Package ‘cNORM’

May 22, 2023

Type Package
Title Continuous Norming
Version 3.0.3
Maintainer Wolfgang Lenhard <wolfgang.lenhard@uni-wuerzburg.de>
Date 2023-05-22
Description Conventional methods for producing standard scores or percentiles in psychometrics or biometrics are often plagued with ‘jumps’ or ‘gaps’ (i.e., discontinuities) in norm tables and low confidence for assessing extreme scores. The continuous norming method introduced by A. Lenhard et al. (2016, <doi:10.1177/1073191116665437>); 2019, <doi:10.1371/journal.pone.0222279>; 2021 <doi:10.1177/0013164420928457>) estimates percentile development (e.g. over age) and generates continuous test norm scores on the basis of the raw data from standardization samples, without requiring assumptions about the distribution of the raw data: Norm scores are directly established from raw data by modeling the latter ones as a function of both percentile scores and an explanatory variable (e.g., age). The method minimizes bias arising from sampling and measurement error, while handling marked deviations from normality, addressing bottom or ceiling effects and capturing almost all of the variance in the original norm data sample. It includes procedures for post stratification of norm samples to overcome bias in data collection and to mitigate violations of representativeness. An online demonstration is available via <https://cnorm.shinyapps.io/cNORM/>.

Depends R (>= 4.0.0)
Imports lattice (>= 0.20), leaps (>= 3.0), latticeExtra (>= 0.6)
Suggests knitr, shiny, shinyCSSloaders, foreign, readxl, rmarkdown, testthat
License AGPL-3
VignetteBuilder knitr
RoxygenNote 7.2.3
NeedsCompilation no
Repository CRAN
Encoding UTF-8
LazyData true

BugReports https://github.com/WLenhard/cNORM/issues

Author Alexandra Lenhard [aut] (<https://orcid.org/0000-0001-8680-4381>), Wolfgang Lenhard [cre, aut] (<https://orcid.org/0000-0002-8184-6889>), Sebastian Gary [aut], WPS publisher [fnd] (<https://www.wpspublish.com/>)

Date/Publication 2023-05-22 15:00:02 UTC

R topics documented:

bestModel ... 3
buildFunction .. 6
calcPolyInL .. 6
calcPolyInL.Base 7
calcPolyInL.Base2 7
CDC ... 8
checkConsistency 9
checkWeights .. 10
cnorm ... 11
cnorm.cv ... 13
cNORM.GUI .. 16
computePowers ... 16
computeWeights ... 18
derivationTable ... 19
derive ... 20
effe ... 21
epm .. 22
getGroups ... 23
getNormCurve .. 24
getNormScoreSE 25
life .. 26
modelSummary .. 27
mortality .. 27
normTable .. 28
plot.cnorm .. 30
plotCnorm ... 31
plotDensity ... 31
plotDerivative ... 32
plotNorm ... 33
plotNormCurves .. 34
plotPercentiles .. 36
plotPercentileSeries 37
plotRaw ... 38
bestModel

Retrieve the best fitting regression model based on powers of A, L and interactions

Description

The function computes a series of regressions with an increasing number of predictors and takes the best fitting model per step. The aim is to find a model with as few predictors as possible, which at the same time manages to explain as much variance as possible from the original data. In psychometric test construction, this approach can be used to smooth the data and eliminate noise from norm sample stratification, while preserving the overall diagnostic information. Values around $R^2 = .99$ usually show excellent results. The selection of the model can either be based on the number of terms in the regression functions or the share of explained variance of the model (R^2). If both are specified, first the method tries to select the model based on the number of terms and in case, this does not work, use R^2 instead. Pushing R^2 by setting the number of terms, the R^2 cut off and k to high values might lead to an over-fit, so be careful! These parameters depend on the distribution of the norm data. As a rule of thumb, terms = 5 or $R^2 = .99$ and $k = 4$ is a good starting point for the analyses. `plotSubset(model)` can be used to weigh up R^2 and information criteria (Cp, an AIC like measure) and fitted versus manifest scores can be plotted with `plotRaw`, `plotNorm` and `plotPercentiles`. Use `checkConsistency(model)` to check the model for violations. `cnorm.cv` can help in identifying the ideal number of predictors.
Usage

bestModel(
 data,
 raw = NULL,
 R2 = NULL,
 k = NULL,
 t = NULL,
 predictors = NULL,
 terms = 0,
 weights = NULL,
 force.in = NULL,
 plot = TRUE
)

Arguments

data The preprocessed dataset, which should include the variables 'raw' and the powers and interactions of the norm score (L = Location; usually T scores) and an explanatory variably (usually age = A)

raw the name of the raw score variable (default raw)

R2 Adjusted R square as a stopping criterion for the model building (default R2 = 0.99)

k The power constant. Higher values result in more detailed approximations but have the danger of over-fit (default = 4, max = 6)

t the age power parameter (default NULL). If not set, cNORM automatically uses k. The age power parameter can be used to specify the k to produce rectangular matrices and specify the course of scores per independently from k

predictors List of the names of predictors or regression formula to use for the model selection. The parameter overrides the ‘k’ parameter and it can be used to preselect the variables entering the regression, or even to add variables like sex, that are not part of the original model building. Please note, that adding other variables than those based on L and A, plotting, prediction and normTable function will most likely not work, but at least the regression formula can be obtained that way. The parameter as well accepts a formula object, f. e. when applying a precomputed model to a new dataset. In this case, k is as well overridden. In order to include all predictors in the regression, you might want to adjust the terms parameter to the number of predictors as well.

terms Selection criterion for model building. The best fitting model with this number of terms is used

weights Optional vector with weights for the single cases. By default, if data has been weighting in ranking, these weights are reused here as well. Please set to FALSE to deactivate this behavior. All weights have to be positive and no missings are allowed. Otherwise the weights will be ignored.

force.in List of variable names forced into the regression function. This option can be used to force the regression to include covariates like sex or other background variables. This can be used to model separate norm scales for different groups
in order the sample. Variables specified here, that are not part of the initial regression function resp. list of predictors, are ignored without further notice and thus do not show up in the final result. Additionally, all other functions like norm table generation and plotting are so far not yet prepared to handle covariates.

plot
If set to TRUE (default), the percentile plot of the model is shown

Value
The model meeting the R2 criteria with coefficients and variable selection in model$coefficients. Use plotSubset(model) and plotPercentiles(data, model) to inspect model

See Also
plotSubset, plotPercentiles, plotPercentileSeries, checkConsistency

Other model: checkConsistency(), cnorm.cv(), derive(), modelSummary(), print.cnorm(), printSubset(), rangeCheck(), regressionFunction(), summary.cnorm()

Examples

```r
## Not run:
# Standard example with sample data
normData <- prepareData(elfe)
model <- bestModel(normData)
plotSubset(model)
plotPercentiles(normData, model)

# It is possible to specify the variables explicitly - useful to smuggle
# in variables like sex
preselectedModel <- bestModel(normData, predictors = c("L1", "L3", "L1A3", "A2", "A3"))
print(regressionFunction(preselectedModel))

# Example for modeling based on continuous age variable and raw variable,
# based on the CDC data. We use the default k=4 parameter; raw variable has
# to be set to "bmi".
bmi.data <- prepareData(CDC, raw = "bmi", group = "group", age = "age")
bmi.model <- bestModel(bmi.data, raw = "bmi")
printSubset(bmi.model)

# Use the formula of the pre calculated bmi data to compute models for girls and
# boys seperately
bmi.model.boys <- bestModel(bmi.data[bmi.data$sex == 1, ], predictors = bmi.model$terms)
bmi.model.girls <- bestModel(bmi.data[bmi.data$sex == 2, ], predictors = bmi.model$terms)

# Custom list of predictors (based on k = 3) and forcing in the sex variable
# While calculating the regression model works well, all other functions like
# plotting and norm table generation are not yet prepared to use covariates
bmi.sex <- bestModel(bmi.data, raw = "bmi", predictors = c("L1", "L2", "L3",
"radial", "height", "weight", "waist", "hip", "bodymass", "bmi", "sex", "group", "age"))
```

```
calcPolyInL

Internal function for retrieving regression function coefficients at specific age

Description

The function is an inline for searching zeros in the inverse regression function. It collapses the regression function at a specific age and simplifies the coefficients.

Usage

calcPolyInL(raw, age, model)

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>raw</td>
<td>The raw value (subtracted from the intercept)</td>
</tr>
<tr>
<td>age</td>
<td>The age</td>
</tr>
<tr>
<td>model</td>
<td>The cNORM regression model</td>
</tr>
</tbody>
</table>
**calcPolyInLBase**

**Value**

The coefficients

---

**Description**

The function is an inline for searching zeros in the inverse regression function. It collapses the regression function at a specific age and simplifies the coefficients.

**Usage**

calcPolyInLBase(raw, age, coeff, k)

**Arguments**

- **raw**
  The raw value (subtracted from the intercept)
- **age**
  The age
- **coeff**
  The cNORM regression model coefficients
- **k**
  The cNORM regression model power parameter

**Value**

The coefficients

---

**calcPolyInLBase2**

*Internal function for retrieving regression function coefficients at specific age (optimized)*

**Description**

The function is an inline for searching zeros in the inverse regression function. It collapses the regression function at a specific age and simplifies the coefficients. Optimized version of the prior 'calcPolyInLBase'

**Usage**

calcPolyInLBase2(raw, age, coeff, k)
Arguments

raw  The raw value (subtracted from the intercept)
age  The age
coeff The cNORM regression model coefficients
k    The cNORM regression model power parameter

Value

The coefficients

Description

By the courtesy of the Center of Disease Control (CDC), cNORM includes human growth data for children and adolescents age 2 to 25 that can be used to model trajectories of the body mass index and to estimate percentiles for clinical definitions of under- and overweight. The data stems from the NHANES surveys in the US and was published in 2012 as public domain. The data was cleaned by removing missing values and it includes the following variables from or based on the original dataset.

Usage

CDC

Format

A data frame with 45053 rows and 7 variables:
age  continuous age in years, based on the month variable
group age group; chronological age in years at the time of examination
month chronological age in month at the time of examination
sex   sex of the participant, 1 = male, 2 = female
height height of the participants in cm
weight weight of the participants in kg
bmi   the body mass index, computed by (weight in kg)/(height in m)^2

A data frame with 45035 rows and 7 columns

Source

https://www.cdc.gov/nchs/nhanes/index.htm
References


checkConsistency

Check the consistency of the norm data model

Description

While abilities increase and decline over age, within one age group, the norm scores always have to show a linear increase or decrease with increasing raw scores. Violations of this assumption are a strong indication for problems in modeling the relationship between raw and norm scores. There are several reasons, why this might occur:

1. Vertical extrapolation: Choosing extreme norm scores, e. g. values -3 <= x and x >= 3 In order to model these extreme values, a large sample dataset is necessary.
2. Horizontal extrapolation: Taylor polynomials converge in a certain radius. Using the model values outside the original dataset may lead to inconsistent results.
3. The data cannot be modeled with Taylor polynomials, or you need another power parameter (k) or R2 for the model.

In general, extrapolation (point 1 and 2) can carefully be done to a certain degree outside the original sample, but it should in general be handled with caution.

Usage

checkConsistency(model,
               minAge = NULL,
               maxAge = NULL,
               minNorm = NULL,
               maxNorm = NULL,
               minRaw = NULL,
               maxRaw = NULL,
               stepAge = 1,
               stepNorm = 1,
               warn = FALSE,
               silent = FALSE,
               covariate = NULL
             )

Arguments

model The model from the bestModel function or a cnorm object
minAge Age to start with checking
checkWeights

maxAge \quad \text{Upper end of the age check}
minNorm \quad \text{Lower end of the norm value range}
maxNorm \quad \text{Upper end of the norm value range}
minRaw \quad \text{clipping parameter for the lower bound of raw scores}
maxRaw \quad \text{clipping parameter for the upper bound of raw scores}
stepAge \quad \text{Stepping parameter for the age check, usually 1 or 0.1; lower values indicate higher precision / closer checks}
stepNorm \quad \text{Stepping parameter for the norm table check within age with lower scores indicating a higher precision. The choice depends of the norm scale used. With T scores a stepping parameter of 1 is suitable}
warn \quad \text{If set to TRUE, already minor violations of the model assumptions are displayed (default = FALSE)}
silent \quad \text{turn off messages}
covariate \quad \text{In case, a covariate has been used, please specify the degree of the covariate / the specific value here.}

Value

Boolean, indicating model violations (TRUE) or no problems (FALSE)

See Also

Other model: bestModel(), cnorm.cv(), derive(), modelSummary(), print.cnorm(), printSubset(), rangeCheck(), regressionFunction(), summary.cnorm()

Examples

result <- cnorm(raw = elfe$raw, group = elfe$group)
modelViolations <- checkConsistency(result,
  minAge = 2, maxAge = 5, stepAge = 0.1,
  minNorm = 25, maxNorm = 75, minRaw = 0, maxRaw = 28, stepNorm = 1
)
plotDerivative(result, minAge = 2, maxAge = 5, minNorm = 25, maxNorm = 75)
checkWeights(Weights)

Description

Check, if NA or values <= 0 occur and issue warning

Usage

checkWeights(weights)

Arguments

weights \quad \text{Raking weights}
Continuous Norming

Description

Conducts continuous norming in one step and returns an object including ranked raw data and the continuous norming model. Please consult the function description ‘ of ‘rankByGroup’, ‘rankBySlidingWindow’ and ‘bestModel’ for specifics of the steps in the data preparation and modeling process. In addition to the raw scores, either provide

- a numeric vector for the grouping information (group)
- a numeric age vector and the width of the sliding window (age, width)

for the ranking of the raw scores. You can adjust the grade of smoothing of the regression model by setting the k and terms parameter. In general, increasing k to more than 4 and the number of terms lead to a higher fit, while lower values lead to more smoothing. The power parameter for the age trajectory can be specified independently by ‘t’. If both parameters are missing, cnorm uses k = 5 and t = 3 by default.

Usage

```r
cnorm(
 raw = NULL,
 group = NULL,
 age = NULL,
 width = NA,
 weights = NULL,
 scale = "T",
 method = 4,
 descend = FALSE,
 k = NULL,
 t = NULL,
 terms = 0,
 R2 = NULL
)
```

Arguments

- **raw**: Numeric vector of raw scores
- **group**: Numeric vector of grouping variable, e.g. grade. If no group or age variable is provided, conventional norming is applied
- **age**: Numeric vector with chronological age, please additionally specify width of window
- **width**: Size of the moving window in case an age vector is used
- **weights**: Vector or variable name in the dataset with weights for each individual case. It can be used to compensate for moderate imbalances due to insufficient norm data stratification. Weights should be numerical and positive.
scale

type of norm scale, either T (default), IQ, z or percentile (= no transformation); a double vector with the mean and standard deviation can as well, be provided f. e. c(10, 3) for Wechsler scale index points

method

Ranking method in case of bindings, please provide an index, choosing from the following methods: 1 = Blom (1958), 2 = Tukey (1949), 3 = Van der Warden (1952), 4 = Rankit (default), 5 = Levenbach (1953), 6 = Filliben (1975), 7 = Yu & Huang (2001)

descend

ranking order (default descent = FALSE): inverses the ranking order with higher raw scores getting lower norm scores; relevant for example when norming error scores, where lower scores mean higher performance

k

The power constant. Higher values result in more detailed approximations but have the danger of over-fit (max = 6). If not set, it uses t and if both parameters are NULL, k is set to 5.

t

The age power parameter (max = 6). If not set, it uses k and if both parameters are NULL, k is set to 3, since age trajectories are most often well captured by cubic polynomials.

terms

Selection criterion for model building. The best fitting model with this number of terms is used

R2

Adjusted R square as a stopping criterion for the model building (default R2 = 0.99)

Value

cnorm object including the ranked raw data and the regression model

References


See Also

rankByGroup, rankBySlidingWindow, computePowers, bestModel
Examples

```r
Not run:
Using this function with the example dataset 'elfe'

cnorm(raw=elfe$raw)

Conventional norming (no modelling over age)

cnorm.elfe <- cnorm(raw = elfe$raw, group = elfe$group)

return norm tables including 90% confidence intervals for a
test with a reliability of r = .85; table are set to mean of quartal
in grade 3 (children completed 2 years of schooling)

normTable(c(2.125, 2.375, 2.625, 2.875), cnorm.elfe, CI = .90, reliability = .95)

... or instead of raw scores for norm scores, the other way round

rawTable(c(2.125, 2.375, 2.625, 2.875), cnorm.elfe, CI = .90, reliability = .95)

Using a continuous age variable instead of distinct groups, using a sliding
window for percentile estimation. Please specify continuos variable for age
and the sliding window size.

cnorm.ppvt.continuous <- cnorm(raw = ppvt$raw, age = ppvt$age, width=1)

In case of unbalanced datasets, deviating from the census, the norm data
can be weighted by the means of raking / post stratification. Please generate
the weights with the computeWeights() function and pass them as the weights
parameter. For computing the weights, please specify a data.frame with the
population margins (further information is available in the computeWeights
function). A demonstration based on sex and migration status in vocabulary
development (ppvt dataset):

margins <- data.frame(variables = c("sex", "sex",
 "migration", "migration"),
 levels = c(1, 2, 0, 1),
 share = c(.52, .48, .7, .3))

weights <- computeWeights(ppvt, margins)

model <- cnorm(raw = ppvt$raw, group=ppvt$group, weights = weights)
```

## End(Not run)

---

cnorm.cv

Cross validation for term selection

Description

This function helps in selecting the number of terms for the model by doing repeated Monte Carlo
cross validation with 80 percent of the data as training data and 20 percent as the validation data.
The cases are drawn randomly but stratified by norm group. Successive models are retrieved with increasing number of terms and the RMSE of raw scores (fitted by the regression model) is plotted for the training, validation and the complete dataset. Additionally to this analysis on the raw score level, it is possible (default) to estimate the mean norm score reliability and crossfit measures. For this, please set the norms parameter to TRUE. Due to the high computational load when computing norm scores, it takes time to finish when doing repeated cv or comparing models up to the maximum number of terms. When using the cv = “full” option, the ranking is done for the test and validation dataset separately (always based on T scores), resulting in a complete cross validation. In order to only validate the modeling, you as well can use a pre-ranked data set with prepareData(elfe) already applied. In this case, the training and validation data is drawn from the already ranked data and the scores for the validation set should improve. It is however no independent test, as the ranking between both samples is interlinked. In the output, you will get RMSE for the raw score models, norm score R2 and delta R2, the crossfit and the norm score SE sensu Oosterhuis, van der Ark, & Sijtsma (2016). For assessing, if a model over-fits the data and to what extent, we need cross-validation. We assumed that an overfitting occurred when a model captures more variance of the observed norm scores of the training sample compared to the captured variance of the norm scores of the validation sample. The overfit can therefore be described as:

$$ \text{CROSSFIT} = \frac{R(\text{Training}; \text{Model})^2}{R(\text{Validation}; \text{Model})^2} $$

A CROSSFIT higher than 1 is a sign of overfitting. Value lower than 1 indicate an underfit due to a suboptimal modeling procedure, i. e. the method may not have captured all the variance of the observed data it could possibly capture. Values around 1 are ideal, as long as the raw score RMSE is low and the norm score validation R2 reaches high levels. As a suggestion for real tests:

- Use visual inspection of the percentiles with plotPercentiles or plotPercentileSeries
- Combine the visual inspection of the percentiles with a repeated cross validation (e. g. 10 repetitions)
- Focus on low raw score RMSE, high norm score R2 in the validation dataset and avoid a number of terms with a high overfit (e. g. crossfit > 1.1).

Usage

```r
cnorm.cv(
data,
formula = NULL,
repetitions = 5,
norms = TRUE,
min = 1,
max = 12,
cv = "full",
pCutoff = NA,
width = NA,
raw = NA,
group = NA,
age = NA
)
```
Arguments

data: data frame of norm sample with ranking, powers and interaction of L and A or a cnorm object.

formula: prespecified formula, e.g. from an existing regression model; min and max functions will be ignored. In case a cnorm object is used, this function automatically draws on the formula of the inbuilt regression function.

repetitions: number of repetitions for cross validation.

norms: determine norm score crossfit and R2 (if set to TRUE). The option is computationally intensive and duration increases with sample size, number of repetitions and maximum number of terms (max option).

min: Minimum number of terms to start from, default = 1.

max: Maximum number of terms in model up to $2^*k + k^2$.

cv: If set to full (default), the data is split into training and validation data and ranked afterwards, otherwise, a pre ranked dataset has to be provided, which is then split into train and validation (and thus only the modeling, but not the ranking is independent).

pCutoff: The function checks the stratification for unbalanced data sampling. It performs a t-test per group. pCutoff specifies the p-value per group that the test result has to reach at least. To minimize beta error, the value is set to .2 per default.

width: If provided, ranking is done via rankBySlidingWindow, otherwise by group.

raw: Name of the raw variable.

group: Name of the grouping variable.

age: Name of the age variable.

Value

table with results per term number, including RMSE for raw scores in training, validation and complete sample, R2 for the norm scores and the crossfit measure ($1 =$ ideal, $<1 =$ underfit, $>1 =$ overfit).

References


See Also

Other model: bestModel(), checkConsistency(), derive(), modelSummary(), print.cnorm(), printSubset(), rangeCheck(), regressionFunction(), summary.cnorm()

Examples

# plot cross validation RMSE by number of terms up to 9 with three repetitions
data <- prepareData(elfe)
cnorm.cv(data, min = 3, max = 7, norms = FALSE)
# cross validate prespecified formula
# here, we will use the formula from a model to cross validate it and to retrieve norm RMSE
# own regression functions can of course be used as well
# result <- cnorm(raw = efe$raw, group = elfe$group)
# cnorm.cv(result, repetitions = 5)

---

cNORM.GUI

**Launcher for the graphical user interface of cNORM**

---

### Description

Launcher for the graphical user interface of cNORM

### Usage

cNORM.GUI(launch.browser = TRUE)

### Arguments

- **launch.browser**  
  Default TRUE; automatically open browser for GUI

### Examples

```r
Not run:
Launch graphical user interface
cNORM.GUI()
End(Not run)
```

---

computePowers

**Compute powers of the explanatory variable a as well as of the person location l (data preparation)**

---

### Description

The function computes powers of the norm variable e.g. T scores (location, L), an explanatory variable, e.g. age or grade of a data frame (age, A) and the interactions of both (L X A). The k variable indicates the degree up to which powers and interactions are build. These predictors can be used later on in the `bestModel` function to model the norm sample. Higher values of k allow for modeling the norm sample closer, but might lead to over-fit. In general k = 3 or k = 4 (default) is sufficient to model human performance data. For example, k = 2 results in the variables L1, L2, A1, A2, and their interactions L1A1, L2A1, L1A2 and L2A2 (but k = 2 is usually not sufficient for the modeling). Please note, that you do not need to use a normal rank transformed scale like T or IQ, but you can as well use the percentiles for the ‘normValue’ as well.
computePowers

Usage

computePowers(
  data,
  k = 4,
  norm = NULL,
  age = NULL,
  t = NULL,
  covariate = NULL,
  silent = FALSE
)

Arguments

data  data.frame with the norm data
k    degree
norm the variable containing the norm data in the data.frame; might be T scores, IQ
      scores, percentiles ...
age Explanatory variable like age or grade, which was as well used for the grouping.
     Can be either the grouping variable itself or a finer grained variable like the
     exact age. Other explanatory variables can be used here instead an age variable
     as well, as long as the variable is at least ordered metric, e.g. language or
     development levels ... The label 'age' is used, as this is the most common field
     of application.
t      the age power parameter (default NULL). If not set, cNORM automatically uses
     k. The age power parameter can be used to specify the k to produce rectangular
     matrices and specify the course of scores per independently from k
covariate Include a binary covariate into the preparation and subsequently modeling, ei-
            ther by specifying the variable name or including the variable itself. If this
            has already been done in the ranking, the function uses the according variable.
            BEWARE! Not all subsequent functions are already prepared for it. It is an
            experimental feature and may lead to unstable models subsequently.
silent set to TRUE to suppress messages

Value

data.frame with the powers and interactions of location and explanatory variable / age

See Also

bestModel

Other prepare: prepareData(), rankByGroup(), rankBySlidingWindow()

Examples

  # Dataset with grade levels as grouping
data.elfe <- rankByGroup(elfe)
data.elfe <- computePowers(data.elfe)
# Dataset with continuous age variable and k = 5
data.ppvt <- rankByGroup(ppvt)
data.ppvt <- computePowers(data.ppvt, age = "age", k = 5)

computeWeights (Weighting of cases through iterative proportional fitting (Raking))

**Description**

Computes and standardizes weights via raking to compensate for non-stratified samples. It is based on the implementation in the survey R package. It reduces data collection biases in the norm data by the means of post stratification, thus reducing the effect of unbalanced data in percentile estimation and norm data modeling.

**Usage**

```r
computeWeights(data, population.margins, standardized = TRUE)
```

**Arguments**

- **data**
  - data.frame with norm sample data.
- **population.margins**
  - A data.frame including three columns, specifying the variable name in the original dataset used for data stratification, the factor level of the variable and the according population share. Please ensure, the original data does not include factor levels, not present in the population.margins. Additionally, summing up the shares of the different levels of a variable should result in a value near 1.0. The first column must specify the name of the stratification variable, the second the level and the third the proportion.
- **standardized**
  - If TRUE (default), the raking weights are scaled to weights/min(weights)

**Details**

This function computes standardized raking weights to overcome biases in norm samples. It generates weights, by drawing on the information of population shares (e.g. for sex, ethnic group, region ...) and subsequently reduces the influence of over-represented groups or increases under-represented cases. The returned weights are either raw or standardized and scaled to be larger than 0.

Raking in general has a number of advantages over post stratification and it additionally allows cNORM to draw on larger datasets, since less cases have to be removed during stratification. To use this function, additionally to the data, a data frame with stratification variables has to be specified. The data frame should include a row with (a) the variable name, (b) the level of the variable and (c) the according population proportion.

**Value**

- a vector with the standardized weights
Examples

# cNORM features a dataset on vocabulary development (ppvt)
# that includes variables like sex or migration. In order
# to weight the data, we have to specify the population shares.
# According to census, the population includes 52% boys
# (factor level 1 in the ppvt dataset) and 70% / 30% of persons
# without / with a a history of migration (= 0 / 1 in the dataset).
# First we set up the population margins with all shares of the
# different levels:

margins <- data.frame(variables = c("sex", "sex",
                                          "migration", "migration"),
                      levels = c(1, 2, 0, 1),
                      share = c(.52, .48, .7, .3))
head(margins)

# Now we use the population margins to generate weights
# through raking

weights <- computeWeights(ppvt, margins)

# There are as many different weights as combinations of
# factor levels, thus only four in this specific case

unique(weights)

# To include the weights in the cNORM modelling, we have
# to pass them as weights. They are then used to set up
# weighted quantiles and as weights in the regression.

model <- cnorm(raw = ppvt$raw,
               group = ppvt$group,
               weights = weights)

---

derivationTable | Create a table based on first order derivative of the regression model for specific age

Description

In order to check model assumptions, a table of the first order derivative of the model coefficients is created.

Usage

derivationTable(A,
derive

model,  
minNorm = NULL,  
maxNorm = NULL,  
step = 0.1,  
covariate = NULL  
)

Arguments

A                the age  
model            The regression model or a cnorm object  
minNorm          The lower bound of the norm value range  
maxNorm          The upper bound of the norm value range  
step             Stepping parameter with lower values indicating higher precision  
covariate        In case, a covariate has been used, please specify the degree of the covariate /  
                 the specific value here.

Value

data.frame with norm scores and the predicted scores based on the derived regression function

See Also

plotDerivative, derive  
Other predict: getNormCurve(), normTable(), predictNorm(), predictRaw(), rawTable()

Examples

# Generate cnorm object from example data  
 cnorm.elfe <- cnorm(raw = elfe$raw, group = elfe$group)  

# retrieve function for time point 6  
d <- derivationTable(6, cnorm.elfe, step = 0.5)

derive          Derivative of regression model

Description

Calculates the derivative of the location / norm value from the regression model with the first derivative as the default. This is useful for finding violations of model assumptions and problematic distribution features as f. e. bottom and ceiling effects, non-progressive norm scores within an age group or in general #“ intersecting percentile curves.
Usage

derive(model, order = 1, covariate = NULL)

Arguments

- **model**: The regression model or a cnorm object
- **order**: The degree of the derivate, default: 1
- **covariate**: In case, a covariate has been used, please specify the degree of the covariate / the specific value here.

Value

The derived coefficients

See Also

Other model: bestModel(), checkConsistency(), cnorm.cv(), modelSummary(), print.cnorm(), printSubset(), rangeCheck(), regressionFunction(), summary.cnorm()

Examples

```r
normData <- prepareData(elfe)
m <- bestModel(normData)
derivedCoefficients <- derive(m)
```


date

Sentence completion test from ELFE 1-6

Description

A dataset containing the raw data of 1400 students from grade 2 to 5 in the sentence comprehension test from ELFE 1-6 (Lenhard & Schneider, 2006). In this test, students are presented lists of sentences with one gap. The student has to fill in the correct solution by selecting from a list of 5 alternatives per sentence. The alternatives include verbs, adjectives, nouns, pronouns and conjunctives. Each item stems from the same word type. The text is speeded, with a time cutoff of 180 seconds. The variables are as follows:

Usage

```
elfe
```
epm

Format
A data frame with 1400 rows and 3 variables:

personID  ID of the student

group  grade level, with x.5 indicating the end of the school year and x.0 indicating the middle of the school year

raw  the raw score of the student, spanning values from 0 to 28

A data frame with 1400 rows and 3 columns

Source
https://www.psychometrica.de/elfe2.html

References

Examples
# prepare data, retrieve model and plot percentiles
data.elfe <- prepareData(elfe)
model.elfe <- bestModel(data.elfe)
plotPercentiles(data.elfe, model.elfe)

epm  Simulated dataset (Educational and Psychological Measurement, EPM)

Description
A simulated dataset, based on the simRasch function. The data were generated on the basis of a 1PL IRT model with 50 items with a normal distribution and a mean difficulty of $m = 0$ and $sd = 1$ and 1400 cases. The age trajectory features a curve linear increase with a slight scissor effect. The sample consists of seven age groups with 200 cases each and it includes information on the latent ability, the age specific latent ability and norm scores based on conventional norming with differing granularity of the age brackets.

Usage
epm
**Format**

A data frame with 1400 rows and 10 variables:

- `raw` the raw score
- `ageSpecificZ` the age specific latent ability, z standardized
- `latentTrait` the overall latent trait with respect to the population model
- `age` the chronological age
- `halfYearGroup` grouping variable based on six month age brackets
- `spcnT` Resulting norm score of cNORM, based on the automatic model selection
- `T1` conventional T scores on the basis of one month age brackets
- `T3` conventional T scores on the basis of three month age brackets
- `T6` conventional T scores on the basis of six month age brackets
- `T12` conventional T scores on the basis of one year age brackets

A data frame with 1400 rows and 10 columns

**Source**

https://osf.io/ntydc/

**References**


**Examples**

```r
Not run:
Example with continuous age variable
data.epm <- prepareData(epm, raw=epm$raw, group=epm$halfYearGroup, age=epm$age)
model.epm <- bestModel(data.epm)
End(Not run)
```

---

**Description**

Helps to split the continuous explanatory variable into groups and assigns the group mean. The groups can be split either into groups of equal size (default) or equal number of observations.

**Usage**

```r
groups <- getGroups(x, n = NULL, equidistant = FALSE)
```
Arguments

- **x**: The continuous variable to be split
- **n**: The number of groups; if NULL then the function determines a number of groups with usually 100 cases or $3 \leq n \leq 20$.
- **equidistant**: If set to TRUE, builds equidistant interval, otherwise (default) with equal number of observations

Value

- vector with group means for each observation

Examples

```r
x <- rnorm(1000, m = 50, sd = 10)
m <- getGroups(x, n = 10)
```

**getNormCurve**

*Computes the curve for a specific T value*

Description

As with this continuous norming regression approach, raw scores are modeled as a function of age and norm score (location), getNormCurve is a straightforward approach to show the raw score development over age, while keeping the norm value constant. This way, e.g. academic performance or intelligence development of a specific ability is shown.

Usage

```r
getNormCurve(
 norm,
 model,
 minAge = NULL,
 maxAge = NULL,
 step = 0.1,
 minRaw = NULL,
 maxRaw = NULL,
 covariate = NULL
)
```

Arguments

- **norm**: The specific norm score, e.g. T value
- **model**: The model from the regression modeling or a cnorm object
- **minAge**: Age to start from
- **maxAge**: Age to stop at
The function `getNormScoreSE` calculates the standard error (SE) or root mean square error (RMSE) of the norm scores. In case of large datasets, both results should be almost identical.

### Description

Calculates the standard error (SE) or root mean square error (RMSE) of the norm scores. In case of large datasets, both results should be almost identical.

### Usage

```r
getNormScoreSE(model, type = 2)
```

### Arguments

- `model` a cnorm object
- `type` either '1' for the standard error sensu Oosterhuis et al. (2016) or '2' for the RMSE (default)

### Value

The standard error (SE) of the norm scores sensu Oosterhuis et al. (2016) or the RMSE.

### References

Description

The data is available by the courtesy of the World Bank under Creative Commons Attribution 4.0 (CC-BY 4.0). It includes the life expectancy at birth on nation level from 1960 to 2017. The data has been converted to long data format, aggregates for groups of nations and missings have been deleted and a grouping variable with a broader scope spanning 4 years each has been added. It shows, that it can be better to reduce predictors. The model does not converge anymore after using 8 predictors and the optimal solution is achieved with four predictors, equaling R^2=.9825.

Usage

life

Format

A data frame with 11182 rows and 4 variables:

- **Country** The name of the country
- **year** reference year of data collection
- **life** the life expectancy at birth
- **group** a grouping variable based on ‘year’ but with a lower resolution; spans intervals of 4 years each

A data frame with 11182 rows and 4 columns

Source

https://data.worldbank.org/indicator/sp.dyn.le00.in

References

The World Bank (2018). Life expectancy at birth, total (years). Data Source World Development Indicators available https://data.worldbank.org/indicator/sp.dyn.le00.in (date of retrieval: 01/09/2018)

Examples

```r
Not run:
data preparation
data.life <- rankByGroup(life, raw="life")
data.life <- computePowers(data.life, age="year")

#determining best suiting model by plotting series
model.life <- bestModel(data.life, raw="life")
plotPercentileSeries(data.life, model.life, end=10)
```
# model with four predictors seems to work best
model2.life <- bestModel(data.life, raw="life", terms=4)

## End(Not run)

## modelSummary

Prints the results and regression function of a cnorm model

**Description**

Prints the results and regression function of a cnorm model

**Usage**

```r
modelSummary(object, ...)
```

**Arguments**

- `object` A regression model or cnorm object
- `...` additional parameters

**Value**

A report on the regression function, weights, R2 and RMSE

**See Also**

Other model: `bestModel()`, `checkConsistency()`, `cnorm.cv()`, `derive()`, `print.cnorm()`, `printSubset()`, `rangeCheck()`, `regressionFunction()`, `summary.cnorm()`

---

**mortality**

*Mortality of infants per 1000 life birth from 1960 to 2017*

**Description**

The data is available by the courtesy of the World Bank under Creative Commons Attribution 4.0 (CC-BY 4.0). It includes the mortality rate of life birth per country from 1960 to 2017. The data has been converted to long data format, aggregates for groups of nations and missings have been deleted and a grouping variable with a broader scope spanning 4 years each has been added. It can be used for demonstrating intersecting percentile curves at bottom effects.

**Usage**

```r
mortality
```
Format

A data frame with 9547 rows and 4 variables:

Country  The name of the country
year     reference year of data collection
mortality the mortality per 1000 life born children
group    grouping variable based on 'year' with a lower resolution; spans intervals of 4 years each

Source

https://data.worldbank.org/indicator/SP.DYN.IMRT.IN

References


Examples

# data preparation
data.mortality <- rankByGroup(mortality, raw="mortality")
data.mortality <- computePowers(data.mortality, age="year")

# modeling
model.mortality <- bestModel(data.mortality, raw="mortality")
plotSubset(model.mortality, type = 0)
plotPercentileSeries(data.mortality, model.mortality, end=9, percentiles = c(.1, .25, .5, .75, .9))

dataFrame

Create a norm table based on model for specific age

Description

This function generates a norm table for a specific age based on the regression model by assigning raw scores to norm scores. Please specify the range of norm scores, you want to cover. A T value of 25 corresponds to a percentile of .6. As a consequence, specifying a range of T = 25 to T = 75 would cover 98.4 the population. Please be careful when extrapolating vertically (at the lower and upper end of the age specific distribution). Depending on the size of your standardization sample, extreme values with T < 20 or T > 80 might lead to inconsistent results. In case a confidence coefficient (CI, default .9) and the reliability is specified, confidence intervals are computed for the true score estimates, including a correction for regression to the mean (Eid & Schmidt, 2012, p. 272).
Usage

```r
normTable(
 A,
 model,
 minNorm = NULL,
 maxNorm = NULL,
 minRaw = NULL,
 maxRaw = NULL,
 step = NULL,
 covariate = NULL,
 monotonuous = TRUE,
 CI = 0.9,
 reliability = NULL,
 pretty = T
)
```

Arguments

- `A` the age as single value or a vector of age values
- `model` The regression model or a cnorm object
- `minNorm` The lower bound of the norm score range
- `maxNorm` The upper bound of the norm score range
- `minRaw` clipping parameter for the lower bound of raw scores
- `maxRaw` clipping parameter for the upper bound of raw scores
- `step` Stepping parameter with lower values indicating higher precision
- `covariate` In case, a covariate has been used, please specify the degree of the covariate / the specific value here.
- `monotonuous` corrects for decreasing norm scores in case of model inconsistencies (default)
- `CI` confidence coefficient, ranging from 0 to 1, default .9
- `reliability` coefficient, ranging between 0 to 1
- `pretty` Format table by collapsing intervals and rounding to meaningful precision

Value

either data.frame with norm scores, predicted raw scores and percentiles in case of simple A value or a list of norm tables if vector of A values was provided

References


See Also

- `rawTable`
- Other predict: `derivationTable()`, `getNormCurve()`, `predictNorm()`, `predictRaw()`, `rawTable()`
Examples

# Generate cnorm object from example data
cnorm.elfe <- cnorm(raw = elfe$raw, group = elfe$group)

# create single norm table
norms <- normTable(3.5, cnorm.elfe, minNorm = 25, maxNorm = 75, step = 0.5)

# create list of norm tables
norms <- normTable(c(2.5, 3.5, 4.5), cnorm.elfe,
                   minNorm = 25, maxNorm = 75,
                   step = 1, minRaw = 0, maxRaw = 26)

plot.cnorm S3 function for plotting cnorm objects

Description

S3 function for plotting cnorm objects

Usage

## S3 method for class 'cnorm'
plot(x, y, ...)

Arguments

x the cnorm object

y the type of plot as a string, can be one of 'raw' (1), 'norm' (2), 'curves' (3),
'percentiles' (4), 'series' (5), 'subset' (6), or 'derivative' (7), either as a string or
the according index

... additional parameters for the specific plotting function

See Also

Other plot: plotDensity(), plotDerivative(), plotNormCurves(), plotNorm(), plotPercentileSeries(),
plotPercentiles(), plotRaw(), plotSubset()
plotCnorm  General convencience plotting function

Description
General convencience plotting function

Usage
plotCnorm(x, y, ...)

Arguments

x  a cnorm object
y  the type of plot as a string, can be one of 'raw' (1), 'norm' (2), 'curves' (3), 'percentiles' (4), 'series' (5), 'subset' (6), or 'derivative' (7), either as a string or the according index
...  additional parameters for the specific plotting function

plotDensity  Plot the density function per group by raw score

Description
The function plots the density curves based on the regression model against the actual percentiles from the raw data. As in 'plotNormCurves', please check for inconsistent curves, especially curves showing implausible shapes as f. e. violations of biuniqueness.

Usage
plotDensity(
    model,
    minRaw = NULL,
    maxRaw = NULL,
    minNorm = NULL,
    maxNorm = NULL,
    group = NULL,
    covariate = NULL
)
plotDerivative

Arguments

model The model from the bestModel function or a cnorm object
minRaw Lower bound of the raw score
maxRaw Upper bound of the raw score
minNorm Lower bound of the norm score
maxNorm Upper bound of the norm score
group Column of groups to plot
covariate In case, a covariate has been used, please specify the degree of the covariate / the specific value here.

See Also

plotNormCurves, plotPercentiles

Other plot: plot.cnorm(), plotDerivative(), plotNormCurves(), plotNorm(), plotPercentileSeries(), plotPercentiles(), plotRaw(), plotSubset()

Examples

# Load example data set, compute model and plot results for age values 2, 4 and 6
result <- cnorm(raw = elfe$raw, group = elfe$group)
plotDensity(result, group = c(2, 4, 6))

plotDerivative Plot first order derivative of regression model

Description

Plots the scores obtained via the first order derivative of the regression model in dependence of the norm score. The results indicate the progression of the norm scores within each age group. The regression based modeling approach relies on the assumption of a linear progression of the norm scores. Negative scores in the first order derivative indicate a violation of this assumption. Scores near zero are typical for bottom and ceiling effects in the raw data. The regression models usually converge within the range of the original values. In case of vertical and horizontal extrapolation, with increasing distance to the original data, the risk of assumption violation increases as well. ATTENTION: plotDerivative is currently still incompatible with reversed raw score scales (’descent’ option)

Usage

plotDerivative(
  model,
  minAge = NULL,
  maxAge = NULL,
  minNorm = NULL,
  maxNorm = NULL,
plotNorm

\[
\begin{align*}
\text{stepAge} &= 0.2, \\
\text{stepNorm} &= 1, \\
\text{order} &= 1
\end{align*}
\]

Arguments

- **model**: The model from the bestModel function or a cnorm object
- **minAge**: Age to start with checking
- **maxAge**: Upper end of the age check
- **minNorm**: Lower end of the norm score range, in case of T scores, 25 might be good
- **maxNorm**: Upper end of the norm score range, in case of T scores, 25 might be good
- **stepAge**: Stepping parameter for the age check, usually 1 or 0.1; lower values indicate higher precision / closer checks
- **stepNorm**: Stepping parameter for norm scores
- **order**: Degree of the derivative (default = 1)

See Also

- checkConsistency, bestModel, derive

Other plot: plot.cnorm(), plotDensity(), plotNormCurves(), plotNorm(), plotPercentileSeries(), plotPercentiles(), plotRaw(), plotSubset()

Examples

```r
Load example data set, compute model and plot results
result <- cnorm(raw = elfe$raw, group = elfe$group)
plotDerivative(result, minAge=2, maxAge=5, step=.2, minNorm=25, maxNorm=75, stepNorm=1)
```

Description

The function plots the manifest norm score against the fitted norm score from the inverse regression model per group. This helps to inspect the precision of the modeling process. The scores should not deviate too far from regression line.

Usage

```r
plotNorm(data, model, group = "", minNorm = NULL, maxNorm = NULL, type = 0)
```
Arguments

- **data**: The raw data within a data.frame or a cnorm object
- **model**: The regression model (optional)
- **group**: The grouping variable, use empty string for no group
- **minNorm**: lower bound of fitted norm scores
- **maxNorm**: upper bound of fitted norm scores
- **type**: Type of display: 0 = plot manifest against fitted values, 1 = plot manifest against difference values

See Also

Other plot: `plot.cnorm()`, `plotDensity()`, `plotDerivative()`, `plotNormCurves()`, `plotPercentileSeries()`, `plotPercentiles()`, `plotRaw()`, `plotSubset()`

Examples

```r
Load example data set, compute model and plot results
Not run:
result <- cnorm(raw = elfe$raw, group = elfe$group)
plotNorm(result, group="group", minNorm=25, maxNorm=75)
End(Not run)
```

Description

The function plots the norm curves based on the regression model. Please check the function for inconsistent curves: The different curves should not intersect. Violations of this assumption are a strong indication for violations of model assumptions in modeling the relationship between raw and norm scores. There are several reasons, why this might occur:

1. Vertical extrapolation: Choosing extreme norm scores, e.g., scores -3 <= x and x >= 3 In order to model these extreme scores, a large sample dataset is necessary.
2. Horizontal extrapolation: Taylor polynomials converge in a certain radius. Using the model scores outside the original dataset may lead to inconsistent results.
3. The data cannot be modeled with Taylor polynomials, or you need another power parameter (k) or R2 for the model.

In general, extrapolation (point 1 and 2) can carefully be done to a certain degree outside the original sample, but it should in general be handled with caution. checkConsistency and derivationPlot can be used to further inspect the model.
Usage

```r
plotNormCurves(
 model,
 normList = NULL,
 minAge = NULL,
 maxAge = NULL,
 step = 0.1,
 minRaw = NULL,
 maxRaw = NULL,
 covariate = NULL
)
```

Arguments

- `model`: The model from the `bestModel` function or a `cnorm` object
- `normList`: Vector with norm scores to display
- `minAge`: Age to start with checking
- `maxAge`: Upper end of the age check
- `step`: Stepping parameter for the age check, usually 1 or 0.1; lower scores indicate higher precision / closer checks
- `minRaw`: Lower end of the raw score range, used for clipping implausible results (default = 0)
- `maxRaw`: Upper end of the raw score range, used for clipping implausible results
- `covariate`: In case, a covariate has been used, please specify the degree of the covariate / the specific value here.

See Also

- `checkConsistency`, `derivationPlot`, `plotPercentiles`
- Other plot: `plot.cnorm()`, `plotDensity()`, `plotDerivative()`, `plotNorm()`, `plotPercentileSeries()`, `plotPercentiles()`, `plotRaw()`, `plotSubset()`

Examples

```r
Load example data set, compute model and plot results
normData <- prepareData(elfe)
m <- bestModel(data = normData)
plotNormCurves(m, minAge=2, maxAge=5)
```
plotPercentiles

Plot norm curves against actual percentiles

Description

The function plots the norm curves based on the regression model against the actual percentiles from the raw data. As in 'plotNormCurves', please check for inconsistent curves, especially intersections. Violations of this assumption are a strong indication for problems in modeling the relationship between raw and norm scores. In general, extrapolation (point 1 and 2) can carefully be done to a certain degree outside the original sample, but it should in general be handled with caution. The original percentiles are displayed as distinct points in the according color, the model based projection of percentiles are drawn as lines. Please note, that the estimation of the percentiles of the raw data is done with the quantile function with the default settings. Please consult help(quantile) and change the 'type' parameter accordingly. In case, you get ‘jagged’ or disorganized percentile curve, try to reduce the ‘k’ parameter in modeling.

Usage

plotPercentiles(
  data,
  model,
  minRaw = NULL,
  maxRaw = NULL,
  minAge = NULL,
  maxAge = NULL,
  raw = NULL,
  group = NULL,
  percentiles = c(0.025, 0.1, 0.25, 0.5, 0.75, 0.9, 0.975),
  scale = NULL,
  type = 7,
  title = NULL,
  covariate = NULL
)

Arguments

data The raw data including the percentiles and norm scores or a cnorm object
model The model from the bestModel function (optional)
minRaw Lower bound of the raw score (default = 0)
maxRaw Upper bound of the raw score
minAge Variable to restrict the lower bound of the plot to a specific age
maxAge Variable to restrict the upper bound of the plot to a specific age
raw The name of the raw variable
group The name of the grouping variable; the distinct groups are automatically deter-
plotPercentileSeries  

percentiles Vector with percentile scores, ranging from 0 to 1 (exclusive) 
scale The norm scale, either 'T', 'IQ', 'z', 'percentile' or self defined with a double vector with the mean and standard deviation, e.g. c(10, 3) for Wechsler scale index points; if NULL, scale information from the data preparation is used (default) 
type The type parameter of the quantile function to estimate the percentiles of the raw data (default 7) 
title custom title for plot 
covariate In case, a covariate has been used, please specify the degree of the covariate / the specific value here. If no covariate is specified, both degrees will be plotted.

See Also

plotNormCurves, plotPercentileSeries

Other plot: plot.cnorm(), plotDensity(), plotDerivative(), plotNormCurves(), plotNorm(), plotPercentileSeries(), plotRaw(), plotSubset()

Examples

# Load example data set, compute model and plot results
result <- cnorm(raw = elfe$raw, group = elfe$group)
plotPercentiles(result)

plotPercentileSeries  Generates a series of plots with number curves by percentile for different models

Description

This function makes use of plotPercentiles to generate a series of plots with different number of predictors. It draws on the information provided by the model object to determine the bounds of the modeling (age and standard score range). It can be used as an additional model check to determine the best fitting model. Please have a look at the `plotPercentiles` function for further information.

Usage

plotPercentileSeries(
  data,
  model,
  start = 1,
  end = NULL,
  group = NULL,
  percentiles = c(0.025, 0.1, 0.25, 0.5, 0.75, 0.9, 0.975),
  type = 7,
  filename = NULL
)
Arguments

- **data**: The raw data including the percentiles and norm scores or a cnorm object.
- **model**: The model from the bestModel function (optional).
- **start**: Number of predictors to start with.
- **end**: Number of predictors to end with.
- **group**: The name of the grouping variable; the distinct groups are automatically determined.
- **percentiles**: Vector with percentile scores, ranging from 0 to 1 (exclusive).
- **type**: The type parameter of the quantile function to estimate the percentiles of the raw data (default 7).
- **filename**: Prefix of the filename. If specified, the plots are saves as png files in the directory of the workspace, instead of displaying them.

Value

The complete list of plots.

See Also

plotPercentiles

Other plot: plot.cnorm(), plotDensity(), plotDerivative(), plotNormCurves(), plotNorm(), plotPercentiles(), plotRaw(), plotSubset()

Examples

```r
Load example data set, compute model and plot results
result <- cnorm(raw = elfe$raw, group = elfe$group)
plotPercentileSeries(result, start=1, end=5, group="group")
```

Description

The function plots the raw data against the fitted scores from the regression model per group. This helps to inspect the precision of the modeling process. The scores should not deviate too far from regression line.

Usage

```r
plotRaw(data, model, group = NULL, raw = NULL, type = 0)
```
plotSubSet

Arguments

- **data**: The raw data within a data.frame or cnorm object
- **model**: The regression model (optional)
- **group**: The grouping variable
- **raw**: The raw score variable
- **type**: Type of display: 0 = plot manifest against fitted values, 1 = plot manifest against difference values

See Also

Other plots: `plot.cnorm()`, `plotDensity()`, `plotDerivative()`, `plotNormCurves()`, `plotNorm()`, `plotPercentileSeries()`, `plotPercentiles()`, `plotSubset()`

Examples

```r
Compute model with example dataset and plot results
result <- cnorm(raw = elfe$raw, group = elfe$group)
plotRaw(result)
```

Description

Plots the information criterion - either Cp (default) or BIC - against the adjusted R square of the feature selection in the modeling process. Both BIC and Mallow’s Cp are measures to avoid overfitting. Please choose the model that has a high information criterion, while modeling the original data as close as possible. R2 adjusted values of ~ .99 might work well, depending on your scenario. In other words: Look out for the elbow in the curve and choose the model where the information criterion begins to drop. Nonetheless, inspect the according model with `plotPercentiles(data, group)` to visually inspect the course of the percentiles. In the plot, Mallow’s Cp is log transformed and the BIC is always highly negative. The R2 cutoff that was specified in the bestModel function is displayed as a dashed line.

Usage

`plotSubset(model, type = 0, index = FALSE)`

Arguments

- **model**: The regression model from the bestModel function or a cnorm object
- **type**: Type of chart with 0 = adjusted R2 by number of predictors, 1 = log transformed Mallow’s Cp by adjusted R2, 2 = Bayesian Information Criterion (BIC) by adjusted R2, 3 = Root Mean Square Error (RMSE), 4 = Residual Sum of Squares by number, 5 = F-test statistic for consecutive models and 6 = p-value for model tests of predictors
- **index**: add index labels to data points
See Also

bestModel, plotPercentiles, printSubset

Other plot: plot.cnorm(), plotDensity(), plotDerivative(), plotNormCurves(), plotNorm(), plotPercentileSeries(), plotPercentiles(), plotRaw()

Examples

# Compute model with example data and plot information function
cnorm.model <- cnorm(raw = elfe$raw, group = elfe$group)
plotSubset(cnorm.model)

ppvt

Vocabulary development from 2.5 to 17

Description

A dataset based on an unstratified sample of PPVT4 data (German adaption). The PPVT4 consists of blocks of items with 12 items each. Each item consists of 4 pictures. The test taker is given a word orally and he or she has to point out the picture matching the oral word. Bottom and ceiling blocks of items are determined according to age and performance. For instance, when a student knows less than 4 word from a block of 12 items, the testing stops. The sample is not identical with the norm sample and includes doublets of cases in order to align the sample size per age group. It is primarily intended for running the cNORM analyses with regard to modeling and stratification.

Usage

ppvt

Format

A data frame with 4542 rows and 6 variables:

- **age** the chronological age of the child
- **sex** the sex of the test taker, 1=male, 2=female
- **migration** migration status of the family, 0=no, 1=yes
- **region** factor specifying the region, the data were collected; grouped into south, north, east and west
- **raw** the raw score of the student, spanning values from 0 to 228
- **group** age group of the child, determined by the getGroups()-function with 12 equidistant age groups

A data frame with 5600 rows and 9 columns

Source

https://www.psychometrica.de/ppvt4.html
References


Examples

## Not run:
# Example with continuous age variable, ranked with sliding window
model.ppvt.sliding <- cnorm(age=ppvt$age, raw=ppvt$raw, width=1)

# Example with age groups; you might first want to experiment with
# the granularity of the groups via the 'getGroups()' function
model.ppvt.group <- cnorm(group=ppvt$group, raw=ppvt$raw) # with predefined groups
model.ppvt.group <- cnorm(group=getGroups(ppvt$age, n=15, equidistant = T),
                          raw=ppvt$raw) # groups built 'on the fly'

# plot information function
plot(model.ppvt.group, "subset")

# check model consistency
checkConsistency(model.ppvt.group)

# plot percentiles
plot(model.ppvt.group, "percentiles")

## End(Not run)

predictNorm

Retrieve norm value for raw score at a specific age

Description

This function numerically determines the norm score for raw scores depending on the level of the explanatory variable A, e.g. norm scores for raw scores at given ages.

Usage

predictNorm(
  raw,
  A,
  model,
  minNorm = NULL,
  maxNorm = NULL,
  force = FALSE,
  covariate = NULL
)
predictRaw

Arguments

- **raw**: The raw value, either single numeric or numeric vector.
- **A**: the explanatory variable (e.g. age), either single numeric or numeric vector.
- **model**: The regression model or a cnorm object.
- **minNorm**: The lower bound of the norm score range.
- **maxNorm**: The upper bound of the norm score range.
- **force**: Try to resolve missing norm scores in case of inconsistent models.
- **covariate**: In case, a covariate has been used, please specify the degree of the covariate / the specific value here.

Value

The predicted norm score for a raw score, either single value or vector.

See Also

Other predict: derivationTable(), getNormCurve(), normTable(), predictRaw(), rawTable()

Examples

```r
Generate cnorm object from example data
cnorm.elfe <- cnorm(raw = elfe$raw, group = elfe$group)

return norm value for raw value 21 for grade 2, month 9
specificNormValue <- predictNorm(raw = 21, A = 2.75, cnorm.elfe)

predicted norm scores for the elfe dataset
predictNorm(elfe$raw, elfe$group, cnorm.elfe)
```

Description

Most elementary function to predict raw score based on Location (L, T score), Age (grouping variable) and the coefficients from a regression model. WARNING! This function, and all functions depending on it, only works with regression functions including L, A and interactions. Manually adding predictors to bestModel via the predictors parameter is currently incompatible. In that case, and if you are primarily interested on fitting a complete data set, rather user the predict function of the stats:lm package on the ideal model solution. You than have to provide a prepared data frame with the according input variables.
predictRaw

Usage

predictRaw(
  norm,
  age,
  coefficients,
  minRaw = -Inf,
  maxRaw = Inf,
  covariate = NULL
)

Arguments

- **norm**: The norm score, e.g. a specific T score or a vector of scores
- **age**: The age value or a vector of scores
- **coefficients**: The coefficients from the regression model or a cnorm model
- **minRaw**: Minimum score for the results; can be used for clipping unrealistic outcomes, usually set to the lower bound of the range of values of the test (default: 0)
- **maxRaw**: Maximum score for the results; can be used for clipping unrealistic outcomes usually set to the upper bound of the range of values of the test
- **covariate**: In case, a covariate has been used, please specify the degree of the covariate / the specific value here.

Value

de the predicted raw score or a data.frame of scores in case, lists of norm scores or age is used

See Also

Other predict: derivationTable(), getNormCurve(), normTable(), predictNorm(), rawTable()

Examples

- # Prediction of single scores
  normData <- prepareData(elfe)
  m <- bestModel(data = normData)
predictRaw(35, 3.5, m$coefficients)

- # using a cnorm object
  result <- cnorm(raw = elfe$raw, group = elfe$group)
predictRaw(35, 3.5, result)

- # Fitting complete data sets
  fitted.values <- predict(m)

- # break up contribution of each predictor variable
  fitted.partial <- predict(m, type = "terms")
prepareData

Prepare data for modeling in one step (convenience method)

Description

This is a convenience method to either load the inbuilt sample dataset, or to provide a data frame with the variables "raw" (for the raw scores) and "group" The function ranks the data within groups, computes norm values, powers of the norm scores and interactions. Afterwards, you can use these preprocessed data to determine the best fitting model.

Usage

prepareData(
  data = NULL,
  group = "group",
  raw = "raw",
  age = "group",
  k = 4,
  t = NULL,
  width = NA,
  weights = NULL,
  scale = "T",
  descend = FALSE,
  silent = FALSE
)

Arguments

data data.frame with a grouping variable named 'group' and a raw score variable named 'raw'.
group grouping variable in the data, e. g. age groups, grades ... Setting group = FALSE deactivates modeling in dependence of age. Use this in case you do want conventional norm tables.
raw the raw scores
age the continuous explanatory variable; by default set to "group"
k The power parameter, default = 4
t the age power parameter (default NULL). If not set, cNORM automatically uses k. The age power parameter can be used to specify the k to produce rectangular matrices and specify the course of scores per independently from k
width if a width is provided, the function switches to rankBySlidingWindow to determine the observed raw scores, otherwise, ranking is done by group (default)
weights Vector or variable name in the dataset with weights for each individual case. It can be used to compensate for moderate imbalances due to insufficient norm data stratification. Weights should be numerical and positive. Please use the 'computeWeights' function for this purpose.
prettyPrint

scale
type of norm scale, either T (default), IQ, z or percentile (= no transformation); 
a double vector with the mean and standard deviation can as well, be provided 
f. e. c(10, 3) for Wechsler scale index point

descend
ranking order (default descent = FALSE): inverses the ranking order with higher 
raw scores getting lower norm scores; relevant for example when norming error 
scores, where lower scores mean higher performance

silent
set to TRUE to suppress messages

Value
data frame including the norm scores, powers and interactions of the norm score and grouping 
variable

See Also
Other prepare: computePowers(), rankByGroup(), rankBySlidingWindow()

Examples

# conducts ranking and computation of powers and interactions with the 'elfe' dataset 
data.elfe <- prepareData(elfe)

# use vectors instead of data frame 
data.elfe <- prepareData(raw=elfe$raw, group=elfe$group)

# variable names can be specified as well, here with the BMI data included in the package 
## Not run: 
data.bmi <- prepareData(CDC, group = "group", raw = "bmi", age = "age")

## End(Not run)

# modeling with only one group with the 'elfe' dataset as an example 
# this results in conventional norming 
data.elfe2 <- prepareData(data = elfe, group = FALSE) 
m <- bestModel(data.elfe2)

prettyPrint

Format raw and norm tables The function takes a raw or norm table, 
condenses intervals at the bottom and top and round the numbers to 
meaningful interval.

Description

Format raw and norm tables The function takes a raw or norm table, condenses intervals at the 
bottom and top and round the numbers to meaningful interval.

Usage

prettyPrint(table)
print.cnorm

Arguments

table The table to format

Value

formatted table

---

#### print.cnorm

**S3 method for printing model selection information**

Description

After conducting the model fitting procedure on the data set, the best fitting model has to be chosen. The print function shows the R2 and other information on the different best fitting models with increasing number of predictors.

Usage

```r
S3 method for class 'cnorm'
print(x, ...)
```

Arguments

- `x` The model from the 'bestModel' function or a cnorm object
- `...` additional parameters

Value

A table with information criteria

See Also

Other model: `bestModel()`, `checkConsistency()`, `cnorm.cv()`, `derive()`, `modelSummary()`, `printSubset()`, `rangeCheck()`, `regressionFunction()`, `summary.cnorm()`
printSubset

Convenience method for printing model selection information

Description

After conducting the model fitting procedure on the data set, the best fitting model has to be chosen. The print function shows the R2 and other information on the different best fitting models with increasing number of predictors.

Usage

printSubset(x, ...)

Arguments

x
The model from the 'bestModel' function or a cnorm object

... additional parameters

Value

A table with information criteria

See Also

Other model: bestModel(), checkConsistency(), cnorm.cv(), derive(), modelSummary(), print.cnorm(), rangeCheck(), regressionFunction(), summary.cnorm()

Examples

# Generate cnorm object from example data
result <- cnorm(raw = elfe$raw, group = elfe$group)
printSubset(result)

rangeCheck

Check for horizontal and vertical extrapolation

Description

Regression model only work in a specific range and extrapolation horizontally (outside the original range) or vertically (extreme norm scores) might lead to inconsistent results. The function generates a message, indicating extrapolation and the range of the original data.
Usage

rangeCheck(
  object,
  minAge = NULL,
  maxAge = NULL,
  minNorm = NULL,
  maxNorm = NULL,
  digits = 3,
  ...
)

Arguments

object The regression model or a cnorm object
minAge The lower age bound
maxAge The upper age bound
minNorm The lower norm value bound
maxNorm The upper norm value bound
digits The precision for rounding the norm and age data
... additional parameters

Value

the report

See Also

Other model: bestModel(), checkConsistency(), cnorm.cv(), derive(), modelSummary(), print.cnorm(), printSubset(), regressionFunction(), summary.cnorm()

Examples

normData <- prepareData(elfe)
m <- bestModel(normData)
rangeCheck(m)

---

rankByGroup Determine the norm scores of the participants in each subsample

Description

This is the initial step, usually done in all kinds of test norming projects, after the scale is constructed and the norm sample is established. First, the data is grouped according to a grouping variable and afterwards, the percentile for each raw value is retrieved. The percentile can be used for the modeling procedure, but in case, the samples to not deviate too much from normality, T, IQ or z scores can be computed via a normal rank procedure based on the inverse cumulative normal distribution. In case of bindings, we use the medium rank and there are different methods for estimating the percentiles (default RankIt).
Usage

rankByGroup(
  data = NULL,
  group = "group",
  raw = "raw",
  weights = NULL,
  method = 4,
  scale = "T",
  descend = FALSE,
  descriptives = TRUE,
  covariate = NULL,
  na.rm = TRUE
)

Arguments
data
  data.frame with norm sample data. If no data.frame is provided, the raw score and group vectors are directly used

group
  name of the grouping variable (default ‘group’) or numeric vector, e. g. grade, setting group to FALSE cancels grouping (data is treated as one group)

raw
  name of the raw value variable (default ‘raw’) or numeric vector

weights
  Vector or variable name in the dataset with weights for each individual case. It can be used to compensate for moderate imbalances due to insufficient norm data stratification. Weights should be numerical and positive. Please use the ‘computeWeights’ function for this purpose.

method
  Ranking method in case of bindings, please provide an index, choosing from the following methods: 1 = Blom (1958), 2 = Tukey (1949), 3 = Van der Warden (1952), 4 = Rankit (default), 5 = Levenbach (1953), 6 = Filliben (1975), 7 = Yu & Huang (2001)

scale
  type of norm scale, either T (default), IQ, z or percentile (= no transformation); a double vector with the mean and standard deviation can as well, be provided f. e. c(10, 3) for Wechsler scale index points

descend
  ranking order (default descent = FALSE): inverses the ranking order with higher raw scores getting lower norm scores; relevant for example when norming error scores, where lower scores mean higher performance

descriptives
  If set to TRUE (default), information in n, mean, median and standard deviation per group is added to each observation

covariate
  Include a binary covariate into the preparation and subsequently modeling, either by specifying the variable name or including the variable itself. BEWARE! Not all subsequent functions are already prepared for it. It is an experimental feature.

na.rm
  remove values, where the percentiles could not be estimated, most likely happens in the context of weighting

Value

the dataset with the percentiles and norm scales per group
Remarks on using covariates

So far the inclusion of a binary covariate is experimental and far from optimized. The according variable name has to be specified in the ranking procedure and the modeling includes this in the further process. At the moment, during ranking the data are split into the according cells group x covariate, which leads to small sample sizes. Please take care to have enough cases in each combination. Additionally, covariates can lead to unstable modeling solutions. The question, if it is really reasonable to include covariates when norming a test is a decision beyond the pure data modeling. Please use with care or alternatively split the dataset into the two groups beforehand and model them separately.

See Also

rankBySlidingWindow, computePowers, computeWeights, weighted.rank

Other prepare: computePowers(), prepareData(), rankBySlidingWindow()

Examples

# Transformation with default parameters: RankIt and converting to T scores
data.elfe <- rankByGroup(elfe, group = "group") # using a data frame with vector names
data.elfe2 <- rankByGroup(raw=elfe$raw, group=elfe$group) # use vectors for raw score and group

# Transformation into Wechsler scores with Yu & Huang (2001) ranking procedure
data.elfe <- rankByGroup(raw = elfe$raw, group = elfe$group, method = 7, scale = c(10, 3))

cnop can as well be used for conventional norming, in case no group is given
d <- rankByGroup(raw = elfe$raw)
d <- computePowers(d)
m <- bestModel(d)
rawTable(0, m) # please use an arbitrary value for age when generating the tables

rankBySlidingWindow Determine the norm scores of the participants by sliding window (experimental)

Description

The function retrieves all individuals in the predefined age range (x +/- width/2) around each case and ranks that individual based on this individually drawn sample. This function can be directly used with a continuous age variable in order to avoid grouping. When collecting data on the basis of a continuous age variable, cases located far from the mean age of the group receive distorted percentiles when building discrete groups and generating percentiles with the traditional approach. The distortion increases with distance from the group mean and this effect can be avoided by the sliding window. Nonetheless, please ensure, that the optional grouping variable in fact represents the correct mean age of the respective age groups, as this variable is later on used for displaying the manifest data in the percentile plots.
**rankBySlidingWindow**

**Usage**

```r
rankBySlidingWindow(
 data = NULL,
 age = "age",
 raw = "raw",
 weights = NULL,
 width,
 method = 4,
 scale = "T",
 descend = FALSE,
 descriptives = TRUE,
 nGroup = 0,
 group = NA,
 covariate = NULL,
 na.rm = TRUE
)
```

**Arguments**

- **data** `data.frame` with norm sample data
- **age** the continuous age variable. Setting `age` to FALSE inhibits computation of powers of age and the interactions
- **raw** name of the raw value variable (default 'raw')
- **weights** Vector or variable name in the dataset with weights for each individual case. It can be used to compensate for moderate imbalances due to insufficient norm data stratification. Weights should be numerical and positive. It can be resource intense when applied to the sliding window. Please use the `computeWeights` function for this purpose.
- **width** the width of the sliding window
- **method** Ranking method in case of bindings, please provide an index, choosing from the following methods: 1 = Blom (1958), 2 = Tukey (1949), 3 = Van der Warden (1952), 4 = Rankit (default), 5 = Levenbach (1953), 6 = Filliben (1975), 7 = Yu & Huang (2001)
- **scale** type of norm scale, either T (default), IQ, z or percentile (= no transformation); a double vector with the mean and standard deviation can as well, be provided f. e. c(10, 3) for Wechsler scale index points
- **descend** ranking order (default descent = FALSE): inverses the ranking order with higher raw scores getting lower norm scores; relevant for example when norming error scores, where lower scores mean higher performance
- **descriptives** If set to TRUE (default), information in n, mean, median and standard deviation per group is added to each observation
- **nGroup** If set to a positive value, a grouping variable is created with the desired number of equi distant groups, named by the group mean age of each group. It creates the column 'group' in the data.frame and in case, there is already one with that name, overwrites it.
rankBySlidingWindow

**group**
Optional parameter for providing the name of the grouping variable (if present; overwritten if ngroups is used)

**covariate**
Include a binary covariate into the preparation and subsequently modeling, either by specifying the variable name or including the variable itself. BEWARE! Not all subsequent functions are already prepared for it. It is an experimental feature.

**na.rm**
remove values, where the percentiles could not be estimated, most likely happens in the context of weighting

**Details**
In case of bindings, the function uses the medium rank and applies the algorithms already described in the `rankByGroup` function. At the upper and lower end of the data sample, the sliding stops and the sample is drawn from the interval min + width and max - width, respectively.

**Value**
the dataset with the individual percentiles and norm scores

**Remarks on using covariates**
So far the inclusion of a binary covariate is experimental and far from optimized. The according variable name has to be specified in the ranking procedure and the modeling includes this in the further process. At the moment, during ranking the data are split into the according degrees of the covariate and the ranking is done separately. This may lead to small sample sizes. Please take care to have enough cases in each combination. Additionally, covariates can lead to unstable modeling solutions. The question, if it is really reasonable to include covariates when norming a test is a decision beyond the pure data modeling. Please use with care or alternatively split the dataset into the two groups beforehand and model them separately.

**See Also**
`rankByGroup`, `computePowers`, `computeWeights`, `weighted.rank`, `weighted.quantile`

Other prepare: `computePowers()`, `prepareData()`, `rankByGroup()`

**Examples**
```r
Not run:
Transformation using a sliding window
data.elfe2 <- rankBySlidingWindow(relfe, raw = "raw", age = "group", width = 0.5)

Comparing this to the traditional approach should give us exactly the same values, since the sample dataset only has a grouping variable for age
data.elfe <- rankByGroup(elfe, group = "group")
mean(data.elfe$normValue - data.elfe2$normValue)

End(Not run)
```
rawTable

Create a table with norm scores assigned to raw scores for a specific age based on the regression model

Description

This function is comparable to ‘normTable’, despite it reverses the assignment: A table with raw scores and the according norm scores for a specific age based on the regression model is generated. This way, the inverse function of the regression model is solved numerically with brute force. Please specify the range of raw values, you want to cover. With higher precision and smaller stepping, this function becomes computational intensive. In case a confidence coefficient (CI, default .9) and the reliability is specified, confidence intervals are computed for the true score estimates, including a correction for regression to the mean (Eid & Schmidt, 2012, p. 272).

Usage

rawTable(
  A,
  model,
  minRaw = NULL,
  maxRaw = NULL,
  minNorm = NULL,
  maxNorm = NULL,
  step = 1,
  covariate = NULL,
  monotonuous = TRUE,
  CI = 0.9,
  reliability = NULL,
  pretty = TRUE
)

Arguments

A         the age, either single value or vector with age values
model     The regression model or a cnorm object
minRaw    The lower bound of the raw score range
maxRaw    The upper bound of the raw score range
minNorm   Clipping parameter for the lower bound of norm scores (default 25)
maxNorm   Clipping parameter for the upper bound of norm scores (default 25)
step      Stepping parameter for the raw scores (default 1)
covariate In case, a covariate has been used, please specify the degree of the covariate / the specific value here.
monotonuous corrects for decreasing norm scores in case of model inconsistencies (default)
CI        confidence coefficient, ranging from 0 to 1, default .9
reliability coefficient, ranging between 0 to 1
pretty    Format table by collapsing intervals and rounding to meaningful precision
regressionFunction

Description

The method builds the regression function for the regression model, including the beta weights. It can be used to predict the raw scores based on age and location.

Usage

regressionFunction(model, raw = NULL, digits = NULL)

Arguments

- **model**: The regression model from the bestModel function or a cnorm object
- **raw**: The name of the raw value variable (default 'raw')
- **digits**: Number of digits for formatting the coefficients

Value

The regression formula as a string
simMean

**See Also**

Other model: `bestModel()`, `checkConsistency()`, `cnorm.cv()`, `derive()`, `modelSummary()`, `print.cnorm()`, `printSubset()`, `rangeCheck()`, `summary.cnorm()`

**Examples**

```r
result <- cnorm(raw = elfe$raw, group = elfe$group)
regressionFunction(result)
```

---

### simMean

**Simulate mean per age**

**Description**

Simulate mean per age

**Usage**

```r
simMean(age)
```

**Arguments**

- `age` the age variable

**Value**

return predicted means

**Examples**

```r
Not run:
x <- simMean(a)
End(Not run)
```
**simSD**

*Simulate sd per age*

**Description**

Simulate sd per age

**Usage**

`simSD(age)`

**Arguments**

- `age` the age variable

**Value**

return predicted sd

**Examples**

```r
Not run:
x <- simSD(a)
End(Not run)
```

---

**simulateRasch**

*Simulate raw test scores based on Rasch model*

**Description**

For testing purposes only: The function simulates raw test scores based on a virtual Rasch based test with n results per age group, an evenly distributed age variable, items.n test items with a simulated difficulty and standard deviation. The development trajectories over age group are modeled by a curve linear function of age, with at first fast progression, which slows down over age, and a slightly increasing standard deviation in order to model a scissor effects. The item difficulties can be accessed via $theta and the raw data via $data of the returned object.

**Usage**

```r
simulateRasch(
data = NULL,
n = 100,
minAge = 1,
maxAge = 7,
items.n = 21,
```
simulateRasch

```r
data.frame from previous simulations for recomputation (overrides n, minAge, maxAge)

n
The sample size per age group

minAge
The minimum age (default 1)

maxAge
The maximum age (default 7)

items.n
The number of items of the test

items.m
The mean difficulty of the items

items.sd
The standard deviation of the item difficulty

Theta
irt scales difficulty parameters, either "random" for drawing a random sample, "even" for evenly distributed or a set of predefined values, which then overrides the item.n parameters

width
The width of the window size for the continuous age per group; +- 1/2 width around group center on items.m and item.sd; if set to FALSE, the distribution is not drawn randomly but normally nonetheless

a list containing the simulated data and thetas

- data the data.frame with only age, group and raw
- sim the complete simulated data with item level results
- theta the difficulty of the items

Examples

simulate data for a rather easy test (m = -1.0)
sim <- simulateRasch(n=150, minAge=1, maxAge=7, items.n = 30, items.m = -1.0, items.sd = 1, Theta = "random", width = 1.0)

Show item difficulties
mean(sim$theta)
sd(sim$theta)
hist(sim$theta)

Plot raw scores
boxplot(raw~group, data=sim$data)

Model data
data <- prepareData(sim$data, age="age")
```
model <- bestModel(data, k = 4)
printSubset(model)
plotSubset(model, type=0)

standardizeRakingWeights

Function for standardizing raking weights Raking weights get divided by the smallest weight. Thereby, all weights become larger or equal to 1 without changing the ratio of the weights to each other.

Description

Function for standardizing raking weights Raking weights get divided by the smallest weight. Thereby, all weights become larger or equal to 1 without changing the ratio of the weights to each other.

Usage

standardizeRakingWeights(weights)

Arguments

weights Raking weights computed by computeWeights()

Value

the standardized weights

summary.cnorm

S3 method for printing the results and regression function of a cnorm model

Description

S3 method for printing the results and regression function of a cnorm model

Usage

## S3 method for class 'cnorm'
summary(object, ...)

Arguments

object A regression model or cnorm object
...
additional parameters
**Weighted quantile estimator**

**Description**

Computes weighted quantiles (code from Andrey Akinshin via https://aakinshin.net/posts/weighted-quantiles/ Code made available via the CC BY-NC-SA 4.0 license) on the basis of either the weighted Harrell-Davis quantile estimator or an adaption of the type 7 quantile estimator of the generic quantile function in the base package. Please provide a vector with raw values, the probabilities for the quantiles and an additional vector with the weight of each observation. In case the weight vector is NULL, a normal quantile estimation is done. The vectors may not include NAs and the weights should be positive non-zero values. Please draw on the computeWeights() function for retrieving weights in post stratification.

**Usage**

```r
weighted.quantile(x, probs, weights = NULL, type = "Harrell-Davis")
```

**Arguments**

- **x**
  - A numerical vector

- **probs**
  - Numerical vector of quantiles

- **weights**
  - A numerical vector with weights; should have the same length as x

- **type**
  - Type of estimator, can either be "inflation", "Harrell-Davis" using a beta function to approximate the weighted percentiles (Harrell & Davis, 1982) or "Type7" (default; Hyndman & Fan, 1996), an adaption of the generic quantile function in R, including weighting. The inflation procedure is essentially a numerical, non-parametric solution that gives the same results as Harrel-Davis. It requires less resources with small datasets and always finds a solution (e.g. 1000 cases with weights between 1 and 10). If it becomes too resource intense, it switches to Harrell-Davis automatically. Harrell-Davis and Type7 code is based on the work of Akinshin (2020).

**Value**

- the weighted quantiles
References


See Also

weighted.quantile.inflation, weighted.quantile.harrell.davis, weighted.quantile.type7

---

**weighted.quantile.harrell.davis**

*Weighted Harrell-Davis quantile estimator*

**Description**

Computes weighted quantiles; code from Andrey Akinshin via https://aakinshin.net/posts/weighted-quantiles/ Code made available via the CC BY-NC-SA 4.0 license

**Usage**

`weighted.quantile.harrell.davis(x, probs, weights = NULL)`

**Arguments**

- `x` A numerical vector
- `probs` Numerical vector of quantiles
- `weights` A numerical vector with weights; should have the same length as `x`. If no weights are provided (NULL), it falls back to the base quantile function, type 7

**Value**

the quantiles
weighted.quantile.inflation

Weighted quantile estimator through case inflation

Description

Applies weighted ranking numerically by inflating cases according to weight. This function will be resource intensive, if inflated cases get too high and in this cases, it switches to the parametric Harrell-Davis estimator.

Usage

weighted.quantile.inflation(
  x, 
  probs, 
  weights = NULL, 
  degree = 3, 
  cutoff = 1e+07 
)

Arguments

x A numerical vector
probs Numerical vector of quantiles
weights A numerical vector with weights; should have the same length as x.
degree power parameter for case inflation (default = 3, equaling factor 1000) If no weights are provided (NULL), it falls back to the base quantile function, type 7
cutoff stop criterion for the sum of standardized weights to switch to Harrell-Davis, default = 1000000

Value

the quantiles

weighted.quantile.type7

Weighted type7 quantile estimator

Description

Computes weighted quantiles; code from Andrey Akinshin via https://aakinshin.net/posts/weighted-quantiles/ Code made available via the CC BY-NC-SA 4.0 license
Usage

weighted.quantile.type7(x, probs, weights = NULL)

Arguments

x A numerical vector
probs Numerical vector of quantiles
weights A numerical vector with weights; should have the same length as x. If no weights are provided (NULL), it falls back to the base quantile function, type 7

Value

the quantiles

Description

Conducts weighted ranking on the basis of sums of weights per unique raw score. Please provide a vector with raw values and an additional vector with the weight of each observation. In case the weight vector is NULL, a normal ranking is done. The vectors may not include NAs and the weights should be positive non-zero values.

Usage

weighted.rank(x, weights = NULL)

Arguments

x A numerical vector
weights A numerical vector with weights; should have the same length as x

Value

the weighted absolute ranks
Index

* **Body Mass Index** growth curves weight height
  CDC, 8
* **datasets**
  CDC, 8
effe, 21
epm, 22
life, 26
mortality, 27
ppvt, 40
* **life expectancy**
  life, 26
* **model**
  bestModel, 3
checkConsistency, 9
cnorm.cv, 13
derive, 20
modelSummary, 27
print.cnorm, 46
printSubset, 47
rangeCheck, 47
regressionFunction, 54
summary.cnorm, 58
* **mortality at birth**
mortality, 27
* **plot**
  plot.cnorm, 30
plotDensity, 31
plotDerivative, 32
plotNorm, 33
plotNormCurves, 34
plotPercentiles, 36
plotPercentileSeries, 37
plotRaw, 38
plotSubset, 39
* **predict**
derivationTable, 19
getNormCurve, 24
normTable, 28
predictNorm, 41
predictRaw, 42
rawTable, 53
* **prepare**
  computePowers, 16
prepareData, 44
rankByGroup, 48
rankBySlidingWindow, 50
* **reading comprehension**
effe, 21
* **simulated data 1PL IRT**
epm, 22
* **vocabulary acquisition development**
  receptive
  ppvt, 40
bestModel, 3, 10, 15, 16, 21, 27, 46–48, 55, 59
buildFunction, 6
calcPolyInL, 6
calcPolyInLBase, 7
calcPolyInLBase2, 7
CDC, 8
cHECKConsistency, 5, 9, 15, 21, 27, 46–48,
  55, 59
checkWeights, 10
cnorm, 11
cnorm.cv, 5, 10, 13, 21, 27, 46–48, 55, 59
cNORM.GUI, 16
computePowers, 16, 45, 50, 52
computeWeights, 18
derivationTable, 19, 25, 29, 42, 43, 54
derive, 5, 10, 15, 20, 27, 46–48, 55, 59
effe, 21
epm, 22
gtGroups, 23
gtNormCurve, 20, 24, 29, 42, 43, 54
getNormScoreSE, 25
life, 26

modelSummary, 5, 10, 15, 21, 27, 46–48, 55, 59
mortality, 27

normTable, 20, 25, 28, 42, 43, 54

plot.cnorm, 30, 32–35, 37–40
plotCnorm, 31
plotDensity, 30, 31, 33–35, 37–40
plotDerivative, 30, 32, 34, 35, 37–40
plotNorm, 30, 32, 33, 35, 37–40
plotNormCurves, 30, 32–34, 34, 37–40
plotPercentiles, 30, 32–35, 36, 38–40
plotPercentileSeries, 30, 32–35, 37, 39, 40
plotRaw, 30, 32–35, 37, 38, 39, 40
plotSubset, 30, 32–35, 37–39, 39
ppvt, 40
predictNorm, 20, 25, 29, 41, 43, 54
predictRaw, 20, 25, 29, 42, 42, 54
prepareData, 17, 44, 50, 52
prettyPrint, 45
print.cnorm, 5, 10, 15, 21, 27, 46, 47, 48, 55, 59
printSubset, 5, 10, 15, 21, 27, 46, 47, 48, 55, 59

rangeCheck, 5, 10, 15, 21, 27, 46, 47, 47, 55, 59
rankByGroup, 17, 45, 48, 52
rankBySlidingWindow, 17, 45, 50, 50
rawTable, 20, 25, 29, 42, 43, 53
regressionFunction, 5, 10, 15, 21, 27, 46–48, 54, 59

simMean, 55
simSD, 56
simulateRasch, 56
standardizeRakingWeights, 58
summary.cnorm, 5, 10, 15, 21, 27, 46–48, 55, 58

weighted.quantile, 59
weighted.quantile.harrell.davis, 60
weighted.quantile.inflation, 61
weighted.quantile.type7, 61
weighted.rank, 62