Package ‘bsnsing’

July 3, 2022

Type Package
Title Build Decision Trees with Optimal Multivariate Splits
Version 1.0.1
Author Yanchao Liu
Maintainer Yanchao Liu <yanchao1iu@wayne.edu>
Description Functions for training an optimal decision tree classifier, making predictions and generating latex code for plotting. Works for two-class and multi-class classification problems. The algorithm seeks the optimal Boolean rule consisting of multiple variables to split a node, resulting in shorter trees. Use bsnsing() to build a tree, predict() to make predictions and plot() to plot the tree into latex and PDF. See Yan-chao Liu (2022) <arXiv:2205.15263> for technical details. Source code and more data sets are at <https://github.com/profyliu/bsnsing/>.
License GPL-3
Encoding UTF-8
LazyData true
RoxygenNote 7.1.1
Imports methods, Rcpp (>= 1.0.3)
Suggests C50, party, rpart, tree
LinkingTo Rcpp
NeedsCompilation yes
Repository CRAN
Date/Publication 2022-07-03 18:40:02 UTC

R topics documented:

 bsnsing-package .. 2
 auto ... 3
 binarize .. 4
 binarize.factor .. 5
 binarize.numeric .. 5
 binarize.y ... 6
bsnsing-package

bsnsing: Build Decision Trees with Optimal Multivariate Splits

Description

The bsnsing package provides functions for building a decision tree classifier and making predictions. It solves a mixed-integer programming (MIP) model to maximize the Gini reduction at each node split, and each node split rule can utilize multiple input variables. Benchmarking experiments on 75 open data sets suggest that bsnsing trees are the most capable of discriminating new cases compared to trees trained by other decision tree codes including the rpart, C50, party and tree packages in R. Compared to other optimal decision tree packages, including DL8.5, OSDT, GOSDT and indirectly more, bsnsing stands out in its training speed, ease of use and broader applicability without losing in prediction accuracy. For more information, please check out the paper https://arxiv.org/abs/2205.15263, to be published in INFORMS Journal on Computing.

The ENUM algorithm

In this package, the MIP model is solved using the implicit enumeration (ENUM) algorithm. The experimental version at https://github.com/profyliu/bsnsing/ is able to use external solvers such as GUROBI, CPLEX and lpSolve (via specifying the opt.solver option in the bsnsing function). All benchmarking experiments were run using the C implementation of the ENUM algorithm, i.e., opt.solver = 'enum_c', which is the default setting.
More data sets

Several data frames (i.e., `auto`, `iris`, `GlaucomaMVF` and `BreastCancer`) used in the example code are included in this package. More two-class and multi-class classification data sets can be found at https://github.com/profyliu/bsnsing/.

Learn functions

The learn (train) functions include `bsnsing`, `bsnsing.formula` and `bsnsing.default`.

Predict functions

The predict functions include: `predict.bsnsing` and `predict.mbsnsing`.

Plot functions

A `bsnsing` object (tree) can be plotted into a PDF file, or in the form of latex code, by the function `plot.bsnsing`. The ROC curve can be plotted using the function `ROC_func`.

Auxilliary functions

Here is a list of internal functions of the package that are open for end users. `summary.bsnsing`, `summary.mbsnsing`, `binarize`, `binarize.numeric`, `binarize.factor`, `binarize.y`, `bslearn`, `bscontrol`

Author(s)

Yanchao Liu

Description

A test data set.

Usage

`auto`

Format

A data frame with 392 rows and 8 variables

Source

https://github.com/profyliu/bsnsing/
Create Binary Variables by the Classification Target

Description

Create a set of variables (columns) with binary values for each column in the input data. For a variable with values of 0 and 1, the column is retained and no new column is created. For a numeric variable, the function `binarize.numeric` is called. For a factor column, the function `binarize.factor` is called.

Usage

```r
binarize(
  x,
  y, 
  target = stop("'target' (0 or 1) must be provided"),
  control = bscontrol()
)
```

Arguments

- `x`: a data frame or matrix to be binarized.
- `y`: a vector with two unique values (0 and 1). It is the response variable that guides the optimal discretization of variables in `x`.
- `target`: the level of `y` (0 or 1) which indicates the boolean rule target
- `control`: a list or a `bscontrol()` object. The list should contain the following three attributes: `nseg.numeric`, a positive integer indicating the maximum number of segments used in discretizing a numeric variable, `nseg.factor`, a positive integer indicating the maximum number of levels allowed for a factor variable, and `bin.size`, a positive integer indicating the minimum number of observations to fall in a segment.

Value

A data frame containing binary variables, or a character string describing the rule that perfectly split the target.

Examples

```r
# Load and prepare data
x <- auto[, c("mpg", "cylinders", "displacement")]
x$cylinders <- as.factor(x$cylinders)
y <- ifelse(auto$origin == "USA", 1L, 0L)
# binarize x by y = 1
bx1 <- binarize(x, y, target = 1)
head(bx1)
# binarize x by y = 0
```
binarize.factor

```r
bx0 <- binarize(x, y, target = 0)
head(bx0)
# when selecting only one column from a data frame, use drop = FALSE to maintain structure
binarize(auto[, 'mpg', drop = FALSE], y, target = 1)
```

binarize.factor
Create Binary Features based on a Factor Vector

Description

Create binary dummy variables based on a factor variable. This function is used internally by `binarize`.

Usage

```r
binarize.factor(x, name, y, segments = 10, bin.size = 5)
```

Arguments

- `x`
a numeric vector.
- `name`
a character string, the variable name of `x`.
- `y`
a numeric or integer vector of the same length as `x`, consisting of two unique values: 0 and 1.
- `segments`
a positive integer indicating the maximum number of levels allowed in the factor variable.
- `bin.size`
a positive integer. It is the minimum number of observations required to fall into each bin.

Value

a data frame with binary (0 and 1) entries. The column names are indicative of the conditions used to form the corresponding columns.

binarize.numeric
Create Binary Features based on a Numeric Vector

Description

Discretize a continuous variable `x` by splitting its range at a sequence of cutpoints. The cutpoints are determined so as to effectively split the binary target `y`. This function is used internally by `binarize`.
Usage

```r
code <- function(x, name, y, target = stop("Must provide a target, 0 or 1"),
                 segments = 10,
                 bin.size = 5,
                 node.size = 10)
```  

Arguments

- `x`: a numeric vector.
- `name`: a character string, the variable name of `x`.
- `y`: a numeric or integer vector of the same length as `x`, consisting of two unique values: 0 and 1.
- `target`: a scalar, valued 0 or 1, indicating the target level of `y`.
- `segments`: a positive integer, any value below 3 is set to 3. It is the maximum number of segments the range of `x` is divided into.
- `bin.size`: a positive integer. It is the minimum number of observations required to fall into each bin.
- `node.size`: a positive integer. If either child node is smaller than the `node.size`, do not return the perfect rule.

Value

a data frame with binary (0 and 1) entries, or a character string describing the rule that perfectly splits `y`. If a data frame is returned, the column names are indicative of the conditions used to form the corresponding columns.

```r
binarize.y <- function(y, verbose = FALSE) 
```  

Description

Recode a Variable with Two Unique Values into an 0/1 Vector

Usage

```r
binarize.y(y, verbose = FALSE) 
```  

Arguments

- `y`: a vector, must contain two unique values.
- `verbose`: a logical value, TRUE or FALSE, indicating whether details are to be printed on the screen.
Value

a list with three elements: y, a vector of the same length as y, whose entries are coded to 0 and 1, coding.scheme, a character string describing the map from the original coding to 0/1 coding, and ycode, a character vector containing the original level names of y.

Examples

```r
y <- factor(c('good', 'bad', 'good', 'good', 'bad'))
(yb <- binarize.y(y))

y <- c(TRUE, FALSE, FALSE, FALSE, TRUE)
(yb <- binarize.y(y))

y <- c(1, 2, 2, 1, 2)
(yb <- binarize.y(y))
```

BreastCancer

Description

A test data set.

Usage

BreastCancer

Format

A data frame with 699 rows and 10 variables.

Source

https://github.com/profyliu/bsnsing/

bscontrol

Define Parameters for the bsnsing Fit

Description

Define Parameters for the bsnsing Fit
Usage

bscontrol(
 bin.size = 5,
 nseg.numeric = 20,
 nseg.factor = 20,
 num2factor = 10,
 node.size = 0,
 stop.prob = 0.9999,
 opt.solver = c("enum_c", "enum"),
 solver.timelimit = 180,
 max.rules = 2,
 opt.model = c("gini", "error"),
 greedy.level = 0.9,
 import.external = TRUE,
 suppress.internal = FALSE,
 no.same.gender.children = FALSE,
 n0n1.cap = 40000,
 verbose = FALSE
)

Arguments

bin.size the minimum number of observations required in a binarization bucket.
nseg.numeric the maximum number of segments the range of a numeric variable is divided into for each inequality direction.
nseg.factor the maximum number of unique levels allowed in a factor variable.
num2factor an equality binarization rule will be created for each unique value of a numeric variable (in addition to the inequality binarization attempt), if the number of unique values of the numeric variable is less than num2factor.
node.size if the number of training cases falling into a tree node is fewer than node.size, the node will become a leaf and no further split will be attempted on it; in addition, do not split a node if either child node that would result from the split contains fewer than node.size observation. Default is 0, which indicates that the node.size will be set automatically according to this formula: floor(sqrt(Number of training cases)).
stop.prob if the proportion of the majority class in a tree node is greater than stop.prob, the node will become a leaf and no further split will be attempted on it.
opt.solver a character string in the set 'enum', 'enum_c', 'gurobi', 'cplex', 'lpSolve', 'greedy' indicating the optimization solver to be used in the program. The choice of 'cplex' requires the package cplexAPI, 'gurobi' requires the package gurobi, and 'lpSolve' requires the package lpSolve. These solver options are only available in the full version at https://github.com/profyliu/bsnsing/. The default (and the best) is 'enum_c'.
solver.timelimit the solver time limit in seconds. Note that this limits the time it takes to optimize each node split.
max.rules
the maximum number of features allowed to enter an OR-clause split rule. A small max.rules reduces the search space and regulates model complexity. Default is 2.

opt.model
a character string in the set 'gini','error' indicating the optimization model to solve in the program. The default is 'gini'. The 'error' option is not available in the current version.

greedy.level
a proportion value between 0 and 1, applicable only when opt.solver is 'greedy'. In the greedy forward selection process of split rules, a candidate rule is added to the OR-clause only if the split performance (gini reduction or accuracy) after the addition multiplied by greedy.level would still be greater than the split performance before the addition. A higher value of greedy.level tend to more aggressively produce multi-variable splits. Only available in the full version.

import.external
logical value indicating whether or not to try importing candidate split rules from other decision tree packages. Default is True.

suppress.internal
logical value indicating whether or not to suppress the feature binarization process that creates the pool of binary features. If it is set to True, then only the features imported from external methods (if import.external is True) will be used in the optimal rule selection model. Default is FALSE.

no.same.gender.children
logical value indicating whether or not to suppress splits that would result in both children having the same majority class. Default is FALSE.

non1.cap
a positive integer. It is applicable only when the opt.solver is 'hybrid' and the opt.model is 'gini'. When the bslearn function is called, if the product of the number of negative cases (n0) and the number of positive cases (n1) is greater than this number, 'enum' solver will be used; otherwise, gurobi solver will be used. Only available in the full version.

verbose
a logical value (TRUE or FALSE) indicating whether the solution details are to be printed on the screen.

Value
An object of class bscontrol.

Examples
bscontrol() # display the default parameters
bsc <- bscontrol(stop.prob = 0.8, nseg.numeric = 10, verbose = TRUE)
bsc
bslearn

Find the Optimal Boolean Rule for Binary Classification

Description

The function solves a mixed integer program (MIP) to maximize the Gini reduction (opt.model = 'gini') or minimize the number of misclassified cases (opt.model = 'error').

Usage

bslearn(bx, y, control = bscontrol())

Arguments

bx a data frame with binary (0 and 1) entries.
y an integer vector with binary entries.
control an object of class bscontrol(), specifying the algorithmic parameters. The list should contain the following attributes: opt.model, a character string in 'gini', 'error' indicating the optimization model to solve, opt.solver, a character string in 'enum_c', 'enum' indicating the algorithm to be used.

Value

a list containing the splitting solution.

Examples

x <- auto[, c('mpg', 'cylinders', 'displacement')]
y <- ifelse(auto$origin == 'USA', 1L, 0L)
binarize x by y = 1
bx <- binarize(x, y, target = 1)
learn the optimal Boolean rule
bssol <- bslearn(bx, y, bscontrol(opt.solver = 'enum'))
cat(paste("Optimal rule: ", bssol$rules, "\n"))

bsnsing

Learn a Classification Tree using Boolean Sensing

Description

Depending on the arguments provided, either bsnsing.default or bsnsing.formula will be called.

Usage

bsnsing(x, ...)

bsnsing.default

Learn a Classification Tree with Boolean Sensing

Description

This is the default method for bsnsing and handles binary classification only. bsnsing.formula, which calls bsnsing.default as the basic tree builder, can handle multiclass classification problems. Missing values in numeric variables are imputed as the median of the non-missing ones, and missing values in factor variables are treated as a separate level named 'NA'.

Usage

Default S3 method:
bsnsing(x, y, controls = bscontrol(), ...)

Arguments

x
a data frame or a formula object.
...
arguments passed on to bsnsing.default or bsnsing.formula.

Value

an object of class bsnsing for a two-class problem or an object of class mbsnsing for a multi-class problem.

Examples

Use the formula format
bs <- bsnsing(Class~., data = BreastCancer)
summary(bs)
For multi-class classification
bs <- bsnsing(Species ~ ., data = iris)
summary(bs)
summary(bs[[1]]) # display the tree for the first class
summary(bs[[2]]) # display the tree for the second class
summary(bs[[3]]) # display the tree for the third class
predict(bs, type = 'class') # the fitted class membership
predict(bs, type = 'prob') # the fitted probabilities

Use the (x, y) format, y must have two levels
y <- ifelse(iris$Species == 'setosa', 1L, 0L)
x <- iris[, c('Sepal.Length', 'Sepal.Width', 'Petal.Length', 'Petal.Width')]
bs <- bsnsing(x, y, verbose = TRUE)
summary(bs)
Arguments

- **x**: A data frame containing independent variables. Columns can be of numeric, integer, factor, and logical types. The column names must be proper identifiers (e.g., must start with a letter, cannot contain special characters and spaces, etc.).

- **y**: A vector of the response variable. The response variable can be of an integer, numeric, logical, or factor type, but must have only two unique values. Typical coding of a binary response variable is 0 (for negative case) and 1 (for positive cases).

- **controls**: An object of class `bscontrol`.

- ... Further argument to be passed to `bsnsing.default`.

Value

An object of class `bsnsing`.

Examples

```r
y <- ifelse(iris$Species == 'setosa', 1L, 0L)
x <- iris[, c('Sepal.Length', 'Sepal.Width', 'Petal.Length', 'Petal.Width')]
bs <- bsnsing(x, y, verbose = TRUE)
summary(bs)
```

Description

The program builds a binary classification tree for each unique value in the response variable. Each tree classifies a target value against all the other values (internally coded as 'all.other') in the response variable. If the response variable is a numeric type, the number of unique values must not exceed 30. There is no programmatic restriction on the number of unique levels for a factor response.

Usage

```r
## S3 method for class 'formula'
bsnsing(formula, data, subset, na.action = stats::na.pass, ...)
```

Arguments

- **formula**: An object of class "formula": a symbolic description of the model to be fitted.

- **data**: An optional data frame, list or environment (or object coercible by `as.data.frame` to a data frame) containing the variables in the model. If not found in `data`, the variables are taken from `environment(formula)`, typically the environment from which `bsnsing.formula` is called.
subset

an optional vector specifying a subset (in terms of index numbers, not actual data) of observations to be used in the fitting process.

na.action

a function which indicates what should happen when the data contain NAs. If `na.pass` is used, `bsnsing` will still apply an internal NA treatment logic, as follows: missing values in numeric variables will be replaced by the median of the non-missing values of the variable; missing values in factor variables will be treated as a separate level named 'NA'.

... additional arguments to be passed to the low level fitting functions, e.g., elements in the `bscontrol` object.

Value

an object of `bsnsing` for a two-class problem or an object of `mbsnsing` for a multi-class problem.

Examples

```r
# Multi-class classification
bs <- bsnsing(Species ~ ., data = iris)
summary(bs)
summary(bs[[1]])  # display the tree for the first class
summary(bs[[2]])  # display the tree for the second class
summary(bs[[3]])  # display the tree for the third class

# Two-class classification
bs <- bsnsing(origin ~ mpg + displacement + horsepower + weight, data = auto, verbose = TRUE)
summary(bs)
```

Description

A test dataset

Usage

`GlaucomaMVF`

Format

A data frame with 170 rows and 67 variables:

Source

https://github.com/profyliu/bsnsing/
import_external_rules Import split rules from other packages

Description
Run other decision tree functions available in the system and collect the node split rules for optimal selection in bsnsing.

Usage
import_external_rules(x, y, verbose)

Arguments
x a data frame.
y a binary vector.
verbose a logical value.

Value
a vector of character strings.

iris iris

Description
A test data set.

Usage
iris

Format
A data frame with 150 rows and 5 variables.

Source
https://github.com/profyliu/bsnsing/
mbsnsing-class

A class that contains multi-class classification model built by bsnsing. Can be used in summary and predict functions.

Description

A class that contains multi-class classification model built by bsnsing. Can be used in summary and predict functions.

plot.bsnsing

Generate latex code for plotting a bsnsing tree

Description

If the file argument is supplied, this function will invoke the external programs latex, dvips and ps2pdf. If these programs are not available, only the latex code will be generated. If the file argument is left empty, the latex code will be written to the console screen. The latex code utilizes the following packages: pstricks, pst-node, pst-tree.

Usage

```r
## S3 method for class 'bsnsing'
plot(
  x,
  file = "",
  class_labels = c(),
  class_colors = c("red", "green"),
  rule_font = c("footnotesize", "scriptsize", "tiny", "normalsize", "small"),
  rule_color = "blue",
  footnote = FALSE,
  landscape = FALSE,
  papersize = c("a0paper", "a1paper", "a2paper", "a3paper", "a4paper", "a5paper",
               "a6paper", "b0paper", "b1paper", "b2paper", "b3paper", "b4paper", "b5paper",
               "b6paper", "c0paper", "c1paper", "c2paper", "c3paper", "c4paper", "c5paper",
               "c6paper", "b0j", "b1j", "b2j", "b3j", "b4j", "b5j", "b6j", "ansiapaper",
               "ansibpaper", "ansicpaper", "ansidpaper", "ansiepaper", "letterpaper",
               "executepaper", "legalpaper"),
  verbose = FALSE,
  ...
)
```
plot.mbsnsing

Generate \LaTeX{} code for plotting an \texttt{mbsnsing} tree

Description

Users are advised to plot each \texttt{bsnsing} tree separately.

Usage

\begin{verbatim}
S3 method for class 'mbsnsing'
plot(x, ...)
\end{verbatim}
predict.bsnsing

Arguments

x an object of class mbsnsing.

... further arguments to the plot function.

Value

No return value.

predict.bsnsing Make Predictions with a Fitted bsnsing Model

Description

Implements the generic predict function to make predictions on new data using a trained bsnsing model.

Usage

S3 method for class 'bsnsing'
predict(object, newdata = NULL, type = c("prob", "class"), ...)

Arguments

object a bsnsing model object.

newdata a optional data frame in which to look for variables for prediction. If omitted, the fitted class or probability will be returned.

type a character string indicating the type of prediction. 'prob' predicts the probability of being a positive case (i.e., y = 1), and 'class' predicts the class membership.

... further arguments to predict.bsnsing.

Value

a vector containing the predicted values.

Examples

Load data
n <- nrow(GlaucomaMVF)
train_index = sample(1:n, round(0.5*n))
test_index = setdiff(1:n, train_index)
Fit a model using training set
bs <- bsnsing(Class ~ ., data = GlaucomaMVF, subset = train_index)
Make predictions on the test set
pred <- predict(bs, GlaucomaMVF[test_index,], type = 'class')
Display the confusion matrix
table(pred, actual = GlaucomaMVF[test_index, 'Class'])
predict.mbsnsing Make Predictions with a bsnsing Model

Description

Make Predictions with a bsnsing Model

Usage

S3 method for class 'mbsnsing'
predict(object, newdata = NULL, type = c("prob", "class"), ...)

Arguments

object an object of class mbsnsing.
newdata an optional data frame in which to look for variables for prediction. If omitted, the fitted class or probability will be returned.
type a character string indicating the type of prediction. 'prob' predicts the probability of being in each class, and 'class' predicts the class membership.
... further arguments to predict.mbsnsing.

Value

a data frame containing the predicted values.

Examples

```r
n <- nrow(iris)
train_index <- sample(1:n, round(0.5*n))
test_index <- setdiff(1:n, train_index)
# Fit a model on the training set
bs <- bsnsing(Species ~ ., data = iris, subset = train_index)
# Make predictions on the test set
pred <- predict(bs, iris[test_index, ], type = 'class')
# Display the confusion matrix
table(pred, actual = iris[test_index, 'Species'])
# Predict the probabilities
predprob <- predict(bs, iris[test_index, ], type = 'prob')
head(predprob)
```
print.bscontrol

Print the Object of Class bscontrol

Description

Print the Object of Class `bscontrol`

Usage

```r
## S3 method for class 'bscontrol'
print(x = bscontrol(), ...)
```

Arguments

- **x**: an object of class `bscontrol`.
- **...**: further arguments to the print function.

Value

No return value.

print.bsnsing

Print the Object of Class bsnsing

Description

Print the Object of Class `bsnsing`

Usage

```r
## S3 method for class 'bsnsing'
print(x, print.call = TRUE, ...)
```

Arguments

- **x**: an object of class `bsnsing`.
- **print.call**: print out the function called, default TRUE.
- **...**: further arguments.

Value

No return value.
print.mbsnsing
Print the Object of Class mbsnsing

Description
Print the Object of Class mbsnsing

Usage
```r
## S3 method for class 'mbsnsing'
print(x, ...)  
```

Arguments
- `x` an object of class mbsnsing.
- `...` further arguments.

Value
No return value.

print.summary.bsnsing
Print the Summary of bsnsing Model

Description
Print the Summary of bsnsing Model

Usage
```r
## S3 method for class 'summary.bsnsing'
print(x, print.call = TRUE, ...)  
```

Arguments
- `x` an object of class summary.bsnsing.
- `print.call` a logical value, print out the function called if TRUE.
- `...` further arguments.

Value
No return value.
print.summary.mbsnsing

Print the summary of mbsnsing model fits

Description

Print the summary of mbsnsing model fits

Usage

S3 method for class 'summary.mbsnsing'
print(x, ...)

Arguments

x an object of class summary.mbsnsing.

... further arguments.

Value

No return value.

rcpp_bslearn

C implementation of the blearn function

Description

C implementation of the blearn function

Usage

rcpp_bslearn(
 nrows,
 ncols,
 input_y,
 input_x,
 grp,
 max_rules,
 max_time,
 node_size,
 no_same_gender_children,
 verbose
)

Arguments

- **nrows** number of rows
- **ncols** number of columns
- **input_y** Integer vector
- **input_x** Integer matrix
- **grp** group membership indices
- **max_rules** max number of rules
- **max_time** max running time in seconds
- **node_size** minimum node size
- **no_same_gender_children** if TRUE child nodes must be of different predicted classes
- **verbose** verbose level

Value

a list containing four elements

ROC_func
Plot the ROC curve and calculate the AUC

Description

This is a general utility function, not part of the bsnsing functionality.

Usage

```r
ROC_func(
  df,
  label_colnum,
  score_colnum,
  pos.label = "1",
  plot.ROC = FALSE,
  add_on = FALSE,
  color = "black",
  lty = 1
)
```

Arguments

df a data frame which must contain at least these two columns: the prediction scores (numeric values, not necessarily be between 0 and 1) and the true class labels.

- **label_colnum** the column index of the scores column in df.
- **score_colnum** the column index of the true class labels column in df.
pos.label a character string matching the positive class label used in the class labels column.

plot.ROC a logical value indicating whether the ROC curve should be plotted.

add_on a logical value indicating whether the ROC curve should be added to an existing plot.

color a character string specifying the color of the ROC curve in the plot.

lty line type used in the plot, 1 solid, 2 dashed, etc.

Value

a numeric value representing the area under the ROC curve (AUC).

Examples

n <- nrow(BreastCancer)
trainset <- sample(1:n, 0.7*n) # randomly sample 70% for training
testset <- setdiff(1:n, trainset) # the remaining is for testing
Build a tree to predict Class, using all default options
bs <- bsnsing(Class~, data = BreastCancer[trainset,])
summary(bs) # display the tree structure
pred <- predict(bs, BreastCancer[testset,], type='class')
actual <- BreastCancer[testset, 'Class']
table(pred, actual) # display the confusion matrix
Plot the ROC curve and display the AUC
ROC_func(data.frame(predict(bs, BreastCancer[testset,]),
BreastCancer[testset,'Class']),
2, 1, pos.label = 'malignant', plot.ROC=TRUE)
Description

Summarize mbsnsing Model Fits

Usage

```r
## S3 method for class 'mbsnsing'
summary(object = stop("no 'object' arg"), ...)
```

Arguments

- `object`: an object of class `mbsnsing`.
- `...`: further arguments.

Value

A list of detailed information in the given object.
Index

* datasets
 auto, 3
 BreastCancer, 7
 GlaucomaMVF, 13
 iris, 14

 as.data.frame, 12
 auto, 3, 3
 binarize, 3, 4, 5
 binarize.factor, 3, 5
 binarize.numeric, 3, 5
 binarize.y, 3, 6
 BreastCancer, 3, 7
 bscontrol, 3, 7, 9, 12, 13, 19
 bslearn, 3, 10
 bsnsing, 2, 3, 7, 10, 13, 16–20, 23
 bsnsing-package, 2
 bsnsing.default, 3, 10, 11, 11
 bsnsing.formula, 3, 10, 11, 12

 formula, 11, 12
 GlaucomaMVF, 3, 13
 import_external_rules, 14
 iris, 3, 14
 mbsnsing, 13, 17, 18, 20, 21, 24
 mbsnsing (mbsnsing-class), 15
 mbsnsing-class, 15
 plot.bsnsing, 3, 15
 plot.mbsnsing, 16
 predict.bsnsing, 3, 17
 predict.mbsnsing, 3, 18
 print.bscontrol, 19
 print.bsnsing, 19
 print.mbsnsing, 20
 print.summary.bsnsing, 20
 print.summary.mbsnsing, 21

 rcpp_bslearn, 21
 ROC_func, 3, 22
 summary.bsnsing, 3, 20, 23
 summary.mbsnsing, 3, 21, 24