Package ‘bunchr’

October 12, 2022

Type Package

Title Analyze Bunching in a Kink or Notch Setting

Version 1.2.0

Maintainer Itai Trilnick <itai.trilnick@berkeley.edu>

Description View and analyze data where bunching is expected. Estimate counterfactual distributions. For earnings data, estimate the compensated elasticity of earnings w.r.t. the net-of-tax rate.

URL http://github.com/trilnick/bunchr

BugReports http://github.com/trilnick/bunchr/issues

License MIT + file LICENSE

LazyData TRUE

RoxygenNote 5.0.1

Depends R (>= 3.3.1)

Imports stats, graphics, utils, shiny (>= 0.10.2)

Suggests knitr, rmarkdown, testthat, roxygen2

VignetteBuilder knitr

NeedsCompilation no

Author Itai Trilnick [aut, cre]

Repository CRAN

Date/Publication 2017-01-30 12:30:00

R topics documented:

bunch ... 2
bunchApp ... 4
bunchr ... 4
bunch_viewer .. 5
earning_fun .. 6
elas_equalizer ... 7
Description

Given a kinked or notched budget set, this function gets a vector of earnings and analyzes bunching. The bunchr package has two main useful functions:

Usage

```r
bunch(earnings, zstar, t1, t2, Tax = 0, cf_start = NA, cf_end = NA,
      exclude_before = NA, exclude_after = NA, force_after = FALSE,
      binw = 10, poly_size = 7, convergence = 0.01, max_iter = 100,
      correct = TRUE, select = TRUE, draw = TRUE, nboots = 0, seed = NA,
      progress = FALSE, title = "Bunching Visualization",
      varname = "Earnings")
```

Arguments

- **earnings**: Vector of earnings, hopefully a very large one.
- **zstar**: Place of kink (critical earning point).
- **t1**: Marginal tax rate before kink.
- **t2**: Marginal tax rate after kink.
- **Tax**: "Penalty" tax for crossing zstar.
- **cf_start**: Number of bins before the kink bin where counter-factual histogram should start.
- **cf_end**: Number of bins after the kink bin where counter-factual histogram should start.
- **exclude_before**: Number of excluded bins before the kink bin.
- **exclude_after**: Number of excluded bins after the kink bin.
- **force_after**: For notch analysis, should bunch be forced to use the provided `exclude_after` for the end of the bunching, rather than trying to find the bin where the sum of the integral is zero? See details at `notch_estimator` documentation.
- **binw**: Bin width.
- **poly_size**: Order of polynomial used to calculate counter-factual histogram.
- **convergence**: Minimal rate of change of bunching estimate to stop iterations.
- **max_iter**: Maximum number of iterations for bunching estimates.
bunch

correct Should the counter-factual histogram be corrected to compensate for shifting left because of the notch? See details.

select Should model selection be used to find counter-factual histogram? See details.

draw Should a graph be drawn?

nboots how many bootstraps should be run?

seed specify seed for bootstraps (earnings sampling).

progress Should a progress bar be displayed?

title Title for Plot output

varname Name for running variable, to be displayed in the plot

Details

bunch checks if the specification has a kink, i.e. if the Tax parameter is greater than zero. If so, it applies notch_estimator. Otherwise, it applies kink_estimator. Additionally, bunch can bootstrap by sampling the earnings vector, returning a vector with the estimated elasticities.

Value

bunch returns a list comprising of the parameters returned by kink_estimator and notch_estimator. If bootstraps were asked for, bootstrapped values are added to the list. Drawing of histograms is suppressed when running the bootstraps.

See Also

kink_estimator, notch_estimator

Examples

```r
# analyzing a kink
ability_vec <- 4000 * rbeta(100000, 2, 5)
earning_vec <- sapply(ability_vec, earning_fun, 0.2, 0, 0.2, 0, 1000)
# bunch_viewer(earning_vec, 1000, 20, 20, 1, 1, binw = 20)
estim <- bunch(earning_vec, 1000, 0, 0.2, Tax = 0, 20, 20, 1, 1,
binw = 20, draw = TRUE, nboots = 0, seed = 16)
estim$e

# analyzing a notch
earning_vec <- sapply(ability_vec, earning_fun, 0.2, 0.2, 0.2, 500, 1000)
bunch_viewer(earning_vec, 1000, 10, 40, 22, binw = 50)
estim <- bunch(earning_vec, 1000, 0.2, 0.2, Tax = 500, 10, 40, 22,
binw = 50, draw = FALSE, nboots = 0, seed = 16)
estim$e
```
bunchApp is an interactive simulator for bunching analysis. It is meant to serve as a tool for understanding bunching analysis in general, and the use of bunchr for data analysis. This app is opened on a separate window.

Usage

bunchApp()

Details

This function merely runs the app. It accepts no parameters.

See Also

The machinery behind the simulation: bunch
This simulator is also offered online at https://trilnick.shinyapps.io/bunchapp/.

bunchr has three main functions:

bunch is the main function running the actual analysis.
bunch_viewer serves as an aid to the second by visualizing some of the user-specified options without running an analysis. Use it to see what the histogram of your earnings vector looks like when setting specific bin size, where the counter-factual analysis should be done, and the bounds of the excluded area. You can also save the histogram bins and counts.
bunchApp is an interactive simulator. Use it to explore bunching simulation and estimation of earning elasticity.

See Also

bunch, bunch_viewer
bunch_viewer

Visualizing a histogram and potential excluded areas

Description

This function is meant to aid find excluded bins and analysis area for a bunching study. It displays a histogram with borders. Optionally, you can get the actual histogram back. This is convenient, as the kink/notch point is set as the center of a bin.

Usage

bunch_viewer(earnings, zstar = NA, cf_start = 10, cf_end = 50,
 exclude_before = 2, exclude_after = 20, binw = NA, trimy = TRUE,
 report = FALSE, title = "Count Histogram", varname = "Running Variable")

Arguments

earnings Vector of earnings, hopefully a very large one
zstar Place of notch/kink (critical earning point)
cf_start Number of bins before the kink bin where counter-factual histogram should start.
cf_end Number of bins after the kink bin where counter-factual histogram should start.
exclude_before Number of excluded bins before the kink bin.
exclude_after Number of excluded bins after the kink bin.
binw Bin width.
trimy Logical. Should the y-axis be trimmed to better show off-bunching histogram?
report Should the function return the actual histogram?
title Title for Plot output
varname Name for running variable, to be displayed in the plot

Value

A plot, the actual histogram if report is set to TRUE.

See Also

bunch

Examples

ability_vec <- 4000 * rbeta(100000, 2, 5)
earning_vec <- sapply(ability_vec, earning_fun, 0.2, 0.1, 0.2, 0, 1000)
bunch_viewer(earning_vec, 1000, 20, 40, 2, 20, trimy = TRUE, report = FALSE)
earning_fun

Finding optimal earning under kinked/notched budget set

Description
For an agent with quasi-linear iso-elastic utility, find the utility maximizing earning level.

Usage
earning_fun(n, elas, t1, t2, Tax, zstar)

Arguments
- n: Ability of person (earnings with zero tax)
- elas: Elasticity of earnings w.r.t. net-of-tax rate
- t1: Tax rate before notch/kink
- t2: Tax rate after notch/kink
- Tax: Height of notch (zero for pure kink)
- zstar: Place of notch/kink (critical earning point)

Details
earn_funciton is intended to simulate earnings of agents under a kink or notch.

Value
Optimal earning level.

See Also
util_calc, bunch

Examples
earning_fun(1200, 0.2, 0.1, 0.3, 100, 1000)
elas_equalizer

Using elasticity to calculating distance between utility at tangency and at notch point

Description

Given an elasticity, a budget set, and the earnings of the marginal buncher, calculate the utility at notch point and at marginal buncher’s earning, and return the absolute difference. Equating these two utilities helps find the elasticity of the marginal buncher. See equations (3) and (4) at Kelven and Waseem (2013)

Usage

```python
elas_equalizer(elas, t1, t2, Tax, zstar, delta_zed, binw)
```

Arguments

- `elas`: elasticity of earnings w.r.t. net-of-tax rate
- `t1`: Tax rate before notch/kink
- `t2`: Tax rate after notch/kink
- `Tax`: Height of notch (zero for pure kink)
- `zstar`: Place of notch/kink (critical earning point)
- `delta_zed`: The notch size
- `binw`: Bin width

Value

Absolute value of utility at \(z_{star} + \delta \text{z}_{ed} \) minus utility at kink/notch point.

References

Examples

```python
elas_equalizer(0.2, 0.1, 0.2, 100, 1000, 200, 20)
```
kink_estimator

Analyzing Bunching at a Kink

Description

Given a kinked budget set, this function gets a vector of earnings and analyzes bunching. This function could be run independently, but best used through the `bunch` function.

Usage

```r
kink_estimator(earnings, zstar, t1, t2, cf_start = NA, cf_end = NA,
               exclude_before = 2, exclude_after = 2, binw = 10, poly_size = 7,
               convergence = 0.01, max_iter = 100, correct = TRUE, select = TRUE,
               draw = TRUE, title = "Bunching Visualization", varname = "Earnings")
```

Arguments

- `earnings`: Vector of earnings, hopefully a very large one.
- `zstar`: Place of kink (critical earning point).
- `t1`: Marginal tax rate before kink.
- `t2`: Marginal tax rate after kink.
- `cf_start`: Number of bins before the kink bin where counter-factual histogram should start.
- `cf_end`: Number of bins after the kink bin where counter-factual histogram should start.
- `exclude_before`: Number of excluded bins before the kink bin.
- `exclude_after`: Number of excluded bins after the kink bin.
- `binw`: Bin width.
- `poly_size`: Order of polynomial used to calculate counter-factual histogram.
- `convergence`: Minimal rate of change of bunching estimate to stop iterations.
- `max_iter`: Maximum number of iterations for bunching estimates.
- `correct`: Should the counter-factual histogram be corrected to compensate for shifting left because of the notch? See details.
- `select`: Should model selection be used to find counter-factual histogram? See details.
- `draw`: Should a graph be drawn?
- `title`: Title for plot output
- `varname`: Name for running variable, to be displayed in the plot
notch_estimator

Details

A histogram is created from the earnings vector, with the kink point zstar as the center of one of the bins.

Correction of the counter-factual is required, as the kink-induced bunching will shift the whole distribution on the right side of the kink to the left. This option follows Chetty et al (2009) in correcting for this.

Model selection works using the step function from the stats package. It runs backwards from the full polynomial model, trying to find the best explanatory model using the Akaike information criterion.

Value

kink_estimator returns a list of the following variables:

e Estimated elasticity

Bn The sum of total estimated extra bunching in the excluded bins

b The rate of extra bunching in the excluded area, divided by the length of area in \\
data A data frame with bin mids, counts, counter-factual counts, and excluded dummy

References

See Also

bunch, notch_estimator

Examples

ability_vec <- 4000 * rbeta(100000, 2, 5)
earning_vec <- sapply(ability_vec, earning_fun, 0.2, 0, 0.2, 0, 1000)
bunch_viewer(earning_vec, 1000, 40, 40, 1, 1, binw = 10)
kink_estimator(earning_vec, 1000, 0, 0.2, 40, 40, 1, 1, binw = 10, draw = FALSE)$e

notch_estimator Analyzing Bunching at a Notch

Description

Given a kinked budget set, this function gets a vector of earnings and analyzes bunching. This function could be run independently, but best used through the bunch function.
Usage

```r
donch_estimator(earnings, zstar, t1, t2, Tax = 0, cf_start = NA,
               cf_end = NA, exclude_before = NA, exclude_after = NA,
               force_after = FALSE, binw = 10, poly_size = 7, convergence = 0.01,
               max_iter = 100, select = TRUE, draw = TRUE,
               title = "Bunching Visualization", varname = "Earnings")
```

Arguments

- **earnings**: Vector of earnings, hopefully a very large one.
- **zstar**: Place of kink (critical earning point).
- **t1**: Tax rate before kink.
- **t2**: Tax rate after kink.
- **Tax**: "Penalty" tax for crossing zstar.
- **cf_start**: Number of bins before the kink bin where counter-factual histogram should start.
- **cf_end**: Number of bins after the kink bin where counter-factual histogram should start.
- **exclude_before**: Number of excluded bins before the kink bin.
- **exclude_after**: Number of excluded bins after the kink bin.
- **force_after**: Should bunching be forced to use the provided exclude_after for the end of the bunching, rather than trying to find the bin where the sum of the integral is zero? See details.
- **binw**: Bin width.
- **poly_size**: Order of polynomial used to calculate counter-factual histogram.
- **convergence**: Minimal rate of change of bunching estimate to stop iterations.
- **max_iter**: Maximum number of iterations for bunching estimates.
- **select**: Should model selection be used to find counter-factual histogram? See details.
- **draw**: Should a graph be drawn?
- **title**: Title for plot output.
- **varname**: Name for running variable, to be displayed in the plot.

Details

A histogram is created from the earnings vector, with the kink point zstar as the center of one of the bins.

For "unpure" notches, where the marginal tax rate after the notch is different than the one before it, this function disregards the shifting of post-notch distribution to the right, as suggested by Kleven (2016). Assumption is that the notch effect is much stronger anyway.

Model selection works using the `step` function from the `stats` package. It runs backwards from the full polynomial model, trying to find the best explanatory model using the Akaike Information Criterion.

By default, `notch_estimator` will try to find the end of the notch, i.e. a histogram bin defining a right-side boundary for a range of an excluded area. An interpolation of the counts inside this range
renders an equality between the sum of the “excess” counts, from the left side to the notch point, and the sum of “missing” counts from the notch point to the notch size. notch_estimator goes through an iterative process to find a stable right-side boundary, labels it notch_size and returns it. However, the user might want to force a visibly detectible end of notch, rather than let notch_estimator calculate one. Use this option with caution: the notch size is then used to calculate elasticity. For calculating intensive margin elasticities, excess bunching must all come from other bins. Thus, total sums must be equal and forcing the notch size might not be appropriate. In other settings, e.g. a labor market with extensive margins (entry and exit from labor force), forcing the notch size might be helpful.

Value

- notch_estimator returns a list of the following variables:
 - e Estimated elasticity
 - Bn The sum of total estimated extra bunching in the area starting at cf_start and through the notch bin (zstar)
 - notch_size Distance between notch bin and bin where the estimated influence of the notch ends, delta_zed
 - data A data frame with bin mids, counts, counter-factual counts, and excluded dummy

References

See Also

- bunch, kink_estimator

Examples

```r
ability_vec <- 4000 * rbeta(100000, 2, 5)
earning_vec <- sapply(ability_vec, earning_fun, 0.2, 0.2, 0.2, 500, 1000)
bunch_viewer(earning_vec, 1000, 15, 30, 2, 21, binw = 50)
notch_estimator(earning_vec, 1000, 0.2, 0.2, 500, 15, 30, 2, 21, binw = 50, draw = FALSE)$e
```

Calculating quasi-linear iso-elastic utility

Description

\[
u(z, n, elas, t1, t2, Tax, zstar) = \\
\text{z}(1-t1) + \text{[z > zstar]} \times (t2-t1) - (1+1/elas) \times \text{(z/n)}/(1+1/elas)
\]
Usage

```
util_calc(z, n, elas, t1, t2, Tax, zstar)
```

Arguments

- \(z\): Earnings
- \(n\): Ability of person (earnings with zero tax)
- \(elas\): Elasticity of earnings w.r.t. net-of-tax rate
- \(t1\): Tax rate before notch/kink
- \(t2\): Tax rate after notch/kink
- \(Tax\): Height of notch (zero for pure kink)
- \(zstar\): Place of notch/kink (critical earning point)

Value

The utility of earning sum \(z\) given other parameters.

Examples

```
util_calc(900, 950, 0.2, 0.1, 0.2, 100, 1000)
```

util_equalizer

Calculating distance between utility at tangency and at notch/kink point

Description

Ability \((n)\) and elasticity \((e)\) determine an agent’s earnings and utility. This function determines the tangency point of the agent’s utility with the budget line and returns the distance between the utility of earning at that point and the utility of earning at the notch/kink point. This function is mostly used to find the marginal buncher.

Usage

```
util_equalizer(n, elas, t1, t2, Tax, zstar)
```

Arguments

- \(n\): Ability of person (earnings with zero tax)
- \(elas\): Elasticity of earnings w.r.t. net-of-tax rate
- \(t1\): Tax rate before notch/kink
- \(t2\): Tax rate after notch/kink
- \(Tax\): Height of notch (zero for pure kink)
- \(zstar\): Place of notch/kink (critical earning point)
util_equalizer

Value

Absolute value of utility at tangency minus utility at kink/notch point.

See Also

util_calc

Examples

util_equalizer(1200,0.2,0.1,0.3,100,1000)
Index

bunch, 2, 4–6, 9, 11
bunch_viewer, 4, 5
bunchApp, 4, 4
bunchr, 4
bunchr-package (bunchr), 4

earning_fun, 6
elas_equalizer, 7

kink_estimator, 3, 8, 11

notch_estimator, 2, 3, 9, 9

util_calc, 6, 11, 13
util_equalizer, 12