Package ‘bsreg’

October 12, 2022

Type Package
Title Bayesian Spatial Regression Models
Version 0.0.2
Date 2022-02-25
Author Nikolas Kuschnig [aut, cre] (<https://orcid.org/0000-0002-6642-2543>)
Maintainer Nikolas Kuschnig <nikolas.kuschnig@wu.ac.at>
Description Fit Bayesian models with a focus on the spatial econometric models.
Depends R (>= 3.5.0)
Imports R6, Matrix, stats, graphics, utils, grDevices
Suggests stochvol, coda
License GPL-3 | file LICENSE
Encoding UTF-8
LazyData true
RoxygenNote 7.1.2
NeedsCompilation no
Repository CRAN
Date/Publication 2022-02-25 14:40:02 UTC

R topics documented:

bsreg-package .. 2
bm ... 2
cigarettes .. 3
coda ... 4
sample .. 5
set_mh ... 5
set_NG ... 6
set_options ... 7
set_SAR .. 8
set_SV ... 9
tune .. 10
us_states .. 11
bsreg-package

Bayesian Spatial Regression Models

Description

Fit Bayesian models with a focus on the spatial econometric models.

bm

Fit a Bayesian model

Description

Fit a Bayesian model

Usage

bm(x, ...)

S3 method for class 'formula'
bm(
x,
data = NULL,
n_save = 1000L,
n_burn = 500L,
options = set_options(),
mh = set_mh(),
verbose = TRUE,
W,
X_SLX,
type = c("lm", "slx", "sar", "sem", "sdm", "sdem", "sv"),
...
)

S3 method for class 'bm'
bm(x, n_save = 1000L, n_burn = 0L, verbose = TRUE, ...)

blm(...)

bslx(...)

bsar(...)

bsem(...)
Arguments

- `x`: Formula or `bm` object to sample with.
- `...`: Not used.
- `data`: A `data.frame` containing the variables in the model.
- `n_save, n_burn`: Integer scalar. Number of draws for the burn-in period and to store for inference.
- `options`: Settings for the prior setup. See `set_options`.
- `mh`: Settings to tune the Metropolis-Hastings step. See `set_mh`.
- `verbose`: Logical scalar. Whether to print status updates.
- `W`: Numeric matrix (or function to construct one) with the spatial connectivities.
- `X_SLX`: Numeric matrix with explanatory variables that should be lagged spatially.
- `type`: Character scalar used to specify the desired model.

Value

Returns a list with draws from the specified Bayesian model and an object to obtain further samples.

Examples

```r
N <- 100L
beta <- 1:5
X <- matrix(rnorm(N * 5), N, 5)
y <- X %*% beta + rnorm(N)

bm(y ~ X, n_burn = 100, n_draw = 100)
```

Reproduce the linear model in Kuschnig (2022)
```r
blm(log(sales) ~ log(price / cpi) + log(ndi / cpi) +
    factor(name) + factor(year), data = cigarettes)
```

cigarettes
* Cigarette demand

Description

Panel dataset on cigarette demand in 46 US states from 1963 until 1992, see Baltagi and Levin (1992) and Baltagi and Li (2004). Extended with longitude and latitude from the `us_states` dataset.
Usage
cigarettes

Format
A data.frame object.

References

coda

Methods for the *coda* Markov chain Monte Carlo objects

Description
Methods to convert parameter and/or coefficient draws to *coda*'s MCMC format for further processing.

Usage
as.mcmc.bm(x, ...)

Arguments
x A bm object, obtained from bm.
... Other parameters for as.mcmc.

Value
Returns a *coda* mcmc object.
sample

Obtain draws from a Bayesian model sampler

Description

Obtain draws from a Bayesian model sampler

Usage

```r
sample(x, n_save = 1000L, n_burn = 0L, mh = set_mh(), verbose = TRUE)
```

Arguments

- `x` Bayesian model
- `n_save`, `n_burn` Integer scalar with number of draws to save / burn.
- `mh` Settings to tune the Metropolis-Hastings step. See `set_mh`.
- `verbose` Logical scalar. Whether to print status updates.

Value

Returns a numeric matrix with stored draws. The Bayesian model is modified in place.

set_mh

Settings to tune a Metropolis-Hastings step

Description

Settings to tune a Metropolis-Hastings step

Usage

```r
set_mh(adjust_burn = 0.8, acc_target = c(0.2, 0.45), acc_change = 0.01)
```

Arguments

- `adjust_burn` Numeric scalar with the percentage of burn-in that should be used to tune the MH step.
- `acc_target` Numeric vector with the lower and upper bound of the target acceptance rate for the MH step.
- `acc_change` Numeric scalar with the percentage adjustment to the proposal scale for tuning.

Value

Returns a list with settings to tune the Metropolis-Hastings step of a Bayesian model.
set_NG

Set up a Normal-Gamma prior

Description

Set up a Normal-Gamma prior

Usage

set_NG(
 mu = 0,
 precision = 1e-08,
 shape = 0.01,
 rate = 0.01,
 beta = NULL,
 sigma = NULL
)

set_SNG(
 lambda_a = 0.01,
 lambda_b = 0.01,
 theta_scale = 0,
 theta_a = 1,
 lambda = 1,
 tau = 10,
 theta = 0.1
)

set_HS(lambda = 1, tau = 1, zeta = 1, nu = 1)

Arguments

 mu Numeric scalar or vector with the prior mean of 'beta'.
 precision Numeric scalar or matrix with the prior precision of 'beta'. Not used for shrinkage priors.
 shape, rate Numeric scalars with the prior shape and rate of 'sigma'.
 lambda_a, lambda_b Numeric scalars with the prior shape and rate of 'lambda'.
 theta_scale Numeric scalar with the proposal scale of 'theta'. Defaults to zero for a fixed value.
 theta_a Numeric scalar with the prior rate of 'theta'.
 lambda, tau, theta, zeta, nu, beta, sigma Numerics with starting values for the respective parameter.

Examples

set_mh(0.5, c(0.1, 0.5), .05)
set_options

Value
Returns a list with priors and settings.

Description
Set up Bayesian model priors and settings

Usage

set_options(
 type = c("Independent", "Conjugate", "Shrinkage", "Horseshoe"),
 NG = set_NG(),
 SNG = set_SNG(),
 HS = set_HS(),
 SAR = set_SAR(),
 SLX = set_SLX(),
 SEM = set_SEM(),
 SV = set_SV(),
 ...
)

Arguments

 type Character scalar with the prior type for the nested linear model.
 NG Settings for the Normal-Gamma prior (independent or conjugate). See set_NG.
 SNG Settings for the Normal-Gamma shrinkage prior (Polson and Scott, 2010). See set_NG.
 HS Settings for the Horseshoe shrinkage prior (Makalic and Schmidt, 2015). See set_NG.
 SAR Settings for the spatial autoregressive setup. See set_SAR.
 SLX Settings for the spatially lagged explanatory setup. See set_SAR. Note that settings for the spatial term 'theta' are provided to NG instead.
 SEM Settings for the spatial error setup. See set_SAR.
 SV Settings for the stochastic volatility setup. See set_SV.
 ... Used to provide custom prior elements.

Value
Returns a list with priors and settings for a Bayesian model.

Examples

set_options("Shrinkage", SNG = set_SNG(lambda_a = 1, lambda_b = 1))
Description

Set up a spatial prior

Usage

```r
set_SAR(
  lambda_a = 1.01,
  lambda_b = 1.01,
  lambda = 0,
  lambda_scale = 0.1,
  lambda_min = -1,
  lambda_max = 1 - 1e-12,
  delta_a = 1.01,
  delta_b = 1.01,
  delta = 1,
  delta_scale = 0,
  delta_min = 1e-12,
  delta_max = Inf
)
```

```r
set_SLX(
  lambda_a = 1.01,
  lambda_b = 1.01,
  lambda = 0,
  lambda_scale = 0.1,
  lambda_min = -1,
  lambda_max = 1 - 1e-12,
  delta_a = 1.01,
  delta_b = 1.01,
  delta = 1,
  delta_scale = 0,
  delta_min = 1e-12,
  delta_max = Inf
)
```

```r
set_SEM(
  lambda_a = 1.01,
  lambda_b = 1.01,
  lambda = 0,
  lambda_scale = 0.1,
  lambda_min = -1,
  lambda_max = 1 - 1e-12,
  delta_a = 1.01,
  delta_b = 1.01,
  delta = 1,
  delta_scale = 0,
  delta_min = 1e-12,
  delta_max = Inf
)
```


delta_b = 1.01,
delta = 1,
delta_scale = 0,
delta_min = 1e-12,
delta_max = Inf
)

Arguments

lambda_a, lambda_b
 Numeric scalars with the prior shapes of the connectivity strength 'lambda'.

lambda, delta
 Numerics with starting values for the respective parameter.

lambda_scale
 Numeric scalar with the proposal scale of 'lambda'.

lambda_min, lambda_max
 Numeric scalars with upper and lower bounds for 'lambda'.

delta_a, delta_b
 Numeric scalars with the prior shapes of the connectivity parameter 'delta'.

delta_scale
 Numeric scalar with the proposal scale of 'delta'. Defaults to zero for a fixed value.

delta_min, delta_max
 Numeric scalars with upper and lower bounds for 'delta'.

Value

Returns a list with priors and settings.

set_SV

Set up a volatility prior

Description

Set up a volatility prior

Usage

set_SV(
 priors,
 mu = 0,
 phi = 0.5,
 sigma = 1,
 nu = Inf,
 rho = 0,
 beta = 0,
 latent0 = 0
)
tune

Burn-in and tune a Bayesian model sampler

Description
Burn-in and tune a Bayesian model sampler

Usage

```r
tune(x, n_burn = 1000L, mh = set_mh(), verbose = TRUE)
burn(x, n_burn = 1000L, verbose = TRUE)
```

Arguments

- `x` Bayesian model
- `n_burn` Integer scalar with number of draws to save / burn.
- `mh` Settings to tune the Metropolis-Hastings step. See `set_mh`.
- `verbose` Logical scalar. Whether to print status updates.

Value
Modifies the Bayesian model in place and returns it invisibly.

Arguments

- `priors` Prior settings from `specify_priors`.
- `mu, phi, sigma, nu, rho, beta, latent0` Numerics with starting values for the respective parameter.

Value

Returns a list with priors and settings.
Description

Usage

us_states

Format

A data.frame object.

Source

https://publications.newberry.org/ahcbp/

References

Index

* datasets
 cigarettes, 3
 us_states, 11

as.mcmc, 4
as.mcmc.bm (coda), 4

blm (bm), 2
bm, 2, 4
bsar (bm), 2
bsdem (bm), 2
bsdm (bm), 2
bsem (bm), 2
bslx (bm), 2
bsreg-package, 2
bsv (bm), 2
burn (tune), 10
cigarettes, 3
coda, 4
data.frame, 3
mcmc, 4

sample, 5
set_HS (set_NG), 6
set_mh, 3, 5, 5, 10
set_NG, 6, 7
set_options, 3, 7
set_SAR, 7, 8
set_SEM (set_SAR), 8
set_SLX (set_SAR), 8
set_SNG (set_NG), 6
set_SV, 7, 9
specify_priors, 10
tune, 10
us_states, 11