Package ‘cIRT’

March 23, 2020

Type Package

Title Choice Item Response Theory

Version 1.3.1

Description Jointly model the accuracy of cognitive responses and item choices within a Bayesian hierarchical framework as described by Culpepper and Balamuta (2015) <doi:10.1007/s11336-015-9484-7>. In addition, the package contains the datasets used within the analysis of the paper.

License GPL (>= 2)

BugReports https://github.com/tmsalab/cIRT/issues

Depends R (>= 3.5.0)

Imports Rcpp (>= 1.0.0)

LinkingTo Rcpp, RcppArmadillo (>= 0.9.200)

Suggests knitr, rmarkdown, covr

LazyData true

Encoding UTF-8

Language en-US

VignetteBuilder knitr

RoxygenNote 7.1.0

NeedsCompilation yes

Author Steven Andrew Culpepper [aut, cph]
 (<https://orcid.org/0000-0003-4226-6176>),
 James Joseph Balamuta [aut, cph, cre]
 (<https://orcid.org/0000-0003-2826-8458>)

Maintainer James Joseph Balamuta <balamut2@illinois.edu>

Repository CRAN

Date/Publication 2020-03-23 01:40:03 UTC
Description

Jointly model the accuracy of cognitive responses and item choices within a Bayesian hierarchical framework as described by Culpepper and Balamuta (2015) <doi:10.1007/s11336-015-9484-7>. In addition, the package contains the datasets used within the analysis of the paper.

Author(s)

Maintainer: James Joseph Balamuta <balamut2@illinois.edu> (ORCID) [copyright holder]
Authors:

• Steven Andrew Culpepper <sculpepp@illinois.edu> (ORCID) [copyright holder]

See Also

Useful links:

• https://tmsalab.github.io/cIRT
• https://github.com/tmsalab/cIRT
• Report bugs at https://github.com/tmsalab/cIRT/issues
center_matrix

Center a Matrix

Description

Obtains the mean of each column of the matrix and subtracts it from the given matrix in a centering operation.

Usage

center_matrix(x)

Arguments

x

A matrix with any dimensions

Details

The application of this function to a matrix mimics the use of a centering matrix given by:

\[C_n = I_n - \frac{1}{n}11^T \]

Value

A matrix with the same dimensions of X that has been centered.

Author(s)

James Joseph Balamuta

See Also

cIRT()

Examples

```r
nobs = 500
nvars = 20
x = matrix(rnorm(nobs * nvars), nrow = nobs, ncol = nvars)
r_centered = scale(x)
arma_centered1 = center_matrix(x)
```
choice_matrix

Choice Matrix Data

Description
This data set contains the subject’s choices and point values for the difficult questions.

Usage
choice_matrix

Format
A data frame with 3780 observations on the following 5 variables.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>subject_id</td>
<td>Research Participant Subject ID. There are 102 IDs and each ID has 15 observations.</td>
</tr>
<tr>
<td>hard_q_id</td>
<td>The item ID of the hard question assigned to the student (16-30)</td>
</tr>
<tr>
<td>easy_q_id</td>
<td>The item ID of the easy question assigned to the student (1-15)</td>
</tr>
<tr>
<td>choose_hard_q</td>
<td>Selected either: Difficult Question (1) or Easy Question (0)</td>
</tr>
<tr>
<td>high_value</td>
<td>Range of values associated with Difficult Question that span from 12 to 16, repeated three times per subject</td>
</tr>
<tr>
<td>low_value</td>
<td>Range of values associated with Easy Question that span from 4 to 6, repeated five times per subject</td>
</tr>
<tr>
<td>is_correct_choice</td>
<td>Did the user select an item that was answered correctly?</td>
</tr>
</tbody>
</table>

Author(s)
Steven Andrew Culpepper and James Joseph Balamuta

Source
Choice38 Experiment at UIUC during Spring 2014 - Fall 2014

cIRT

Generic Implementation of Choice IRT MCMC

Description
Builds a model using MCMC
Usage

cIRT(
 subject_ids,
 fixed_effects,
 B_elem_plus1,
 rv_effects,
 trial_matrix,
 choices_nk,
 burnit,
 chain_length = 10000L
)

Arguments

subject_ids A vector that contains subject IDs for each line of data in the choice vector (e.g. For 1 subject that made 5 choices, we would have the number 1 appear five times consecutively.)
fixed_effects A matrix with NK x P_1 dimensions that acts as the design matrix for terms WITHOUT theta.
B_elem_plus1 A V[[1]] dimensional column vector indicating which zeta_i relate to theta_i.
rv_effects A matrix with NK x V dimensions for random effects design matrix.
trial_matrix A matrix with N x J dimensions, where J denotes the number of items presented. The matrix MUST contain only 1’s and 0’s.
choices_nk A vector with NK length that contains the choice value e.g. 0 or 1.
burnit An int that describes how many MCMC draws should be discarded.
chain_length An int that controls how many MCMC draws there are. (> 0)

Value

A list that contains:

as A matrix of dimension chain_length x J
bs A matrix of dimension chain_length x J
gs A matrix of dimension chain_length x P_1
Sigma_zeta_inv An array of dimension V x V x chain_length
betas A matrix of dimension chain_length x P_2

Author(s)

Steven Andrew Culpepper and James Joseph Balamuta

See Also

TwoPLChoicemcmc(), probitHLM(), center_matrix(), rmvnorm(), rwishart(), and riwishart()
Examples

```r
## Not run:
# Variables
# Y = trial matrix
# C = KN vector of binary choices
# N = # of subjects
# J = # of items
# K= # of choices
# atrue = true item discriminations
# btrue = true item locations
# thetatrue = true thetas/latent performance
# gamma = fixed effects coefficients
# Sig = random-effects variance-covariance
# subid = id variable for subjects

# Load the Package
library(cIRT)

# Load the Data
data(trial_matrix)
data(choice_matrix)

# Thurstone design matrices
all_nopractice = subset(all_data_trials, experiment_loop.thisN > -1)
hard_items = choice_matrix$hard_q_id
easy_items = choice_matrix$easy_q_id

D_easy = model.matrix(~ -1 + factor(easy_items))
D_hard = -1 * model.matrix(~ -1 + factor(hard_items))[, -c(5, 10, 15)]

# Defining effect-coded contrasts
high_contrasts = rbind(-1, diag(4))
rownames(high_contrasts) = 12:16
low_contrasts = rbind(-1, diag(2))
rownames(low_contrasts) = 4:6

# Creating high & low factors
high = factor(choice_matrix[, 'high_value'])
low = factor(choice_matrix[, 'low_value'])
contrasts(high) = high_contrasts
contrasts(low) = low_contrasts

fixed_effects = model.matrix(~ high + low)
fixed_effects_base = fixed_effects[, 1]
fixed_effects_int = model.matrix(~ high * low)

# Model with Thurstone D Matrix
system.time({
  out_model_thurstone = cIRT(
    choice_matrix[, 'subject_id'],
    cbind(fixed_effects[, -1], D_easy, D_hard),
    # Add more arguments as needed
  )
})
```
direct_sum

Computes the direct sum of all matrices passed in via the list.
Usage
direct_sum(x)

Arguments
x A field<matrix> or list containing matrices

Details
Consider matrix \(A (M \times N) \) and \(B (K \times P) \). A direct sum is a diagonal matrix \(A(+)B \) with dimensions \((m + k)x(n + p)\).

Value
Matrix containing the direct sum of all matrices in the list.

Author(s)
James Joseph Balamuta

Examples

```r
x = list(matrix(0, nrow = 5, ncol = 3),
        matrix(1, nrow = 5, ncol = 3))
direct_sum(x)

x = list(matrix(rnorm(15), nrow = 5, ncol = 3),
        matrix(rnorm(30), nrow = 5, ncol = 6),
        matrix(rnorm(18), nrow = 2, ncol = 9))
direct_sum(x)
```

Generate_Choice
Generate Observed Data from choice model

Description
Generates observed cognitive and choice data from the IRT-Thurstone model.

Usage
Generate_Choice(
 N,
 J,
 K,
 theta,
 as,
 bs,
Generate_Choice

zeta,
gamma,
x,
W,
subject_ids,
unique_subject_ids
)

Arguments

N An integer for the number of observations.
J An integer for the number of items.
K An integer for the number of paired comparisons.
theta A vector of latent cognitive variables.
as A vector of length J with item discriminations.
bs A vector of length J with item locations.
zeta A matrix with dimensions N x V containing random parameter estimates.
gamma A vector with dimensions P x 1 containing fixed parameter estimates, where \(P = P_1 + P_2 \)
X A matrix with dimensions N*K x P_1 containing fixed effect design matrix without theta.
W A matrix with dimensions N*K x V containing random effect variables.
subject_ids A vector with length NK x 1 containing subject-choice IDs.
unique_subject_ids A vector with length N x 1 containing unique subject IDs.

Value

A list that contains:

Y A matrix of dimension N by J
C A vector of length NK

Author(s)

Steven Andrew Culpepper and James Joseph Balamuta
payout_matrix Payout Matrix Data

Description
This data set contains the payout information for each subject.

Usage
payout_matrix

Format
A data frame with 252 observations on the following 4 variables.
- Participant Subject ID
- cum_sum Sum of all payouts
- num_correct_choices Total number of correct choices (out of 15)
- num_correct_trials Total number of correct trials (out of 30)

Author(s)
Steven Andrew Culpepper and James Joseph Balamuta

Source
Choice38 Experiment at UIUC during Spring 2014 - Fall 2014

probitHLM Probit Hierarchical Level Model

Description
Performs modeling procedure for a Probit Hierarchical Level Model.

Usage
probitHLM(
unique_subject_ids,
subject_ids,
choices_nk,
fixed_effects_design,
rv_effects_design,
B_elem_plus1,
gamma,
probitHLM
beta, theta, zeta_rv, WtW, Z_c, Wzeta_0, inv_Sigma_gamma, mu_gamma, Sigma_zeta_inv, S0, mu_beta, sigma_beta_inv

Arguments

unique_subject_ids
A vector with length N x 1 containing unique subject IDs.

subject_ids
A vector with length N*K x 1 containing subject IDs.

choices_nk
A vector with length N*K x 1 containing subject choices.

fixed_effects_design
A matrix with dimensions N*K x P containing fixed effect variables.

rv_effects_design
A matrix with dimensions N*K x V containing random effect variables.

B_elem_plus1
A V[[1]] dimensional column vector indicating which zeta_i relate to theta_i.

gamma
A vector with dimensions P x 1 containing fixed parameter estimates.

beta
A vector with dimensions P x 1 containing random parameter estimates.

theta
A vector with dimensions N x 1 containing subject understanding estimates.

zeta_rv
A matrix with dimensions N x V containing random parameter estimates.

WtW
A field<matrix> P x P x N contains the caching for direct sum.

Z_c
A vector with dimensions N*K x 1

Wzeta_0
A vector with dimensions N*K x 1

inv_Sigma_gamma
A matrix with dimensions P x P that is the prior inverse sigma matrix for gamma.

mu_gamma
A vector with length P x 1 that is the prior mean vector for gamma.

Sigma_zeta_inv
A matrix with dimensions V x V that is the prior inverse sigma matrix for zeta.

S0
A matrix with dimensions V x V that is the prior sigma matrix for zeta.

mu_beta
A vector with dimensions P x 1, that is the mean of beta.

sigma_beta_inv
A matrix with dimensions P x P, that is the inverse sigma matrix of beta.

Details
The function is implemented to decrease the amount of vectorizations necessary.
Value

A list that contains:
- \(\zeta_1 \) A vector of length \(N \)
- \(\sigma_{\zeta_1}^{-1} \) A matrix of dimensions \(V \times V \)
- \(\gamma_1 \) A vector of length \(P \)
- \(\beta_1 \) A vector of length \(V \)
- \(B \) A matrix of length \(V \)

Author(s)

Steven Andrew Culpepper and James Joseph Balamuta

See Also

`riwishart()` and `TwoPLChoicemcmc()`

riwishart

Generate Random Inverse Wishart Distribution

Description

Creates a random inverse wishart distribution when given degrees of freedom and a sigma matrix.

Usage

```r
riwishart(df, S)
```

Arguments

- `df` An integer that represents the degrees of freedom. (> 0)
- `S` A matrix with dimensions \(m \times m \) that provides Sigma, the covariance matrix.

Value

A matrix that is an inverse wishart distribution.

Author(s)

James Joseph Balamuta

See Also

`riwishart()` and `TwoPLChoicemcmc()`

Examples

```r
# Call with the following data:
riwishart(3, diag(2))
```
rmvnorm

Generate Random Multivariate Normal Distribution

Description

Creates a random Multivariate Normal when given number of obs, mean, and sigma.

Usage

rmvnorm(n, mu, S)

Arguments

n An integer, which gives the number of observations. (> 0)
mu A vector length m that represents the means of the normals.
S A matrix with dimensions m x m that provides Sigma, the covariance matrix.

Value

A matrix that is a Multivariate Normal distribution.

Author(s)

James Joseph Balamuta

See Also

TwoPLChoicemcmc() and probitHLM()

Examples

Call with the following data:
rmvnorm(2, c(0,0), diag(2))

rwishart

Generate Random Wishart Distribution

Description

Creates a random wishart distribution when given degrees of freedom and a sigma matrix.

Usage

rwishart(df, S)
Arguments

- `df` An integer, which gives the degrees of freedom of the Wishart. (> 0)
- `S` A matrix with dimensions m x m that provides Sigma, the covariance matrix.

Value

A matrix that is a Wishart distribution, aka the sample covariance matrix of a Multivariate Normal Distribution

Author(s)

James Joseph Balamuta

See Also

`riwishart()` and `probitHLM()`

Examples

```r
# Call with the following data:
riwishart(3, diag(2))

# Validation
set.seed(1337)
S = toeplitz((10:1)/10)
n = 10000
o = array(dim = c(10, 10, n))
for(i in 1:n){
o[,,i] = riwishart(20, S)
}
mR = apply(o, 1:2, mean)
Va = 20*(S^2 + tcrossprod(diag(S)))
vR = apply(o, 1:2, var)
stopifnot(all.equal(vR, Va, tolerance = 1/16))
```

survey_data
Survey Data

Description

This data set contains the subject's responses survey questions administered using Choice38.

Usage

`survey_data`
Total_Tabulate

Format
A data frame with 102 observations on the following 2 variables.

- id Subject's Assigned Research ID
- sex Subject's sex:
 - Male
 - Female

Author(s)
Steven Andrew Culpepper and James Joseph Balamuta

Source
Choice38 Experiment at UIUC during Spring 2014 - Fall 2014

Total_Tabulate Calculate Tabulated Total Scores

Description
Internal function to -2LL

Usage
Total_Tabulate(N, J, Y)

Arguments
- N An integer, which gives the number of observations. (> 0)
- J An integer, which gives the number of items. (> 0)
- Y A N by J matrix of item responses.

Value
A vector of tabulated total scores.

Author(s)
Steven Andrew Culpepper
Description

This data set contains the subject’s responses to items. Correct answers are denoted by 1 and incorrect answers are denoted by 0.

Usage

trial_matrix

Format

A data frame with 252 observations on the following 30 variables.

- **t1** Subject’s Response to Item 1.
- **t2** Subject’s Response to Item 2.
- **t3** Subject’s Response to Item 3.
- **t4** Subject’s Response to Item 4.
- **t5** Subject’s Response to Item 5.
- **t6** Subject’s Response to Item 6.
- **t7** Subject’s Response to Item 7.
- **t8** Subject’s Response to Item 8.
- **t9** Subject’s Response to Item 9.
- **t10** Subject’s Response to Item 10.
- **t11** Subject’s Response to Item 11.
- **t12** Subject’s Response to Item 12.
- **t13** Subject’s Response to Item 13.
- **t14** Subject’s Response to Item 14.
- **t15** Subject’s Response to Item 15.
- **t16** Subject’s Response to Item 16.
- **t17** Subject’s Response to Item 17.
- **t18** Subject’s Response to Item 18.
- **t19** Subject’s Response to Item 19.
- **t20** Subject’s Response to Item 20.
- **t21** Subject’s Response to Item 21.
- **t22** Subject’s Response to Item 22.
- **t23** Subject’s Response to Item 23.
- **t24** Subject’s Response to Item 24.
TwoPLChoicemcmc

 t25 Subject’s Response to Item 25.
 t26 Subject’s Response to Item 26.
 t27 Subject’s Response to Item 27.
 t28 Subject’s Response to Item 28.
 t29 Subject’s Response to Item 29.
 t30 Subject’s Response to Item 30.

Author(s)

Steven Andrew Culpepper and James Joseph Balamuta

Source

Choice38 Experiment at UIUC during Spring 2014 - Fall 2014

TwoPLChoicemcmc Two Parameter Choice IRT Model MCMC

Description

Performs an MCMC routine for a two parameter IRT Model using Choice Data

Usage

TwoPLChoicemcmc(
 unique_subject_ids,
 subject_ids,
 choices_nk,
 fixed_effects,
 B,
 rv_effects_design,
 gamma,
 beta,
 zeta_rv,
 Sigma_zeta_inv,
 Y,
 theta0,
 a0,
 b0,
 mu_xi0,
 Sig_xi0
)
TwoPLChoiceMCMC

Arguments

unique_subject_ids
A vector with length $N \times 1$ containing unique subject IDs.

subject_ids
A vector with length $NK \times 1$ containing subject IDs.

choices_nk
A vector with length $NK \times 1$ containing subject choices.

fixed_effects
A matrix with dimensions $NK \times P_1$ containing fixed effect design matrix without theta.

B
A V dimensional column vector relating θ_i and ζ_i.

rv_effects_design
A matrix with dimensions $NK \times V$ containing random effect variables.

gamma
A vector with dimensions $P \times 1$ containing fixed parameter estimates, where $P = P_1 + P_2$.

beta
A vector with dimensions P_2 containing random parameter estimates.

zeta_rv
A matrix with dimensions $N \times V$ containing random parameter estimates.

Sigma_zeta_inv
A matrix with dimensions $P_2 \times P_2$.

Y
A matrix of dimensions $N \times J$ for Dichotomous item responses

theta0
A vector of length $N \times 1$ for latent theta.

a0
A vector of length J for item discriminations.

b0
A vector of length J for item locations.

mu_xi0
A vector of dimension 2 (i.e. c(0,1)) that is a prior for item parameter means.

Sig_xi0
A matrix of dimension $2x2$ (i.e. diag(2)) that is a prior for item parameter vc matrix.

Value

A list that contains:

ai1
A vector of length J

bi1
A vector of length J

theta1
A vector of length N

Z_c
A matrix of length NK

Wzeta_0
A matrix of length NK

Author(s)

Steven Andrew Culpepper and James Joseph Balamuta

See Also

cIRT(), rmvnorm(), and riwishart()
Examples

Not run:
Call with the following data:
TwoPLChoicemcmc(cogDAT, theta0, a0, b0, mu_xi0, Sig_xi0)

End(Not run)
Index

*Topic datasets
 choice_matrix, 4
 payout_matrix, 10
 survey_data, 14
 trial_matrix, 16
 PACKAGE (cIRT-package), 2

center_matrix, 3
center_matrix(), 5
choice_matrix, 4
cIRT, 4
cIRT(), 3, 18
cIRT-package, 2
direct_sum, 7

Generate_CHOice, 8

payout_matrix, 10
probitHLM, 10
probitHLM(), 5, 13, 14

riwishart, 12
riwishart(), 5, 14, 18
rmvnorm, 13
rmvnorm(), 5, 18
rwishart, 13
rwishart(), 5, 12

survey_data, 14

Total_Tabulate, 15
trial_matrix, 16
TwoPLChoicemcmc, 17
TwoPLChoicemcmc(), 5, 12, 13