btf: Estimates Univariate Function via Bayesian Trend Filtering

Trend filtering uses the generalized lasso framework to fit an adaptive polynomial of degree k to estimate the function f_0 at each input x_i in the model: y_i = f_0(x_i) + epsilon_i, for i = 1, ..., n, and epsilon_i is sub-Gaussian with E(epsilon_i) = 0. Bayesian trend filtering adapts the genlasso framework to a fully Bayesian hierarchical model, estimating the penalty parameter lambda within a tractable Gibbs sampler.

Version: 1.2
Depends: R (≥ 3.1.0)
Imports: Rcpp (≥ 0.12.0), Matrix, coda
LinkingTo: Rcpp (≥ 0.12.0), RcppEigen (≥
Suggests: knitr
Published: 2017-05-31
Author: Edward A. Roualdes
Maintainer: Edward A. Roualdes <eroualdes at>
License: GPL-2 | GPL-3 [expanded from: GPL (≥ 2.0)]
NeedsCompilation: yes
Materials: README
CRAN checks: btf results


Reference manual: btf.pdf
Vignettes: btf
Package source: btf_1.2.tar.gz
Windows binaries: r-devel:, r-release:, r-oldrel:
OS X El Capitan binaries: r-release: btf_1.2.tgz
OS X Mavericks binaries: r-oldrel: btf_1.2.tgz
Old sources: btf archive


Please use the canonical form to link to this page.