS', 'DecreasingRotatedS', 'InvertedU', 'Ushape',
 'IncMultExtreme', 'DecMultExtreme'), nExtreme = NULL,
 marginal.likelihood = TRUE, spm.adequacy = FALSE, verbose = FALSE)

Arguments

formula an object of class “formula”
xmin a vector or scalar giving user-specific minimum values of x. The default values are minimum values of x.
xmax a vector or scalar giving user-specific maximum values of x. The default values are maximum values of x.
p quantile of interest (default=0.5).
nbasis number of cosine basis functions.
nint number of grid points where the unknown function is evaluated for plotting. The default is 200.
mcmc a list giving the MCMC parameters. The list includes the following integers (with default values in parentheses): nblow0 (1000) giving the number of initialization period for adaptive metropolis, maxmodmet (5) giving the maximum number of times to modify metropolis, nblow (10000) giving the number of MCMC in transition period, nskip (10) giving the thinning interval, smcmc (1000) giving the number of MCMC for analysis, and ndisp (1000) giving the number of saved draws to be displayed on screen (the function reports on the screen when every ndisp iterations have been carried out).
prior a list giving the prior information. The list includes the following parameters (default values specify the non-informative prior): iflagprior choosing a smoothing prior for spectral coefficients (iflagprior=0 assigns T-Smoother prior (default), iflagprior=1 chooses Lasso-Smoother prior), theta0_m0 and theta0_s0 giving the hyperparameters for prior distribution of the spectral coefficients (theta0_m0 and theta0_s0 are used when the functions have shape-restriction), tau2_m0, tau2_s0 and w0 giving the prior mean and standard deviation of smoothing prior (When iflagprior=1, tau2_m0 is only used as the hyperparameter), beta_m0 and beta_v0 giving the hyperparameters of the multivariate normal distribution for parametric part including intercept, sigma2_m0 and sigma2_v0 giving the prior mean and variance of the inverse gamma prior for the scale parameter of response, alpha_m0 and alpha_s0 giving the prior mean and standard deviation of the truncated normal prior distribution for the constant of integration, iflagpsi determining the prior of slope for logistic function in S or U shaped (iflagpsi=1 (default), slope ψ is sampled and iflagpsi=0, ψ is fixed), psi fixed giving initial value (iflagpsi=1) or fixed value (iflagpsi=0) of slope, omega_m0 and omega_s0 giving the prior mean and standard deviation of the truncated normal prior distribution for the inflection point of S or U shaped function.
shape a vector giving types of shape restriction.
nExtreme a vector of extreme points for 'IncMultExtreme', 'DecMultExtreme' shape restrictions.
marginal.likelihood a logical variable indicating whether the log marginal likelihood is calculated. The methods of Gelfand and Dey (1994) and Newton and Raftery (1994) are used.
spm.adequacy a logical variable indicating whether the log marginal likelihood of linear model is calculated. The marginal likelihood gives the values of the linear regression model excluding the nonlinear parts.
verbose a logical variable. If TRUE, the iteration number and the Metropolis acceptance rate are printed to the screen.

Details

This generic function fits a Bayesian spectral analysis quantile regression model for estimating shape-restricted functions using Gaussian process priors. For enforcing shape-restrictions, the model assumed that the derivatives of the functions are squares of Gaussian processes.
Let \(y_i \) and \(w_i \) be the response and the vector of parametric predictors, respectively. Further, let \(x_{i,k} \) be the covariate related to the response through an unknown shape-restricted function. The model for estimating shape-restricted functions is as follows.

\[
y_i = w_i^T \beta + \sum_{k=1}^{K} f_k(x_{i,k}) + \epsilon_i, \ i = 1, \ldots, n,
\]

where \(f_k \) is an unknown shape-restricted function of the scalar \(x_{i,k} \in [0,1] \) and the error terms \(\{\epsilon_i\} \) are a random sample from an asymmetric Laplace distribution, \(ALD_p(0,\sigma^2) \), which has the following probability density function:

\[
ALD_p(\epsilon; \mu, \sigma^2) = p(1-p)\sigma^2 \exp\left(-\frac{(x-\mu)[p-I(x \leq \mu)]}{\sigma^2} \right),
\]

where \(0 < p < 1 \) is the skew parameter, \(\sigma^2 > 0 \) is the scale parameter, \(-\infty < \mu < \infty \) is the location parameter, and \(I(\cdot) \) is the indication function.

The prior of function without shape restriction is:

\[
f(x) = Z(x),
\]

where \(Z \) is a second-order Gaussian process with mean function equal to zero and covariance function \(\nu(s,t) = E[Z(s)Z(t)] \) for \(s, t \in [0,1] \). The Gaussian process is expressed with the spectral representation based on cosine basis functions:

\[
Z(x) = \sum_{j=0}^{\infty} \theta_j \varphi_j(x)
\]

\[\varphi_0(x) = 1 \text{ and } \varphi_j(x) = \sqrt{2} \cos(\pi j x), \ j \geq 1, \ 0 \leq x \leq 1\]

The shape-restricted functions are modeled by assuming the \(q \)th derivatives of \(f \) are squares of Gaussian processes:

\[
f^{(q)}(x) = \delta Z^2(x)h(x), \ \delta \in \{1,-1\}, \ q \in \{1,2\},
\]

where \(h \) is the squish function. For monotonic, monotonic convex, and concave functions, \(h(x) = 1 \), while for \(S \) and \(U \) shaped functions, \(h \) is defined by

\[
h(x) = \frac{1 - \exp[\psi(x-\omega)]}{1 + \exp[\psi(x-\omega)]}, \ \psi > 0, \ 0 < \omega < 1
\]

For the spectral coefficients of functions without shape constraints, the scale-invariant prior is used (The intercept is included in \(\beta \)):

\[
\theta_j | \sigma, \tau, \gamma \sim N(0, \sigma^2 \tau^2 \exp[-j\gamma]), \ j \geq 1
\]

The priors for the spectral coefficients of shape restricted functions are:

\[
\theta_0 | \sigma \sim N(m_0, \sigma v_0^2), \ \theta_j | \sigma, \tau, \gamma \sim N(m_{\theta,j}, \sigma \tau^2 \exp[-j\gamma]), \ j \geq 1
\]

To complete the model specification, the conjugate priors are assumed for \(\beta \) and \(\sigma \):

\[
\beta | \sigma \sim N(m_{0,\beta}, \sigma^2 V_{0,\beta}), \ \sigma^2 \sim IG\left(\frac{\tau_0, \sigma}{2}, \frac{s_0, \sigma}{2}\right)
\]
Value

An object of class `bsam` representing the Bayesian spectral analysis model fit. Generic functions such as `print`, `fitted` and `plot` have methods to show the results of the fit.

The MCMC samples of the parameters in the model are stored in the list `mcmc.draws`, the posterior samples of the fitted values are stored in the list `fit.draws`, and the MCMC samples for the log marginal likelihood are saved in the list `loglik.draws`. The output list also includes the following objects:

- `post.est`: posterior estimates for all parameters in the model.
- `lmarg.lm`: log marginal likelihood for linear quantile regression model.
- `lmarg.gd`: log marginal likelihood using Gelfand-Dey method.
- `lmarg.nr`: log marginal likelihood using Newton-Raftery method, which is biased.
- `rsquarey`: correlation between y and \hat{y}.
- `call`: the matched call.
- `mcmctime`: running time of Markov chain from `system.time()`.

References

See Also

- `bsar`, `gbsar`

Examples

```r
## Not run:
######################
# Increasing-concave #
######################

# Simulate data
set.seed(1)
```
n <- 200
tax <- runif(n)
y <- log(1 + 10*x) + rald(n, scale = 0.5, p = 0.5)

Number of cosine basis functions
nbasis <- 50

Fit the model with default priors and mcmc parameters
fout1 <- bsaq(y ~ fs(x), p = 0.25, nbasis = nbasis,
shape = 'IncreasingConcave')
fout2 <- bsaq(y ~ fs(x), p = 0.5, nbasis = nbasis,
shape = 'IncreasingConcave')
fout3 <- bsaq(y ~ fs(x), p = 0.75, nbasis = nbasis,
shape = 'IncreasingConcave')

fitted values
fit1 <- fitted(fout1)
fit2 <- fitted(fout2)
fit3 <- fitted(fout3)

plots
plot(x, y, lwd = 2, xlab = 'x', ylab = 'y')
lines(fit1$xgrid, fit1$wbeta$mean[1] + fit1$fxgrid$mean, lwd=2, col=2)
lines(fit2$xgrid, fit2$wbeta$mean[1] + fit2$fxgrid$mean, lwd=2, col=3)
lines(fit3$xgrid, fit3$wbeta$mean[1] + fit3$fxgrid$mean, lwd=2, col=4)
legend('topleft', legend = c('1st Quartile', '2nd Quartile', '3rd Quartile'),
 lwd = 2, col = 2:4, lty = 1)

End(Not run)

bsaqdpm

Bayesian Shape-Restricted Spectral Analysis Quantile Regression
with Dirichlet Process Mixture Errors

Description

This function fits a Bayesian semiparametric quantile regression model to estimate shape-restricted
functions using a spectral analysis of Gaussian process priors. The model assumes that the errors
follow a Dirichlet process mixture model.

Usage

bsaqdpm(formula, xmin, xmax, p, nbasis, nint,
mcmc = list(), prior = list(), egrid, ngrid = 500,
shape = c('Free', 'Increasing', 'Decreasing', 'IncreasingConvex', 'DecreasingConvex',
'IncreasingConcave', 'DecreasingConvex', 'IncreasingS', 'DecreasingS',
'IncreasingRotatedS', 'DecreasingRotatedS', 'InvertedU', 'Ushape'),
verbose = FALSE)
Arguments

\texttt{formula}
an object of class "\texttt{formula}"

\texttt{xmin}
a vector or scalar giving user-specific minimum values of x. The default values are minimum values of x.

\texttt{xmax}
a vector or scalar giving user-specific maximum values of x. The default values are maximum values of x.

\texttt{p}
quantile of interest (default=0.5).

\texttt{nbasis}
number of cosine basis functions.

\texttt{nint}
number of grid points where the unknown function is evaluated for plotting. The default is 200.

\texttt{mcmc}
a list giving the MCMC parameters. The list includes the following integers (with default values in parentheses): nblow0 (1000) giving the number of initialization period for adaptive metropolis, maxmodmet (5) giving the maximum number of times to modify metropolis, nblow (10000) giving the number of MCMC in transition period, nskip (10) giving the thinning interval, smcmc (1000) giving the number of MCMC for analysis, and ndisp (1000) giving the number of saved draws to be displayed on screen (the function reports on the screen when every ndisp iterations have been carried out).

\texttt{prior}
a list giving the prior information. The list includes the following parameters (default values specify the non-informative prior): iflagprior choosing a smoothing prior for spectral coefficients (iflagprior=0 assigns T-Smoother prior (default), iflagprior=1 chooses Lasso-Smoother prior), theta0_m0 and theta0_s0 giving the hyperparameters for prior distribution of the spectral coefficients (theta0_m0 and theta0_s0 are used when the functions have shape-restriction), tau2_m0, tau2_s0 and w0 giving the prior mean and standard deviation of smoothing prior (When iflagprior=1, tau2_m0 is only used as the hyperparameter), beta_m0 and beta_v0 giving the hyperparameters of the multivariate normal distribution for parametric part including intercept, sigma2_m0 and sigma2_v0 giving the prior mean and variance of the inverse gamma prior for the scale parameter of response, alpha_m0 and alpha_s0 giving the prior mean and standard deviation of the truncated normal prior distribution for the constant of integration, iflagpsi determining the prior of slope for logistic function in S or U shaped (iflagpsi=1 (default), slope \psi is sampled and iflagpsi=0, \psi is fixed), psifixed giving initial value (iflagpsi=1) or fixed value (iflagpsi=0) of slope, omega_m0 and omega_s0 giving the prior mean and standard deviation of the truncated normal prior distribution for the inflection point of S or U shaped function.

\texttt{egrid}
a vector giving grid points where the residual density estimate is evaluated. The default range is from -10 to 10.

\texttt{ngrid}
a vector giving number of grid points where the residual density estimate is evaluated. The default value is 500.

\texttt{shape}
a vector giving types of shape restriction.

\texttt{verbose}
a logical variable. If \texttt{TRUE}, the iteration number and the Metropolis acceptance rate are printed to the screen.
Details

This generic function fits a Bayesian spectral analysis quantile regression model for estimating shape-restricted functions using Gaussian process priors. For enforcing shape-restrictions, the model assumes that the derivatives of the functions are squares of Gaussian processes. The model also assumes that the errors follow a Dirichlet process mixture model.

Let y_i and w_i be the response and the vector of parametric predictors, respectively. Further, let $x_{i,k}$ be the covariate related to the response through an unknown shape-restricted function. The model for estimating shape-restricted functions is as follows.

\[y_i = w_i^T \beta + \sum_{k=1}^{K} f_k(x_{i,k}) + \epsilon_i, \quad i = 1, \ldots, n, \]

where f_k is an unknown shape-restricted function of the scalar $x_{i,k} \in [0, 1]$ and the error terms $\{\epsilon_i\}$ are a random sample from a Dirichlet process mixture of an asymmetric Laplace distribution, $ALD_p(0, \sigma^2)$, which has the following probability density function:

\[\epsilon_i \sim f(\epsilon) = \int ALD_p(\epsilon; 0, \sigma^2) dG(\sigma^2), \]

\[G \sim DP(M, G_0), \quad G_0 = Ga\left(\sigma^{-2}; \frac{r_0.\sigma}{2}, \frac{s_0.\sigma}{2}\right). \]

The prior of function without shape restriction is:

\[f(x) = Z(x), \]

where Z is a second-order Gaussian process with mean function equal to zero and covariance function $\nu(s, t) = E[Z(s)Z(t)]$ for $s, t \in [0, 1]$. The Gaussian process is expressed with the spectral representation based on cosine basis functions:

\[Z(x) = \sum_{j=0}^{\infty} \theta_j \varphi_j(x) \]

$\varphi_0(x) = 1$ and $\varphi_j(x) = \sqrt{2} \cos(\pi j x), \quad j \geq 1, \quad 0 \leq x \leq 1$

The shape-restricted functions are modeled by assuming the qth derivatives of f are squares of Gaussian processes:

\[f^{(q)}(x) = \delta Z^2(x) h(x), \quad \delta \in \{1, -1\}, \quad q \in \{1, 2\}, \]

where h is the squish function. For monotonic, monotonic convex, and concave functions, $h(x) = 1$, while for S and U shaped functions, h is defined by

\[h(x) = \frac{1 - \exp[\psi(x - \omega)]}{1 + \exp[\psi(x - \omega)]}, \quad \psi > 0, \quad 0 < \omega < 1 \]

For the spectral coefficients of functions without shape constraints, the scale-invariant prior is used (The intercept is included in β):

\[\theta_j | \tau, \gamma \sim N(0, \tau^2 \exp[-j\gamma]), \quad j \geq 1 \]
The priors for the spectral coefficients of shape restricted functions are:

\[\theta_0 \sim N(m_{\theta_0}, \nu_{\theta_0}^2), \quad \theta_j | \tau, \gamma \sim N(m_{\theta_j}, \tau^2 \exp[-j\gamma]), \quad j \geq 1 \]

To complete the model specification, the popular normal prior is assumed for \(\beta \):

\[\beta | \sim N(m_{0,\beta}, V_{0,\beta}) \]

Value

An object of class bsam representing the Bayesian spectral analysis model fit. Generic functions such as print, fitted and plot have methods to show the results of the fit.

The MCMC samples of the parameters in the model are stored in the list mcmc.draws, the posterior samples of the fitted values are stored in the list fit.draws, and the MCMC samples for the log marginal likelihood are saved in the list loglik.draws. The output list also includes the following objects:

- **post.est**: posterior estimates for all parameters in the model.
- **lpml**: log pseudo marginal likelihood using Mukhopadhyay and Gelfand method.
- **rsquarey**: correlation between \(y \) and \(\hat{y} \).
- **imodmet**: the number of times to modify Metropolis.
- **pmet**: proportion of \(\theta \) accepted after burn-in.
- **call**: the matched call.
- **mcmctime**: running time of Markov chain from `system.time()`.

References

See Also

bsaq, bsardpm
bsar

Examples

```
## Not run:
# Increasing-concave#

# Simulate data
set.seed(1)

n <- 500
x <- runif(n)
e <- c(rald(n/2, scale = 0.5, p = 0.5),
      rald(n/2, scale = 3, p = 0.5))
y <- log(1 + 10*x) + e

# Number of cosine basis functions
nbasis <- 50

# Fit the model with default priors and mcmc parameters
fout1 <- bsaqdpm(y ~ fs(x), p = 0.25, nbasis = nbasis,
                 shape = 'IncreasingConcave')
fout2 <- bsaqdpm(y ~ fs(x), p = 0.5, nbasis = nbasis,
                 shape = 'IncreasingConcave')
fout3 <- bsaqdpm(y ~ fs(x), p = 0.75, nbasis = nbasis,
                 shape = 'IncreasingConcave')

# fitted values
fit1 <- fitted(fout1)
fit2 <- fitted(fout2)
fit3 <- fitted(fout3)

# plots
plot(x, y, lwd = 2, xlab = 'x', ylab = 'y')
lines(fit1$grid, fit1$beta$mean[1] + fit1$grid$mean, lwd=2, col=2)
lines(fit2$grid, fit2$beta$mean[1] + fit2$grid$mean, lwd=2, col=3)
lines(fit3$grid, fit3$beta$mean[1] + fit3$grid$mean, lwd=2, col=4)
legend('topleft',legend=c('1st Quartile','2nd Quartile','3rd Quartile'),
       lwd=2, col=2:4, lty=1)
```

bsar

Bayesian Shape-Restricted Spectral Analysis Regression

Description

This function fits a Bayesian semiparametric regression model to estimate shape-restricted functions using a spectral analysis of Gaussian process priors.
Usage

bsar(formula, xmin, xmax, nbasis, nint, mcmc = list(), prior = list(),
shape = c('Free', 'Increasing', 'Decreasing', 'IncreasingConvex', 'DecreasingConvex',
'IncreasingConcave', 'DecreasingConvex', 'IncreasingS', 'DecreasingS',
'IncreasingRotatedS', 'DecreasingRotatedS', 'InvertedU', 'Ushape',
'IncMultExtreme', 'DecMultExtreme'), nExtreme = NULL,
marginal.likelihood = TRUE, spm.adequacy = FALSE, verbose = FALSE)

Arguments

formula
- an object of class "formula"

xmin
- a vector or scalar giving user-specific minimum values of x. The default values are minimum values of x.

xmax
- a vector or scalar giving user-specific maximum values of x. The default values are maximum values of x.

nbasis
- number of cosine basis functions.

nint
- number of grid points where the unknown function is evaluated for plotting. The default is 200.

mcmc
- a list giving the MCMC parameters. The list includes the following integers (with default values in parentheses): nblow (1000) giving the number of initialization period for adaptive metropolis, maxmodmet (5) giving the maximum number of times to modify metropolis, nblow (10000) giving the number of MCMC in transition period, nskip (10) giving the thinning interval, smcmc (1000) giving the number of MCMC for analysis, and ndisp (1000) giving the number of saved draws to be displayed on screen (the function reports on the screen when every ndisp iterations have been carried out).

prior
- a list giving the prior information. The list includes the following parameters (default values specify the non-informative prior): iflagprior choosing a smoothing prior for spectral coefficients (iflagprior=0 assigns T-Smoother prior (default), iflagprior=1 chooses Lasso-Smoother prior), theta0_m0 and theta0_s0 giving the hyperparameters for prior distribution of the spectral coefficients (theta0_m0 and theta0_s0 are used when the functions have shape-restriction), tau2_m0, tau2_s0 and w0 giving the prior mean and standard deviation of smoothing prior (When iflagprior=1, tau2_m0 is only used as the hyperparameter), beta_m0 and beta_v0 giving the hyperparameters of the multivariate normal distribution for parametric part including intercept, sigma2_m0 and sigma2_v0 giving the prior mean and variance of the inverse gamma prior for the scale parameter of response, alpha_m0 and alpha_s0 giving the prior mean and standard deviation of the truncated normal prior distribution for the constant of integration, iflagpsi determining the prior of slope for logistic function in S or U shaped (iflagpsi=1 (default), slope psi is sampled and iflagpsi=0, psi is fixed), psifixed giving initial value (iflagpsi=1) or fixed value (iflagpsi=0) of slope, omega_m0 and omega_s0 giving the prior mean and standard deviation of the truncated normal prior distribution for the inflection point of S or U shaped function.
shape a vector giving types of shape restriction.

nExtreme a vector of extreme points for 'IncMultExtreme', 'DecMultExtreme' shape restrictions.

marginal.likelihood a logical variable indicating whether the log marginal likelihood is calculated. The methods of Gelfand and Dey (1994) and Newton and Raftery (1994) are used.

spm.adequacy a logical variable indicating whether the log marginal likelihood of linear model is calculated. The marginal likelihood gives the values of the linear regression model excluding the nonlinear parts.

verbose a logical variable. If TRUE, the iteration number and the Metropolis acceptance rate are printed to the screen.

Details

This generic function fits a Bayesian spectral analysis regression model (Lenk and Choi, 2015) for estimating shape-restricted functions using Gaussian process priors. For enforcing shape-restrictions, they assumed that the derivatives of the functions are squares of Gaussian processes.

Let y_i and w_i be the response and the vector of parametric predictors, respectively. Further, let $x_{i,k}$ be the covariate related to the response through an unknown shape-restricted function. The model for estimating shape-restricted functions is as follows.

$$y_i = w_i^T \beta + \sum_{k=1}^{K} f_k(x_{i,k}) + \epsilon_i, \ i = 1, \ldots, n,$$

where f_k is an unknown shape-restricted function of the scalar $x_{i,k} \in [0, 1]$ and the error terms $\{\epsilon_i\}$ are a random sample from a normal distribution, $N(0, \sigma^2)$.

The prior of function without shape restriction is:

$$f(x) = Z(x),$$

where Z is a second-order Gaussian process with mean function equal to zero and covariance function $\nu(s, t) = E[Z(s)Z(t)]$ for $s, t \in [0, 1]$. The Gaussian process is expressed with the spectral representation based on cosine basis functions:

$$Z(x) = \sum_{j=0}^{\infty} \theta_j \phi_j(x)$$

where $\phi_0(x) = 1$ and $\phi_j(x) = \sqrt{2} \cos(\pi j x), \ j \geq 1, \ 0 \leq x \leq 1$

The shape-restricted functions are modeled by assuming the qth derivatives of f are squares of Gaussian processes:

$$f^{(q)}(x) = \delta Z^2(x) h(x), \ \delta \in \{1, -1\}, \ q \in \{1, 2\},$$

where h is the squish function. For monotonic, monotonic convex, and concave functions, $h(x) = 1$, while for S and U shaped functions, h is defined by

$$h(x) = \frac{1 - \exp[\psi(x - \omega)]}{1 + \exp[\psi(x - \omega)]}, \ \psi > 0, \ 0 < \omega < 1$$
For the spectral coefficients of functions without shape constraints, the scale-invariant prior is used (The intercept is included in β):

$$\theta_j | \sigma, \tau, \gamma \sim N(0, \sigma^2 \tau^2 \exp[-j\gamma]), \ j \geq 1$$

The priors for the spectral coefficients of shape restricted functions are:

$$\theta_0 | \sigma \sim N(m_{\theta_0}, \sigma v_{\theta_0}^2), \ \theta_j | \sigma, \tau, \gamma \sim N(m_{\theta_j}, \sigma \tau^2 \exp[-j\gamma]), \ j \geq 1$$

To complete the model specification, the conjugate priors are assumed for β and σ:

$$\beta | \sigma \sim N(m_{0, \beta}, \sigma^2 V_{0, \beta}), \ \sigma^2 \sim IG \left(\frac{r_0, \sigma}{2}, \frac{s_0, \sigma}{2} \right)$$

Value

An object of class `bsam` representing the Bayesian spectral analysis model fit. Generic functions such as `print`, `fitted` and `plot` have methods to show the results of the fit.

The MCMC samples of the parameters in the model are stored in the list `mcmc.draws`, the posterior samples of the fitted values are stored in the list `fit.draws`, and the MCMC samples for the log marginal likelihood are saved in the list `loglik.draws`. The output list also includes the following objects:

- `post.est` posterior estimates for all parameters in the model.
- `lmarg.lm` log marginal likelihood for linear regression model.
- `lmarg.gd` log marginal likelihood using Gelfand-Dey method.
- `lmarg.nr` log marginal likelihood using Netwon-Raftery method, which is biased.
- `rsquarey` correlation between y and \hat{y}.
- `call` the matched call.
- `mcmctime` running time of Markov chain from `system.time()`.

References

See Also

`bsardpm`
Examples

Not run:

```r
# Increasing Convex to Concave (S-shape)

f <- function(x) 5*exp(-10*(x - 1)^4) + 5*x^2

set.seed(1)

n <- 100
x <- runif(n)
y <- f(x) + rnorm(n, sd = 1)

# Number of cosine basis functions
nbasis <- 50

# Fit the model with default priors and mcmc parameters
fout <- bsar(y ~ fs(x), nbasis = nbasis, shape = 'IncreasingConvex',
             spm.adequacy = TRUE)

# Summary
print(fout); summary(fout)

# Trace plots
plot(fout)

# fitted values
fit <- fitted(fout)

# Plot
plot(fit, ask = TRUE)
```

Additive Model

```r
# Additive Model
# Monotone-Increasing and Increasing-Convex

f1 <- function(x) 2*pi*x + sin(2*pi*x)
f2 <- function(x) exp(6*x - 3)

n <- 200
x1 <- runif(n)
x2 <- runif(n)
x <- cbind(x1, x2)
y <- 5 + f1(x1) + f2(x2) + rnorm(n, sd = 0.5)
```
Number of cosine basis functions
nbasis <- 50

MCMC parameters
mcmc <- list(nblow0 = 1000, nblow = 10000, nskip = 10,
 smcmc = 5000, ndisp = 1000, maxmodmet = 10)

Prior information
xmin <- apply(x, 2, min)
xmax <- apply(x, 2, max)
xrange <- xmax - xmin
prior <- list(iflagprior = 0, theta0_m0 = 0, theta0_s0 = 100,
 tau2_m0 = 1, tau2_v0 = 100, w0 = 2,
 beta_m0 = numeric(1), beta_v0 = diag(100, 1),
 sigma2_m0 = 1, sigma2_v0 = 1000,
 alpha_m0 = 3, alpha_s0 = 50, iflagpsi = 1,
 psifixed = 1000, omega_m0 = (xmin + xmax)/2,
 omega_s0 = (xrange)/8)

Fit the model with user specific priors and mcmc parameters
fout <- bsar(y ~ fs(x1) + fs(x2), nbasis = nbasis, mcmc = mcmc, prior = prior,
 shape = c('Increasing', 'IncreasingS'))

Summary
print(fout); summary(fout)

End(Not run)

bsarBig

Bayesian Spectral Analysis Regression for Big data

Description

This function fits a Bayesian spectral analysis regression model for Big data.

Usage

bsarBig(formula, nbasis, nint, mcmc = list(), prior = list(), verbose = FALSE)

Arguments

formula an object of class “formula”
nbasis number of cosine basis functions.
nint number of grid points where the unknown function is evaluated for plotting. The default is 500.
mcmc

A list giving the MCMC parameters. The list includes the following integers (with default values in parentheses):
nblow (10000) giving the number of MCMC in transition period,
nskip (10) giving the thinning interval,
smcmc (1000) giving the number of MCMC for analysis, and
ndisp (1000) giving the number of saved draws to be displayed on screen (the function reports on the screen when every ndisp iterations have been carried out).

prior

A list giving the prior information. The list includes the following parameters (default values specify the non-informative prior):
sigma2_m0 and sigma2_v0 giving the prior mean and variance of the inverse gamma prior for the scale parameter of response,
tau2_m0, tau2_s0 and w0 giving the prior mean and standard deviation of smoothing prior.

verbose

A logical variable. If TRUE, the iteration number and the Metropolis acceptance rate are printed to the screen.

Value

The MCMC samples of the parameters in the model are stored in the list `mcmc.draws` and the posterior samples of the fitted values are stored in the list `fit.draws`. The output list also includes the following objects:

- **post.est**: posterior estimates for all parameters in the model.
- **call**: the matched call.
- **mcmctime**: running time of Markov chain from `system.time()`.

See Also

- **bsar**

Examples

```r
# Ttrue function
ftrue <- function(x){
  ft <- 7*exp(-3*x) + 2*exp(-70*(x-.6)^2) - 2 + 5*x
  return(ft)
}

# Generate data
set.seed(1)

nobs <- 100000 # Number of observations
sigmat <- .5 # True sigma
nxgrid <- 500 # number of grid points: approximate likelihood & plots

xdata <- runif(nobs) # Generate x values
fobst <- ftrue(xdata) # True f at observations
ydata <- fobst + sigmat*rnorm(nobs)

# Compute grid on 0 to 1
xdelta <- 1/nxgrid
xgrid <- seq(xdelta/2, 1-xdelta/2, xdelta)
```
bsardpm <- matrix(xgrid,nxgrid)
fxgridt <- ftrue(xgrid) # True f on xgrid

Fit data
fout <- bsarBig(ydata ~ xdata, nbasis = 50, nint = nxgrid, verbose = TRUE)

Plots
smcmc <- fout$mcmc$mcmc

t <- 1:smcmc
par(mfrow=c(2,2))
matplot(t, fout$mcmc.draws$theta, type = "l", main = "Theta", xlab = "Iteration", ylab = "Draw")
plot(t, fout$mcmc.draws$sigma, type = "l", main = "Sigma", xlab = "Iteration", ylab = "Draw")
matplot(t, fout$mcmc.draws$tau, type = "l", main = "Tau", xlab = "Iteration", ylab = "Draw")
matplot(t, fout$mcmc.draws$gamma, type = "l", main = "Gamma", xlab = "Iteration", ylab = "Draw")

dev.new()
matplot(fout$fit.draws$xgrid, cbind(fxgridt, fout$post.est$fhatm, fout$post.est$fhatq),
 type = "l", main = "Regression Function", xlab = "X", ylab = "Y")

Compute RMISE for regression function
sse <- (fout$post.est$fhatm - fxgridt)^2
rmise <- intgrat(sse, 1/nxgrid)
rmise <- sqrt(rmise)
rmise

bsardpm

Bayesian Shape-Restricted Spectral Analysis Regression with Dirichlet Process Mixture Errors

Description

This function fits a Bayesian semiparametric regression model to estimate shape-restricted functions using a spectral analysis of Gaussian process priors. The model assumes that the errors follow a Dirichlet process mixture model.

Usage

bsardpm(formula, xmin, xmax, nbasis, nint, mcmc = list(), prior = list(), egrid, ngrid, location = TRUE, shape = c('Free', 'Increasing', 'Decreasing', 'IncreasingConvex', 'DecreasingConcave', 'IncreasingConcave', 'IncreasingConvex', 'IncreasingS', 'DecreasingS', 'IncreasingRotatedS', 'DecreasingRotatedS', 'InvertedU', 'Ushape'), verbose = FALSE)

Arguments

formula an object of class “formula”
bsardpm

\texttt{xmin} \hspace{1cm} \text{a vector or scalar giving user-specific minimum values of x. The default values are minimum values of x.}

\texttt{xmax} \hspace{1cm} \text{a vector or scalar giving user-specific maximum values of x. The default values are maximum values of x.}

\texttt{nbasis} \hspace{1cm} \text{number of cosine basis functions.}

\texttt{nint} \hspace{1cm} \text{number of grid points where the unknown function is evaluated for plotting. The default is 200.}

\texttt{mcmc} \hspace{1cm} \text{a list giving the MCMC parameters. The list includes the following integers (with default values in parentheses): nblow (1000) giving the number of initialization period for adaptive metropolis, maxmodmet (5) giving the maximum number of times to modify metropolis, nblow (10000) giving the number of MCMC in transition period, nskip (10) giving the thinning interval, smcmc (1000) giving the number of MCMC for analysis, and ndisp (1000) giving the number of saved draws to be displayed on screen (the function reports on the screen when every ndisp iterations have been carried out).}

\texttt{prior} \hspace{1cm} \text{a list giving the prior information. The list includes the following parameters (default values specify the non-informative prior): iflagprior choosing a smoothing prior for spectral coefficients (iflagprior=0 assigns T-Smoother prior (default), iflagprior=1 chooses Lasso-Smoother prior), theta0_m0 and theta0_s0 giving the hyperparameters for prior distribution of the spectral coefficients (theta0_m0 and theta0_s0 are used when the functions have shape-restriction), tau2_m0, tau2_s0 and w0 giving the prior mean and standard deviation of smoothing prior (When iflagprior=1, tau2_m0 is only used as the hyperparameter), beta_m0 and beta_v0 giving the hyperparameters of the multivariate normal distribution for parametric part including intercept, sigma2_m0 and sigma2_v0 giving the prior mean and variance of the inverse gamma prior for the scale parameter of response, alpha_m0 and alpha_s0 giving the prior mean and standard deviation of the truncated normal prior distribution for the constant of integration, iflagpsi determining the prior of slope for logistic function in S or U shaped (iflagpsi=1 (default), slope \(\psi \) is sampled and iflagpsi=0, \(\psi \) is fixed), psifixed giving initial value (iflagpsi=1) or fixed value (iflagpsi=0) of slope, omega_m0 and omega_s0 giving the prior mean and standard deviation of the truncated normal prior distribution for the inflection point of S or U shaped function.}

\texttt{egrid} \hspace{1cm} \text{a vector giving grid points where the residual density estimate is evaluated. The default range is from -10 to 10.}

\texttt{ngrid} \hspace{1cm} \text{a vector giving number of grid points where the residual density estimate is evaluated. The default value is 500.}

\texttt{location} \hspace{1cm} \text{a logical value. If it is true, error density is modelled using location-scale mixture.}

\texttt{shape} \hspace{1cm} \text{a vector giving types of shape restriction.}

\texttt{verbose} \hspace{1cm} \text{a logical variable. If TRUE, the iteration number and the Metropolis acceptance rate are printed to the screen.}
Details

This generic function fits a Bayesian spectral analysis regression model for estimating shape-restricted functions using Gaussian process priors. For enforcing shape-restrictions, the model assumes that the derivatives of the functions are squares of Gaussian processes. The model also assumes that the errors follow a Dirichlet process mixture model.

Let \(y_i \) and \(w_i \) be the response and the vector of parametric predictors, respectively. Further, let \(x_{i,k} \) be the covariate related to the response through an unknown shape-restricted function. The model for estimating shape-restricted functions is as follows.

\[
y_i = w_i^T \beta + \sum_{k=1}^{K} f_k(x_{i,k}) + \epsilon_i, \quad i = 1, \ldots, n,
\]

where \(f_k \) is an unknown shape-restricted function of the scalar \(x_{i,k} \in [0,1] \) and the error terms \(\{\epsilon_i\} \) are a random sample from a Dirichlet process mixture model,

1. scale mixture:
 \[
 \epsilon_i \sim f(\epsilon) = \int N(\epsilon; 0, \sigma^2) dG(\sigma^2), \quad G \sim DP(M, G_0), \quad G_0 = Ga\left(\sigma^{-2}; \frac{r_0, \sigma^2}{2}, \frac{s_0, \sigma^2}{2}\right).
 \]

2. location-scale mixture:
 \[
 \epsilon_i \sim f(\epsilon) = \int N(\epsilon; \mu, \sigma^2) dG(\mu, \sigma^2), \quad G \sim DP(M, G_0), \quad G_0 = N(\mu; \mu_0, \kappa \sigma^2) Ga\left(\sigma^{-2}; \frac{r_0, \sigma^2}{2}, \frac{s_0, \sigma^2}{2}\right).
 \]

The prior of function without shape restriction is:

\[
f(x) = Z(x),
\]

where \(Z \) is a second-order Gaussian process with mean function equal to zero and covariance function \(\nu(s, t) = E[Z(s)Z(t)] \) for \(s, t \in [0,1] \). The Gaussian process is expressed with the spectral representation based on cosine basis functions:

\[
Z(x) = \sum_{j=0}^{\infty} \theta_j \varphi_j(x)
\]

\(\varphi_0(x) = 1 \) and \(\varphi_j(x) = \sqrt{2} \cos(\pi j x), \quad j \geq 1, \quad 0 \leq x \leq 1 \)

The shape-restricted functions are modeled by assuming the \(q \)th derivatives of \(f \) are squares of Gaussian processes:

\[
f^{(q)}(x) = \delta Z^2(x) h(x), \quad \delta \in \{1, -1\}, \quad q \in \{1, 2\},
\]

where \(h \) is the squish function. For monotonic, monotonic convex, and concave functions, \(h(x) = 1 \), while for \(S \) and \(U \) shaped functions, \(h \) is defined by

\[
h(x) = \frac{1 - \exp[\psi(x - \omega)]}{1 + \exp[\psi(x - \omega)]}, \quad \psi > 0, \quad 0 < \omega < 1
\]
For the spectral coefficients of functions without shape constraints, the scale-invariant prior is used (The intercept is included in β):

$$
\theta_j | r, \gamma \sim N(0, \tau^2 \exp[-j\gamma]), \ j \geq 1
$$

The priors for the spectral coefficients of shape restricted functions are:

$$
\theta_0 \sim N(m_{\theta_0}, v_{\theta_0}^2), \ \theta_j | r, \gamma \sim N(m_{\theta_j}, \tau^2 \exp[-j\gamma]), \ j \geq 1
$$

To complete the model specification, the popular normal prior is assumed for β:

$$
\beta \mid \sim N(m_{0,\beta}, V_{0,\beta})
$$

Value

An object of class `bsam` representing the Bayesian spectral analysis model fit. Generic functions such as `print`, `fitted` and `plot` have methods to show the results of the fit.

The MCMC samples of the parameters in the model are stored in the list `mcmc.draws`, the posterior samples of the fitted values are stored in the list `fit.draws`, and the MCMC samples for the log marginal likelihood are saved in the list `loglik.draws`. The output list also includes the following objects:

- `post.est`: posterior estimates for all parameters in the model.
- `lpml`: log pseudo marginal likelihood using Mukhopadhyay and Gelfand method.
- `imodmet`: the number of times to modify Metropolis.
- `pmet`: proportion of θ accepted after burn-in.
- `call`: the matched call.
- `mcmctime`: running time of Markov chain from `system.time()`.

References

See Also

`bsar, bsaqdpmm`
Examples

```r
## Not run:
# Increasing-convex #
#####################
# Simulate data
set.seed(1)

n <- 200
x <- runif(n)
e <- c(rnorm(n/2, sd = 0.5), rnorm(n/2, sd = 3))
y <- exp(6*x - 3) + e

# Number of cosine basis functions
nbasis <- 50

# Fit the model with default priors and mcmc parameters
fout <- bsardpm(y ~ fs(x), nbasis = nbasis, shape = 'IncreasingConvex')

# Summary
print(fout); summary(fout)

# fitted values
fit <- fitted(fout)

# Plot
plot(fit, ask = TRUE)
```

```r
## End(Not run)
```

cadmium

Cadmium dose-response meta data

description

This dataset includes minimal information of NCC-2012 meta data.

usage

data("cadmium")

format

A data frame with 190 observations on the following 5 variables.

gender a numeric vector with 1 : Female, 0 : Male, 0.5 : Unknown or both
ethnicity a integer vector with 1 : Asian, 2 : Caucasian
Elec.demand

Ucd_GM a numeric vector of Geometric means of urinary cadmium
b2_GM a numeric vector of Geometric means of Beta2-Microglobulin
isOld a logical vector whether the observation is older than 50

References

Examples

```r
## Not run:
data(cadmium)
## End(Not run)
```

Elec.demand
Electricity demand data

Description

The Elec.demand data consists of 288 quarterly observations in Ontario from 1971 to 1994.

Usage

```r
data(Elec.demand)
```

Format

A data frame with 288 observations on the following 7 variables.

- **quarter** date (yyyy-mm) from 1971 to 1994
- **enerm** electricity demand.
- **gdp** gross domestic product.
- **pelec** price of electricity.
- **pgas** price of natural gas.
- **hddqm** the number of heating degree days relative to a reference temperature.
- **cddqm** the number of cooling degree days relative to a reference temperature.

Source

References

Examples

```r
## Not run:
data(Elec.demand)
plot(Elec.demand)

## End(Not run)
```

fitted.blm

Compute fitted values for a blm object

Description

Computes pointwise posterior means and 95% credible intervals of the fitted Bayesian linear models.

Usage

```r
## S3 method for class 'blm'
fitted(object, alpha = 0.05, HPD = TRUE, ...)
```

Arguments

- `object`: a `bsam` object
- `alpha`: a numeric scalar in the interval (0,1) giving the 100(1 − α)% credible intervals.
- `HPD`: a logical variable indicating whether the 100(1 − α)% Highest Posterior Density (HPD) intervals are calculated. If `HPD=FALSE`, the 100(1 − α)% equal-tail credible intervals are calculated. The default is `TRUE`.
- `...`: not used

Details

None.

Value

A list containing posterior means and 95% credible intervals.

The output list includes the following objects:

- `wbeta`: posterior estimates for regression function.
- `yhat`: posterior estimates for generalised regression function.
References

See Also
blq, blr, gblr

Examples
See examples for blq and blr

Example usage of fitted bsad

fitted.bsad

Description

Computes pointwise posterior means and 100(1 − α)% credible intervals of the fitted Bayesian spectral analysis density estimation model.

Usage

```r
## S3 method for class 'bsad'
fitted(object, alpha = 0.05, HPD = TRUE, ...)
```

Arguments

- `object`: a bsad object
- `alpha`: a numeric scalar in the interval (0,1) giving the 100(1 − α)% credible intervals.
- `HPD`: a logical variable indicating whether the 100(1 − α)% Highest Posterior Density (HPD) intervals are calculated. If `HPD=FALSE`, the 100(1 − α)% equal-tail credible intervals are calculated. The default is TRUE.
- `...`: not used

Details

None.

Value

A list object of class fitted.bsad containing posterior means and 100(1 − α)% credible intervals.

Generic function `plot` displays the results of the fit.

The output list includes the following objects:

- `fpar`: posterior estimates for parametric model.
- `fsemi`: posterior estimates for semiparametric model.
- `fsemiMaxKappa`: posterior estimates for semiparametric model with maximum number of basis.
fitted.bsam

See Also
bsad

Examples

See examples for bsad

fitted.bsam

Compute fitted values for a bsam object

Description

Computes pointwise posterior means and $100(1 - \alpha)\%$ credible intervals of the fitted Bayesian spectral analysis models.

Usage

```r
## S3 method for class 'bsam'
fitted(object, alpha = 0.05, HPD = TRUE, ...)
```

Arguments

- **object**: a `bsam` object
- **alpha**: a numeric scalar in the interval (0,1) giving the $100(1 - \alpha)\%$ credible intervals.
- **HPD**: a logical variable indicating whether the $100(1 - \alpha)\%$ Highest Posterior Density (HPD) intervals are calculated. If `HPD=FALSE`, the $100(1 - \alpha)\%$ equal-tail credible intervals are calculated. The default is TRUE.
- **...**: not used

Details

None.

Value

A list object of class `fitted.bsam` containing posterior means and $100(1 - \alpha)\%$ credible intervals. Generic function `plot` displays the results of the fit.

The output list includes the following objects:

- **fxobs**: posterior estimates for unknown functions over observation.
- **fxgrid**: posterior estimates for unknown functions over grid points.
- **wbeta**: posterior estimates for parametric part.
- **yhat**: posterior estimates for fitted values of response. For `gbsar`, it gives posterior estimates for expectation of response.
See Also

`bsaq, bsaqdpm, bsar, bsardpm`

Examples

```r
## See examples for bsaq, bsaqdpm, bsar, and bsardpm
```

fitted.bsamdpm
Compute fitted values for a bsamdpm object

Description

Computes pointwise posterior means and 100(1 − α)% credible intervals of the fitted Bayesian spectral analysis models with Dirichlet process mixture error.

Usage

```r
## S3 method for class 'bsamdpm'
fitted(object, alpha = 0.05, HPD = TRUE, ...)
```

Arguments

- `object` a `bsamdpm` object
- `alpha` a numeric scalar in the interval (0,1) giving the 100(1 − α)% credible intervals.
- `HPD` a logical variable indicating whether the 100(1 − α)% Highest Posterior Density (HPD) intervals are calculated. If `HPD=FALSE`, the 100(1 − α)% equal-tail credible intervals are calculated. The default is `TRUE`.
- `...` not used

Details

None.

Value

A list object of class `fitted.bsamdpm` containing posterior means and 95% credible intervals. Generic function `plot` displays the results of the fit.

The output list includes the following objects:

- `edens` posterior estimate for unknown error distribution over grid points.
- `fxobs` posterior estimates for unknown functions over observation.
- `fxgrid` posterior estimates for unknown functions over grid points.
- `wbeta` posterior estimates for parametric part.
- `yhat` posterior estimates for fitted values of response.
See Also

bsaqdpm, bsardpm

Examples

See examples for bsaqdpm and bsardpm

fs

Specify a Fourier Basis Fit in a BSAM Formula

Description

A symbolic wrapper to indicate a nonparametric term in a formula argument to bsaq, bsaqdpm, bsar, bsardpm, and gbsar.

Usage

fs(x)

Arguments

x

a vector of the univariate covariate for nonparametric component

Examples

Not run:

fit x using a Fourier basis
y ~ w + fs(x)

fit x1 and x2 using a Fourier basis
y ~ fs(x1) + fs(x2)

End(Not run)

gblr

Generalized Bayesian Linear Models

Description

This function fits a Bayesian generalized linear regression model.

Usage

gblr(formula, data = NULL, family, link, mcmc = list(), prior = list(),
marginal.likelihood = TRUE, algorithm = c('AM', 'KS'), verbose = FALSE)
Arguments

formula
an object of class “formula”

data
an optional data frame.

family
a description of the error distribution to be used in the model: The family contains bernoulli (“bernoulli”), poisson (“poisson”), negative-binomial (“negative.binomial”), poisson-gamma mixture (“poisson.gamma”).

link
a description of the link function to be used in the model.

mcmc
a list giving the MCMC parameters. The list includes the following integers (with default values in parentheses): nblow (10000) giving the number of MCMC in transition period, nskip (10) giving the thinning interval, smcmc (1000) giving the number of MCMC for analysis, and ndisp (1000) giving the number of saved draws to be displayed on screen (the function reports on the screen when every ndisp iterations have been carried out).

prior
a list giving the prior information. The list includes the following parameters (default values specify the non-informative prior): beta.m0 and beta.v0 giving the hyperparameters of the multivariate normal distribution for parametric part including intercept, kappa.m0 and kappa.v0 giving the prior mean and variance of the gammal prior distribution for dispersion parameter (negative-binomial).

marginal.likelihood
a logical variable indicating whether the log marginal likelihood is calculated. The methods of Gelfand and Dey (1994) is used.

algorithm
a description of the algorithm to be used in the fitting of the logistic model: The algorithm contains the Gibbs sampler based on the Kolmogorov-Smirnov distribution (KS) and an adaptive Metropolis algorithm (AM).

verbose
a logical variable. If TRUE, the iteration number and the Metropolis acceptance rate are printed to the screen.

Details

This generic function fits a Bayesian generalized linear regression models.

Let y_i and w_i be the response and the vector of parametric predictors, respectively. The model is as follows.

$$ y_i | \mu_i \sim F(\mu_i), $$

$$ g(\mu_i) = w_i^T \beta, \; i = 1, \ldots, n, $$

where $g(\cdot)$ is a link function and $F(\cdot)$ is a distribution of an exponential family.

For unknown coefficients, the following prior is assumed for β:

$$ \beta \sim N(m_0, \beta, V_0) $$

The prior for the dispersion parameter of negative-binomial regression is

$$ \kappa \sim Ga(r_0, s_0) $$
Value

An object of class `blm` representing the generalized Bayesian linear model fit. Generic functions such as `print`, `fitted` and `plot` have methods to show the results of the fit.

The MCMC samples of the parameters in the model are stored in the list `mcmc.draws`, the posterior samples of the fitted values are stored in the list `fit.draws`, and the MCMC samples for the log marginal likelihood are saved in the list `loglik.draws`. The output list also includes the following objects:

- `post.est`: posterior estimates for all parameters in the model.
- `lmarg`: log marginal likelihood using Gelfand-Dey method.
- `family`: the family object used.
- `link`: the link object used.
- `methods`: the method object used in the logit model.
- `call`: the matched call.
- `mcmctime`: running time of Markov chain from `system.time()`.

References

See Also

- `blr`, `blq`

Examples

```R
# Poisson Regression Model

# Simulate data
set.seed(1)

n <- 100
x <- runif(n)
y <- rpois(n, exp(0.5 + x*0.4))

# Fit the model with default priors and mcmc parameters
fout <- gblr(y ~ x, family = 'poisson', link = 'log')
```
gbsar

Summary
print(fout); summary(fout)

Plot
plot(fout)

fitted values
fitf <- fitted(fout)

Bayesian Shape-Restricted Spectral Analysis for Generalized Partial Linear Models

Description

This function fits a Bayesian generalized partial linear regression model to estimate shape-restricted functions using a spectral analysis of Gaussian process priors.

Usage

```r
gbsar(formula, xmin, xmax, family, link, nbasis, nint, mcmc = list(), prior = list(),
shape = c('Free', 'Increasing', 'Decreasing', 'IncreasingConvex', 'DecreasingConvex',
'IncreasingConcave', 'DecreasingConvex', 'IncreasingS', 'DecreasingS',
'IncreasingRotatedS', 'DecreasingRotatedS', 'InvertedU', 'Ushape'),
marginal.likelihood = TRUE, algorithm = c('AM', 'KS'), verbose = FALSE)
```

Arguments

- **formula** an object of class "formula"
- **xmin** a vector or scalar giving user-specific minimum values of x. The default values are minimum values of x.
- **xmax** a vector or scalar giving user-specific maximum values of x. The default values are maximum values of x.
- **family** a description of the error distribution to be used in the model: The family contains bernoulli ("bernoulli"), poisson ("poisson"), negative-binomial ("negative.binomial"), poisson-gamma mixture ("poisson.gamma").
- **link** a description of the link function to be used in the model.
- **nbasis** number of cosine basis functions.
- **nint** number of grid points where the unknown function is evaluated for plotting. The default is 200.
- **mcmc** a list giving the MCMC parameters. The list includes the following integers (with default values in parentheses): nblow0 (1000) giving the number of initialization period for adaptive metropolis, maxmodmet (5) giving the maximum number of times to modify metropolis, nblow (10000) giving the number of MCMC in transition period, nskip (10) giving the thinning interval, smcmc
gbsar

(1000) giving the number of MCMC for analysis, and ndisp (1000) giving the number of saved draws to be displayed on screen (the function reports on the screen when every ndisp iterations have been carried out).

prior a list giving the prior information. The list includes the following parameters (default values specify the non-informative prior): iflagprior choosing a smoothing prior for spectral coefficients (iflagprior=0 assigns T-Smooth prior (default), iflagprior=1 chooses Lasso-Smooth prior), theta_m0, theta0_m0 and theta0_s0 giving the hyperparameters for prior distribution of the spectral coefficients (theta0_m0 and theta0_s0 are used when the functions have shape-restriction), tau2_m0, tau2_s0 and w0 giving the prior mean and standard deviation of smoothing prior (When iflagprior=1, tau2_m0 is only used as the hyperparameter), beta_m0 and beta_v0 giving the hyperparameters of the multivariate normal distribution for parametric part including intercept, alpha_m0 and alpha_s0 giving the prior mean and standard deviation of the truncated normal prior distribution for the constant of integration, iflagpsi determining the prior of slope for logistic function in S or U shaped (iflagpsi=1 (default), slope ψ is sampled and iflagpsi=0, ψ is fixed), psifixed giving initial value (iflagpsi=1) or fixed value (iflagpsi=0) of slope, omega_m0 and omega_s0 giving the prior mean and standard deviation of the truncated normal prior distribution for the inflection point of S or U shaped function, kappa_m0 and kappa_v0 giving the prior mean and variance of the gammal prior distribution for dispersion parameter (negative-binomial).

shape a vector giving types of shape restriction.

marginal.likelihood a logical variable indicating whether the log marginal likelihood is calculated. The methods of Gelfand and Dey (1994) and Newton and Raftery (1994) are used.

algorithm a description of the algorithm to be used in the fitting of the logistic model: The algorithm contains the Gibbs sampler based on the Kolmogorov-Smirnov distribution (KS) and an adaptive Metropolis algorithm (AM).

verbose a logical variable. If TRUE, the iteration number and the Metropolis acceptance rate are printed to the screen.

Details

This generic function fits a Bayesian generalized partial linear regression models for estimating shape-restricted functions using Gaussian process priors. For enforcing shape-restrictions, they assumed that the derivatives of the functions are squares of Gaussian processes.

Let y_i and w_i be the response and the vector of parametric predictors, respectively. Further, let $x_{i,k}$ be the covariate related to the response through an unknown shape-restricted function. The model for estimating shape-restricted functions is as follows.

$$ y_i | \mu_i \sim F(\mu_i), $$

$$ g(\mu_i) = w_i^T \beta + \sum_{k=1}^{K} f_k(x_{i,k}), \quad i = 1, \ldots, n, $$

$$ y_i | \mu_i $
where \(g(\cdot) \) is a link function and \(f_k \) is an unknown nonlinear function of the scalar \(x_{i,k} \in [0, 1] \).

The prior of function without shape restriction is:

\[
f(x) = Z(x),
\]

where \(Z \) is a second-order Gaussian process with mean function equal to zero and covariance function
\(\nu(s,t) = E[Z(s)Z(t)] \) for \(s, t \in [0, 1] \). The Gaussian process is expressed with the spectral representation based on cosine basis functions:

\[
Z(x) = \sum_{j=0}^{\infty} \theta_j \varphi_j(x)
\]

\(\varphi_0(x) = 1 \) and \(\varphi_j(x) = \sqrt{2} \cos(\pi j x), j \geq 1, 0 \leq x \leq 1 \)

The shape-restricted functions are modeled by assuming the \(q \)th derivatives of \(f \) are squares of Gaussian processes:

\[
f^{(q)}(x) = \delta Z^2(x) h(x), \quad \delta \in \{1, -1\}, \quad q \in \{1, 2\},
\]

where \(h \) is the squish function. For monotonic, monotonic convex, and concave functions, \(h(x) = 1 \), while for S and U shaped functions, \(h \) is defined by

\[
h(x) = \frac{1 - \exp[\psi(x - \omega)]}{1 + \exp[\psi(x - \omega)]}, \quad \psi > 0, \quad 0 < \omega < 1
\]

For the spectral coefficients of functions without shape constraints, the following prior is used (The intercept is included in \(\beta \)):

\[
\theta_j | \tau, \gamma \sim N(0, \tau^2 \exp[-j\gamma]), \quad j \geq 1
\]

The priors for the spectral coefficients of shape restricted functions are:

\[
\theta_0 | \sim N(m_{\theta_0}, v_{\theta_0}^2), \quad \theta_j | \tau, \gamma \sim N(m_{\theta_j}, \tau^2 \exp[-j\gamma]), \quad j \geq 1
\]

To complete the model specification, the following prior is assumed for \(\beta \):

\[
\beta | \sim N(m_{0,\beta}, V_{0,\beta})
\]

Value

An object of class \(\text{bsam} \) representing the Bayesian spectral analysis model fit. Generic functions such as \text{print}, \text{fitted} and \text{plot} have methods to show the results of the fit.

The MCMC samples of the parameters in the model are stored in the list \text{mcmc.draws}, the posterior samples of the fitted values are stored in the list \text{fit.draws}, and the MCMC samples for the log marginal likelihood are saved in the list \text{loglik.draws}. The output list also includes the following objects:

- \text{post.est} \quad \text{posterior estimates for all parameters in the model.}
- \text{l marg.gd} \quad \text{log marginal likelihood using Gelfand-Dey method.}
- \text{l marg.nr} \quad \text{log marginal likelihood using Netwon-Raftery method, which is biased.}
- \text{family} \quad \text{the family object used.}
- \text{link} \quad \text{the link object used.}
- \text{call} \quad \text{the matched call.}
- \text{mcmctime} \quad \text{running time of Markov chain from \text{system.time}(\).}
References

See Also

bsaq, bsar

Examples

```r
## Not run:
###########################
# Probit Regression Model #
###########################

# Simulate data
set.seed(1)

f <- function(x) 1.5 * sin(pi * x)

n <- 1000
b <- c(1,-1)
rho <- 0.7
u <- runif(n, min = -1, max = 1)
x <- runif(n, min = -1, max = 1)
w1 <- runif(n, min = -1, max = 1)
w2 <- round(f(rho * x + (1 - rho) * u))
w <- cbind(w1, w2)
y <- w %*% b + f(x) + rnorm(n)
y <- (y > 0)

# Number of cosine basis functions
nbasis <- 50

# Fit the model with default priors and mcmc parameters
```
fout <- gbsar(y ~ w1 + w2 + fs(x), family = "bernoulli", link = "probit",
 nbasis = nbasis, shape = 'Free')

Summary
print(fout); summary(fout)

fitted values
fit <- fitted(fout)

Plot
plot(fit, ask = TRUE)

Logistic Additive Regression Model
Wage-Union data
data(wage.union); attach(wage.union)

race[race==1 | race==2]=0
race[race==3]=1

y <- union
w <- cbind(race, sex, south)
x <- cbind(wage, education, age)

mcmc parameters
mcmc <- list(nblow0 = 10000,
 nblow = 10000,
 nskip = 10,
 smcmc = 1000,
 ndisp = 1000,
 maxmodmet = 10)

foutGBSAR <- gbsar(y ~ race + sex + south + fs(wage) + fs(education) + fs(age),
 family = 'bernoulli', link = 'logit', nbasis = 50, mcmc = mcmc,
 shape = c('Free','Decreasing','Increasing'))

fitted values
fitGBSAR <- fitted(foutGBSAR)

Plot
plot(fitGBSAR, ask = TRUE)

End(Not run)
Description

Trapezoidal rule is a technique for approximating the definite integral.

Usage

\[\text{intgrat}(f, \text{delta}) \]

Arguments

- \(f \) Function values to be integrated.
- \(\text{delta} \) Spacing size.

Value

\(\text{intgrat} \) returns the value of the integral.

intsim

Numerical integration using Simpson's rule

Description

Simpson's rule is a method for numerical integration.

Usage

\[\text{intsim}(f, \text{delta}) \]

Arguments

- \(f \) Function values to be integrated.
- \(\text{delta} \) Spacing size.

Value

\(\text{intsim} \) returns the value of the integral.
Description

The London.Mortality data consists of daily death occurrences from Jan. 1st, 1993 to Dec. 31st, 2006 and corresponding weather observations including temperature and humidity in London.

Usage

data(London.Mortality)

Format

A data frame with 5113 observations on the following 7 variables.

date date in YYYY-MM-DD.
tmean Mean temperature.
tmin Minimum dry-bulb temperature.
tmax Maximum dry-bulb temperature.
dewp Dew point.
rh Relative humidity.
death the number of death occurrences.

Source

Office for National Statistics
British Atmospheric Data Centre
https://github.com/gasparrini/2015_gasparrini_Lancet_Rcodedata

References

Not run:
data(London.Mortality)
End(Not run)

plasma

A Data Set for Plasma Levels of Retinol and Beta-Carotene

Description

This data set contains 314 observations on 14 variables.

Usage

data(plasma)

Format

- age Age (years).
- sex Sex (1=Male, 2=Female).
- smoke Smoking status (1=Never, 2=Former, 3=Current Smoker).
- vmi BMI values (weight/(height^2)).
- vitas Vitamin use (1=Yes, fairly often, 2=Yes, not often, 3=No).
- calories Number of calories consumed per day.
- fat Grams of fat consumed per day.
- fiber Grams of fiber consumed per day.
- alcohol Number of alcoholic drinks consumed per week.
- cholesterol Cholesterol consumed (mg per day).
- beta diet Dietary beta-carotene consumed (mcg per day).
- reedit Dietary retinol consumed (mcg per day).
- betaplasma Plasma beta-carotene (ng/ml).
- retplasma Plasma Retinol (ng/ml).

Source

https://lib.stat.cmu.edu/datasets/Plasma_Retinol

References

plot.blm

Examples

Not run:
data(plasma)

End(Not run)

plot.blm

Plot a blm object

Description

Plots the posterior samples for Bayesian linear models

Usage

S3 method for class 'blm'
plot(x, ...)

Arguments

x

a blm object

... other options to pass to the plotting functions

Value

Returns a plot.

See Also

blq, blr

Examples

See examples for blq and blr
plot.bsad

Plot a bsad object

Description

Plots the posterior samples for Bayesian semiparametric density estimation using a logistic Gaussian process.

Usage

S3 method for class 'bsad'
plot(x, ...)

Arguments

x
a bsad object

...
other options to pass to the plotting functions

Value

Returns a plot.

See Also

bsad

Examples

See examples for bsad

plot.bsam

Plot a bsam object

Description

Plots the posterior samples for Bayesian spectral analysis models.

Usage

S3 method for class 'bsam'
plot(x, ...)

Arguments

x
a bsam object

...
other options to pass to the plotting functions
plot.bsamdpm

Value

Returns a plot.

See Also

`bsaq, bsaqdpm, bsar, bsardpm`

Examples

```r
## See examples for bsaq, bsaqdpm, bsar, and bsardpm
```

plot.bsamdpm
Plot a bsamdpm object

Description

Plots the posterior samples for Bayesian spectral analysis models with Dirichlet process mixture error.

Usage

```r
## S3 method for class 'bsamdpm'
plot(x, ...)
```

Arguments

- `x`: a `bsamdpm` object
- `...`: other options to pass to the plotting functions

Value

Returns a plot.

See Also

`bsaqdpm, bsardpm`

Examples

```r
## See examples for bsaqdpm and bsardpm
```
plot.fitted.bsad

Plot a fitted.bsad object

Description

Plots the predictive density for Bayesian density estimation model using logistic Gaussian process

Usage

```r
## S3 method for class 'fitted.bsad'
plot(x, ggplot2, legend.position, nbins, ...)
```

Arguments

- `x`: a fitted.bsad object
- `ggplot2`: a logical variable. If TRUE the ggplot2 package is used.
- `legend.position`: the position of legends ("none", "left", "right", "bottom", "top"). It is used when ggplot2 = TRUE.
- `nbins`: Number of bins used. Default is 30.
- `...`: other options to pass to the plotting functions

Value

Returns a plot.

See Also

bsad, fitted.bsad

Examples

```r
## See example for bsad
```

plot.fitted.bsam

Plot a fitted.bsam object

Description

Plots the data and the fit for Bayesian spectral analysis models.

Usage

```r
## S3 method for class 'fitted.bsam'
plot(x, type, ask, ggplot2, legend.position, ...)
```
Arguments

x a fitted.bsam object
type the type of fitted plot. The default is on the scale of the response variable type="response"; the alternative type="term" is on the scale of the nonparametric predictor. Note that this affects only on glm type models. For example, binomial model with the default option gives the predicted probabilities.
ask see par
ggplot2 a logical variable. If TRUE the ggplot2 package is used.
legend.position the position of legends ("none", "left", "right", "bottom", "top"). It is used when ggmplot2 = TRUE.
... other options to pass to the plotting functions

Value

Returns a plot.

See Also

bsaq, bsaqdpd, bsar, bsardpm, fitted.bsam

Examples

See examples for bsaq, bsaqdpd, bsar, and bsardpm

plot.fitted.bsamdpm Plot a fitted.bsam object

Description

Plots the data and the fit for Bayesian spectral analysis models with Dirichlet process mixture error.

Usage

S3 method for class 'fitted.bsamdpm'
plot(x, ask, ggmplot2, legend.position, ...)

Arguments

x a fitted.bsamdpm object
ask see par
ggplot2 a logical variable. If TRUE the ggplot2 package is used.
legend.position the position of legends ("none", "left", "right", "bottom", "top"). It is used when ggmplot2 = TRUE.
... other options to pass to the plotting functions
predict.blm

Value

Returns a plot.

See Also

bsaqdpm, bsardpm, fitted.bsamdp

Examples

See examples for bsaqdpm and bsardpm

predict.blm

Predict method for a blm object

Description

Computes predicted values of Bayesian linear models.

Usage

```
## S3 method for class 'blm'
predict(object, newdata, alpha = 0.05, HPD = TRUE, ...)
```

Arguments

- `object`: a `bsam` object
- `newdata`: an optional data matrix or vector with which to predict. If omitted, the fitted values are returned.
- `alpha`: a numeric scalar in the interval (0,1) giving the \(100(1 - \alpha)\)% credible intervals.
- `HPD`: a logical variable indicating whether the \(100(1 - \alpha)\)% Highest Posterior Density (HPD) intervals are calculated. If \(\text{HPD}=\text{FALSE}\), the \(100(1 - \alpha)\)% equal-tail credible intervals are calculated. The default is `TRUE`.
- `...`: not used

Details

None.

Value

A list containing posterior means and 95% credible intervals. The output list includes the following objects:

- `wbeta`: posterior estimates for regression function.
- `yhat`: posterior estimates for generalised regression function.
References

See Also
blq, blr, gblr

Examples
Not run:
Simulated example

Simulate data
set.seed(1)

n <- 100
w <- runif(n)
y <- 3 + 2*w + rnorm(n, sd = 0.8)

Fit the model with default priors and mcmc parameters
fout <- blr(y ~ w)

Predict
new <- rnorm(n)
predict(fout, newdata = new)

End(Not run)

predict.bsam

Predict method for a bsam object

Description
Computes the predicted values of Bayesian spectral analysis models.

Usage
S3 method for class 'bsam'
predict(object, newp, newnp, alpha = 0.05, HPD = TRUE, type = "response", ...)

Arguments
object
a bsam object
newp
an optional data of parametric components with which to predict. If omitted, the fitted values are returned.
newnp an optional data of nonparametric components with which to predict. If omitted, the fitted values are returned.

alpha a numeric scalar in the interval (0, 1) giving the \(100(1 - \alpha)\%\) credible intervals.

HPD a logical variable indicating whether the \(100(1 - \alpha)\%\) Highest Posterior Density (HPD) intervals are calculated. If HPD=FALSE, the \(100(1 - \alpha)\%\) equal-tail credible intervals are calculated. The default is TRUE.

type the type of prediction required. type = "response" gives the posterior predictive samples as default. The "mean" option returns expectation of the posterior estimates.

... not used

Details
None.

Value
A list object of class predict.bsam containing posterior means and \(100(1 - \alpha)\%\) credible intervals. The output list includes the following objects:

fxobs posterior estimates for unknown functions over observation.

wbeta posterior estimates for parametric part.

yhat posterior estimates for fitted values of either response or expectation of response. For gbsar, it gives posterior estimates for expectation of response.

fxResid posterior estimates for fitted parametric residuals. Not applicable for gbsar.

See Also
bsaq, bsar, gbsar

Examples
Not run:
##
Increasing Convex to Concave (S-shape)
##

simulate data
f <- function(x) 5*exp(-10*(x - 1)^4) + 5*x^2

set.seed(1)

n <- 100
x <- runif(n)
y <- f(x) + rnorm(n, sd = 1)

Number of cosine basis functions
nbasis <- 50

Fit the model with default priors and mcmc parameters
fout <- bsar(y ~ fs(x), nbasis = nbasis, shape = 'IncreasingConvex',
 spm.adequacy = TRUE)

Prediction
xnew <- runif(n)
predict(fout, newnp = xnew)

End(Not run)

predict.bsamdpm
Predict method for a bsamdpm object

Description

Computes the predicted values of Bayesian spectral analysis models with Dirichlet process mixture errors.

Usage

```r
## S3 method for class 'bsamdpm'
predict(object, newp, newnp, alpha = 0.05, HPD = TRUE, ...)
```

Arguments

- `object`
a `bsamdpm` object
- `newp`
an optional data of parametric components with which to predict. If omitted, the fitted values are returned.
- `newnp`
an optional data of nonparametric components with which to predict. If omitted, the fitted values are returned.
- `alpha`
a numeric scalar in the interval (0,1) giving the $100(1 - \alpha)\%$ credible intervals.
- `HPD`
a logical variable indicating whether the $100(1 - \alpha)\%$ Highest Posterior Density (HPD) intervals are calculated. If `HPD=FALSE`, the $100(1 - \alpha)\%$ equal-tail credible intervals are calculated. The default is `TRUE`.
- `...`
not used

Details

None.
Value
A list object of class predict.bsamdpm containing posterior means and 100(1 − α)% credible intervals.

The output list includes the following objects:

- **fxobs**: posterior estimates for unknown functions over observation.
- **wbeta**: posterior estimates for parametric part.
- **yhat**: posterior estimates for fitted values of response.

See Also
bsaqdpm, bsardpm

Examples

```r
## Not run:

#####################
# Increasing-convex #
#####################

# Simulate data
set.seed(1)

n <- 200
x <- runif(n)
e <- c(rnorm(n/2, sd = 0.5), rnorm(n/2, sd = 3))
y <- exp(6*x - 3) + e

# Number of cosine basis functions
nbasis <- 50

# Fit the model with default priors and mcmc parameters
fout <- bsardpm(y ~ fs(x), nbasis = nbasis, shape = 'IncreasingConvex')

# Prediction
xnew <- runif(n)
predict(fout, newnp = xnew)

## End(Not run)
```

rald

The asymmetric Laplace distribution

Description
Density for and random values from a three-parameter asymmetric Laplace distribution.
Usage

rald(n, location=0, scale=1, p=0.5)

Arguments

n Number of random values to be generated.
location Location parameter.
scale Scale parameter.
p Skewness parameter.

Details

This generic function generates a random variable from an asymmetric Laplace distribution (ALD). The ALD has the following probability density function:

\[ALD_p(x; \mu, \sigma) = \frac{p(1-p)}{\sigma} \exp\left(-\frac{(x - \mu)[p - I(x \leq \mu)]}{\sigma} \right), \]

where \(0 < p < 1\) is the skew parameter, \(\sigma > 0\) is the scale parameter, \(-\infty < \mu < \infty\) is the location parameter, and \(I(\cdot)\) is the indication function. The range of \(x\) is \((-\infty, \infty)\).

Value

rald gives out a vector of random numbers generated by the asymmetric Laplace distribution.

References

traffic

Monthly traffic accidents data

Description

This data set contains 108 observations on 6 variables.

Usage

data(traffic)
Format

\[
\begin{align*}
\text{ln_number} & \quad \text{logarithm of the number of monthly automobile accidents in the state of Michigan.} \\
\text{month} & \quad \text{months from January 1st, 1979 to December 31st, 1987.} \\
\text{ln_unemp} & \quad \text{logarithm of unemployment rate} \\
\text{spring} & \quad \text{indicator for spring season.} \\
\text{summer} & \quad \text{indicator for summer season.} \\
\text{fall} & \quad \text{indicator for fall season.}
\end{align*}
\]

References

Examples

```r
## Not run:
data(traffic)
pairs(traffic)
## End(Not run)
```

wage.union
Wage-Union data

Description

This data set contains 534 observations on 11 variables.

Usage

data(wage.union)

Format

\[
\begin{align*}
\text{education} & \quad \text{number of years of education.} \\
\text{south} & \quad \text{indicator of living in southern region of U.S.A.} \\
\text{sex} & \quad \text{gender indicator: 0=male, 1=female.} \\
\text{experience} & \quad \text{number of years of work experience.} \\
\text{union} & \quad \text{indicator of trade union membership: 0=non-member, 1=member.} \\
\text{wage} & \quad \text{wages in dollars per hour.} \\
\text{age} & \quad \text{age in years.} \\
\text{race} & \quad 1=black, 2=Hispanic, 3=white. \\
\text{occupation} & \quad 1=management, 2=sales, 3=clerical, 4=service, 5=professional, 6=other. \\
\text{sector} & \quad 0=other, 1=manufacturing, 2=construction. \\
\text{married} & \quad \text{indicator of being married: 0=unmarried, 1=married.}
\end{align*}
\]
wage.union

References

Examples

```r
## Not run:
data(wage.union)
pairs(wage.union)

## End(Not run)
```
Index

* Big Data
 bsarBig, 22
* Dirichlet processes
 bsaqdpm, 13
 bsardpm, 24
* Gaussian processes
 bsaq, 9
 bsaqdpm, 13
 bsar, 17
 bsarBig, 22
 bsardpm, 24
 gbsar, 37
* datasets
 cadmium, 28
 Elec.demand, 29
 London.Mortality, 43
 plasma, 44
 traffic, 55
 wage.union, 56
* density estimation
 bsaq, 6
 fitted.bsaq, 31
* distribution
 rald, 54
* generalized linear model
 gblr, 34
* integration
 intgrat, 41
 intsim, 42
* linear regression model
 blr, 4
* logistic Gaussian process
 bsaq, 6
 fitted.bsaq, 31
* parametric model
 blq, 2
 blr, 4
 gblr, 34
* quantile regression model
 blq, 2
 shape-restricted partial linear regression
 gbsar, 37
 shape-restricted quantile regression
 bsaq, 9
 bsaqdpm, 13
 shape-restricted regression
 bsar, 17
 bsardpm, 24
 blq, 2, 6, 31, 36, 45, 51
 blr, 4, 4, 31, 36, 45, 51
 bsaq, 9, 16, 33, 40, 47, 49, 52
 bsaqdpm, 13, 27, 33, 34, 47, 49, 50, 54
 bsar, 12, 17, 23, 27, 33, 40, 47, 49, 52
 bsarBig, 22
 bsardpm, 16, 20, 24, 33, 34, 47, 49, 50, 54
 cadmium, 28
 Elec.demand, 29
 fitted.blm, 30
 fitted.bsaq, 31, 48
 fitted.bsam, 32, 49
 fitted.bsamdpm, 33, 50
 formula, 3, 5, 9, 14, 18, 22, 24, 35, 37
 fs, 34
 gblr, 4, 6, 31, 34, 51
 gbsar, 12, 32, 37, 52
 intgrat, 41
 intsim, 42
 London.Mortality, 43
 par, 49
 plasma, 44
 plot.blm, 45

58
INDEX

plot.bsad, 46
plot.bsam, 46
plot.bsamdpm, 47
plot.fitted.bsad, 48
plot.fitted.bsam, 48
plot.fitted.bsamdpm, 49
predict.blm, 50
predict.bsam, 51
predict.bsamdpm, 53

rald, 54

traffic, 55

wage.union, 56