Package ‘caROC’

October 12, 2022

Type Package
Title Continuous Biomarker Evaluation with Adjustment of Covariates
Version 0.1.5
Author Ziyi Li
Maintainer Ziyi Li <zli16@mdanderson.org>
Description Compute covariate-adjusted specificity at controlled sensitivity level, or covariate-adjusted sensitivity at controlled specificity level, or covariate-adjust receiver operating characteristic curve, or covariate-adjusted thresholds at controlled sensitivity/specificity level. All statistics could also be computed for specific sub-populations given their covariate values. Methods are described in Ziyi Li, Yijian Huang, Datta Patil, Martin G. Sanda (2021+) "Covariate adjustment in continuous biomarker assessment".
License GPL-2
Encoding UTF-8
Depends R (>= 4.0), quantreg, RColorBrewer
Suggests knitr, rmarkdown
VignetteBuilder knitr
NeedsCompilation no
Repository CRAN
Date/Publication 2021-04-02 08:20:03 UTC

R topics documented:

<table>
<thead>
<tr>
<th>Topic</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>caROC</td>
<td>2</td>
</tr>
<tr>
<td>caROC_CB</td>
<td>4</td>
</tr>
<tr>
<td>caThreshold</td>
<td>6</td>
</tr>
<tr>
<td>plot_caROC</td>
<td>8</td>
</tr>
<tr>
<td>plot_caROC_CB</td>
<td>9</td>
</tr>
<tr>
<td>plot_sscaROC</td>
<td>10</td>
</tr>
<tr>
<td>plot_sscaROC_CB</td>
<td>12</td>
</tr>
<tr>
<td>sscaROC</td>
<td>13</td>
</tr>
<tr>
<td>sscaROC_CB</td>
<td>16</td>
</tr>
</tbody>
</table>

Index 19
caROC

Covariate-adjusted ROC

Description
Compute covariate-adjusted specificity at controlled sensitivity level, or covariate-adjusted sensitivity at controlled specificity level, or covariate-adjusted receiver operating characteristic curve.

Usage
caROC(diseaseData, controlData, userFormula, control_sensitivity = NULL, control_specificity = NULL, mono.resp_method = "ROC", whichSE = "sample", global.ROC.controlled_by = "sensitivity", nbootstrap = 100, CI_alpha = 0.95, logit_CI = TRUE, verbose = TRUE)

Arguments
diseaseData Data from patients including dependent (biomarker) and independent (covariates) variables.
controlData Data from controls including dependent (biomarker) and independent (covariates) variables.
userFormula A character string to represent the function for covariate adjustment. For example, let Y denote biomarker, Z1 and Z2 denote two covariates. Then userFormula = "Y ~ Z1 + Z2".
control_sensitivity The level(s) of sensitivity to be controlled at. Could be a scalar (e.g. 0.7) or a numeric vector (e.g. c(0.7, 0.8, 0.9)).
control_specificity The level(s) of specificity to be controlled at. Could be a scalar (e.g. 0.7) or a numeric vector (e.g. c(0.7, 0.8, 0.9)).
mono.resp_method The method used to restore monotonicity of the ROC curve or computed sensitivity/specificity value. It should one from the following: "none", "ROC". "none" is not applying any monotonicity respecting method. "ROC" is to apply ROC-based monotonicity respecting approach. Default value is "ROC".
whichSE The method used to compute standard error. It should be one from the following: "sample", "bootstrap", meaning to calculate the standard error using sample-based approach or bootstrap. Default is "sample".
global.ROC.controlled_by Whether sensitivity/specificity is used to control when computing global ROC. It should one from the following: "sensitivity", "specificity". Default is "sensitivity".
nbootstrap Number of bootstrap iterations. Default is 100.
CI_alpha Percentage of confidence interval. Default is 0.95.
logit_CI Whether to apply logit-based confidence interval. Logit-transformed CI has been identified to be more robust near border area.

verbose Whether to print out messages. Default value is true.

Value

If control_sensitivity or control_specificity is provided, compute covariate-adjusted specificity (sensitivity) at controlled sensitivity (specificity) level.

Estimate Covariate-adjusted sensitivity/specificity.
SE Estimated standard error.
CI Estimated confidence intervals.

If both control_sensitivity and control_specificity are null, compute covariate-adjusted ROC curve.

sensitivity Estimated sensitivity.
specificity Estimated specificity.
mono_adj Monotonicity adjustment method.

Author(s)

Ziyi.li <ziyi.li@emory.edu>

Examples

n1 = n0 = 500

generate data
Z_D <- rbinom(n1, size = 1, prob = 0.3)
Z_C <- rbinom(n0, size = 1, prob = 0.7)

Y_C_Z0 <- rnorm(n0, 0.1, 1)
Y_D_Z0 <- rnorm(n1, 1.1, 1)
Y_C_Z1 <- rnorm(n0, 0.2, 1)
Y_D_Z1 <- rnorm(n1, 0.9, 1)

M0 <- Y_C_Z0 * (Z_C == 0) + Y_C_Z1 * (Z_C == 1)
M1 <- Y_D_Z0 * (Z_D == 0) + Y_D_Z1 * (Z_D == 1)

diseaseData <- data.frame(M = M1, Z = Z_D)
controlData <- data.frame(M = M0, Z = Z_C)
userFormula = "M~Z"

calculate covariate-adjusted specificity at
controlled sensitivity levels (0.2, 0.8, 0.9)
caROC(diseaseData,controlData,userFormula,
 control_sensitivity = c(0.2,0.8, 0.9),
 control_specificity = NULL,mono_resp_method = "ROC",
 whichSE = "bootstrap",nbootstrap = 100,
 CI_alpha = 0.95, logit_CI = TRUE)
calculate covariate-adjusted sensitivity at controlled specificity levels (0.2, 0.8, 0.9)
carOC(diseaseData, controlData, userFormula,
control_sensitivity = NULL,
control_specificity = c(0.7, 0.8, 0.9), mono_resp_method = "none",
whichSE = "sample", nbootstrap = 100,
CI_alpha = 0.95, logit_CI = TRUE)

calculate the whole covariate-adjusted ROC curve
ROC1 <- caROC(diseaseData, controlData, userFormula = "M-Z",
mono_resp_method = "none")
ROC2 <- caROC(diseaseData, controlData, userFormula = "M-Z",
mono_resp_method = "ROC")

caROC_CB

Get confidence band for covariate-adjusted ROC curve.

Description

Use this function to compute the confidence band for covariate-adjusted ROC curve, with or without monotonicity respecting methods.

Usage

```r
carOC_CB(diseaseData, controlData, userFormula, 
mono_resp_method, global_ROC_controlled_by = "sensitivity", 
CB_alpha = 0.95, logit_CB = FALSE, nbootstrap = 100, 
nbin = 100, verbose = FALSE)
```

Arguments

- `diseaseData`: Data from patients including dependent (biomarker) and independent (covariates) variables.
- `controlData`: Data from controls including dependent (biomarker) and independent (covariates) variables.
- `userFormula`: A character string to represent the function for covariate adjustment. For example, let Y denote biomarker, Z1 and Z2 denote two covariates. Then userFormula = "Y ~ Z1 + Z2".
- `mono_resp_method`: The method used to restore monotonicity of the ROC curve or computed sensitivity/specificity value. It should one from the following: "none", "ROC". "none" is not applying any monotonicity respecting method. "ROC" is to apply ROC-based monotonicity respecting approach. Default value is "ROC".
- `global_ROC_controlled_by`: Whether sensitivity/specificity is used to control when computing global ROC. It should one from the following: "sensitivity", "specificity". Default is "sensitivity".
- `CB_alpha`: Level of confidence for the confidence band.
- `logit_CB`: Whether to transform the confidence band to logit scale.
- `nbootstrap`: Number of bootstrap replicates.
- `nbin`: Number of binwidth.
- `verbose`: Whether to print debugging information.
caROC_CB

CB_alpha Percentage of confidence band. Default is 0.95.
logit_CB Whether to use logit-transformed (then transform back) confidence band. Default is FALSE.
nbootstrap Number of bootstrap iterations. Default is 100.
nbin Number of bins used for constructing confidence band. Default is 100.
verbose Whether to print out messages during bootstrap. Default value is FALSE.

Value

If global ROC is controlled by sensitivity, a list will be output including the following

Sensitivity Vector of sensitivities;
Specificity_upper
 Upper confidence band for specificity estimations;
Specificity_lower
 Lower confidence band for specificity estimations;
global_ROC_controlled_by
 "sensitivity".

If global ROC is controlled by Specificity, a list will be output including the following

Specificity Vector of specificity;
Sensitivity_upper
 Upper confidence band for sensitivity estimations;
Sensitivity_lower
 Lower confidence band for sensitivity estimations;
global_ROC_controlled_by
 "specificity".

Author(s)

Ziyi.li <ziyi.li@emory.edu>

Examples

n1 = n0 = 500

```r
## generate data
Z_D <- rbinom(n1, size = 1, prob = 0.3)
Z_C <- rbinom(n0, size = 1, prob = 0.7)
Y_C_Z0 <- rnorm(n0, 0.1, 1)
Y_D_Z0 <- rnorm(n1, 1.1, 1)
Y_C_Z1 <- rnorm(n0, 0.2, 1)
Y_D_Z1 <- rnorm(n1, 0.9, 1)
M0 <- Y_C_Z0 * (Z_C == 0) + Y_C_Z1 * (Z_C == 1)
M1 <- Y_D_Z0 * (Z_D == 0) + Y_D_Z1 * (Z_D == 1)
```
diseaseData <- data.frame(M = M1, Z = Z_D)
controlData <- data.frame(M = M0, Z = Z_C)
userFormula = "M~Z"

calculate confidence band by controlling sensitivity
using different monotonicity respecting methods

ROC_CB1 <- caROC_CB(diseaseData,controlData,userFormula,
 mono_resp_method = "none",
 CB_alpha = 0.95,
 nbin = 100,verbose = FALSE)
ROC_CB2 <- caROC_CB(diseaseData,controlData,userFormula,
 mono_resp_method = "ROC",
 CB_alpha = 0.95,
 nbin = 100,verbose = FALSE)

caThreshold

Calculate covariate-adjusted threshold.

Description

This function is used to calculate covariate-adjusted threshold(s) at controlled sensitivity levels or specificity levels.

Usage

caThreshold(userFormula, new_covariates, diseaseData = NULL,
 controlData = NULL, control_sensitivity = NULL, control_specificity = NULL)

Arguments

- **userFormula** A character string to represent the function for covariate adjustment. For example, let Y denote biomarker, Z1 and Z2 denote two covariates. Then userFormula = "Y ~ Z1 + Z2".

- **new_covariates** A data frame containing covariates for new data. For example, if my userFormula is "Y ~ Z1 + Z2", new_covariates could be data.frame(Z1 = rnorm(100), Z2 = rnorm(100)).

- **diseaseData** Data from patients including dependent (biomarker) and independent (covariates) variables.

- **controlData** Data from controls including dependent (biomarker) and independent (covariates) variables.

- **control_sensitivity** The level(s) of sensitivity to be controlled at. Could be a scalar (e.g. 0.7) or a numeric vector (e.g. c(0.7, 0.8, 0.9)).
control_specificity

The level(s) of specificity to be controlled at. Could be a scalar (e.g. 0.7) or a numeric vector (e.g. c(0.7, 0.8, 0.9)).

Value

A vector of covariate-adjusted threshold for all subjects if a scalar sensitivity/specificity is given. A data matrix of covariate-adjusted thresholds for all subjects if a vector of sensitivity/specificity is given.

Author(s)

Ziyi Li <ziyi.li@emory.edu>

Examples

```r
n1 = n0 = 500

### generate data
Z_D <- rbinom(n1, size = 1, prob = 0.3)
Z_C <- rbinom(n0, size = 1, prob = 0.7)

Y_C_Z0 <- rnorm(n0, 0.1, 1)
Y_D_Z0 <- rnorm(n1, 1.1, 1)
Y_C_Z1 <- rnorm(n0, 0.2, 1)
Y_D_Z1 <- rnorm(n1, 0.9, 1)

M0 <- Y_C_Z0 * (Z_C == 0) + Y_C_Z1 * (Z_C == 1)
M1 <- Y_D_Z0 * (Z_D == 0) + Y_D_Z1 * (Z_D == 1)

diseaseData <- data.frame(M = M1, Z = Z_D)
controlData <- data.frame(M = M0, Z = Z_C)
userFormula = "M~Z"

### generate new covariates
new_covariates <- data.frame(Z = rbinom(20, size = 1, prob = 0.5))

### calculate covariate-adjusted thresholds at controlled
### sensitivity level 0.7, 0.8, 0.9
catThreshold(userFormula, new_covariates,
               diseaseData = diseaseData,
               controlData = NULL,
               control_sensitivity = c(0.7,0.8,0.9),
               control_specificity = NULL)

### calculate covariate-adjusted thresholds at controlled
### sensitivity level 0.7
catThreshold(userFormula,new_covariates,
              diseaseData = diseaseData,
              controlData = NULL,
              control_sensitivity = 0.7,
              control_specificity = NULL)
```
calculate covariate-adjusted thresholds at controlled specificity level 0.7, 0.8, 0.9

```r
calculate(userFormula,new_covariates,  
diseaseData = NULL,  
controlData = controlData,  
control_sensitivity = NULL,  
control_specificity = c(0.7,0.8,0.9))
```

calculate covariate-adjusted thresholds at controlled specificity level 0.7

```r
calculate(userFormula,new_covariates,  
diseaseData = NULL,  
controlData = controlData,  
control_sensitivity = NULL,  
control_specificity = 0.7)
```

plot_caROC

Plot covariate-adjusted ROC.

Description

Function to plot the ROC curve generated from caROC().

Usage

```r
plot_caROC(myROC, ...)
```

Arguments

- `myROC` ROC output from caROC() function.
- `...` Arguments to tune generated plots.

Details

This function can be used to plot other ROC curve, as long as the input contains two components "sensitivity" and "specificity".

Value

Plot the ROC curve.

Author(s)

Ziyi Li <zli16@mdanderson.org>
Examples

generate data

\[
\begin{align*}
Z_D &\leftarrow \text{rbinom}(n1, \text{size} = 1, \text{prob} = 0.3) \\
Z_C &\leftarrow \text{rbinom}(n0, \text{size} = 1, \text{prob} = 0.7) \\
Y_{C,Z0} &\leftarrow \text{rnorm}(n0, 0.1, 1) \\
Y_{D,Z0} &\leftarrow \text{rnorm}(n1, 1.1, 1) \\
Y_{C,Z1} &\leftarrow \text{rnorm}(n0, 0.2, 1) \\
Y_{D,Z1} &\leftarrow \text{rnorm}(n1, 0.9, 1) \\
M0 &\leftarrow Y_{C,Z0} \ast (Z_C == 0) + Y_{C,Z1} \ast (Z_C == 1) \\
M1 &\leftarrow Y_{D,Z0} \ast (Z_D == 0) + Y_{D,Z1} \ast (Z_D == 1)
\end{align*}
\]

diseaseData <- data.frame(M = M1, Z = Z_D)
controlData <- data.frame(M = M0, Z = Z_C)
userFormula = "M~Z"

ROC1 <- caROC(diseaseData, controlData, userFormula,
monoRespMethod = "none")
ROC2 <- caROC(diseaseData, controlData, userFormula,
monoRespMethod = "ROC")

plot_caROC(ROC1)
plot_caROC(ROC2, col = "blue")

plot_caROC_CB

Plot confidence band of covariate-adjusted ROC.

Description

A function to plot the confidence band of covariate-adjusted ROC.

Usage

```
plot_caROC_CB(myROC_CB, add = TRUE, ...)
```

Arguments

- **myROC_CB**
 - Output from `caROC_CB()` function.
- **add**
 - Whether to add confidence band to existing plot (TRUE) or draw a new one (FALSE). Default is TRUE.
- **...**
 - Any parameters related with the plot.

Value

No values will be return. This function is for plotting only.
Author(s)
Ziyi Li<ziyi.li@emory.edu>

Examples

library(caROC)
n1 = n0 = 100

generate data
Z_D <- rbinom(n1, size = 1, prob = 0.3)
Z_C <- rbinom(n0, size = 1, prob = 0.7)
Y_C_Z0 <- rnorm(n0, 0.1, 1)
Y_D_Z0 <- rnorm(n1, 1.1, 1)
Y_C_Z1 <- rnorm(n0, 0.2, 1)
Y_D_Z1 <- rnorm(n1, 0.9, 1)
M0 <- Y_C_Z0 * (Z_C == 0) + Y_C_Z1 * (Z_C == 1)
M1 <- Y_D_Z0 * (Z_D == 0) + Y_D_Z1 * (Z_D == 1)
diseaseData <- data.frame(M = M1, Z = Z_D)
controlData <- data.frame(M = M0, Z = Z_C)
formula = "M~Z"

ROC_CB1 <- caROC_CB(diseaseData, controlData, formula,
mono_resp_method = "none",
CB_alpha = 0.95,
nbin = 100, verbose = FALSE)

plot confidence band individually
plot_caROC_CB(ROC_CB1, add = FALSE, lty = 2, col = "blue")

plot confidence band together with the ROC curve
ROC1 <- caROC(diseaseData, controlData, formula,
mono_resp_method = "none", verbose = FALSE)
plot_caROC(ROC1)
plot_caROC_CB(ROC_CB1, add = TRUE, lty = 2, col = "blue")

plot_scaROC

Plot covariate-adjusted ROC for specific subpopulations.

Description

Function to plot the ROC curve generated from sscaROC().

Usage

plot_scaROC(myROC, ...)

plot_sscaROC

Arguments

myROC
ROC output from sscaROC() function.

...
Arguments to tune generated plots.

Details

This function can be used to plot other ROC curve, as long as the input contains two components "sensitivity" and "specificity".

Value

Plot the ROC curve.

Author(s)

Ziyi Li <zli16@mdanderson.org>

Examples

```r
n1 = n0 = 1000

## generate data
Z_D1 <- rbinom(n1, size = 1, prob = 0.3)
Z_D2 <- rnorm(n1, 0.8, 1)
Z_C1 <- rbinom(n0, size = 1, prob = 0.7)
Z_C2 <- rnorm(n0, 0.8, 1)

Y_C_Z0 <- rnorm(n0, 0.1, 1)
Y_D_Z0 <- rnorm(n1, 1.1, 1)
Y_C_Z1 <- rnorm(n0, 0.2, 1)
Y_D_Z1 <- rnorm(n1, 0.9, 1)

M0 <- Y_C_Z0 * (Z_C1 == 0) + Y_C_Z1 * (Z_C1 == 1) + Z_C2
M1 <- Y_D_Z0 * (Z_D1 == 0) + Y_D_Z1 * (Z_D1 == 1) + 1.5 * Z_D2

diseaseData <- data.frame(M = M1, Z1 = Z_D1, Z2 = Z_D2)
controlData <- data.frame(M = M0, Z1 = Z_C1, Z2 = Z_C2)
userFormula = "M~Z1+Z2"

myROC <- sscaROC(diseaseData, controlData, userFormula, target_covariates = c(1, 0.7, 0.9),
global_ROC_controlled_by = "sensitivity", mono_resp_method = "none")

plot_sscaROC(myROC, lwd = 1.6)
```
Description

A function to plot the confidence band of covariate-adjusted ROC in specific subpopulations.

Usage

plot_sscaROC_CB(myROC_CB, add = TRUE, ...)

Arguments

myROC_CB Output from sscaROC_CB() function.
add Whether to add confidence band to existing plot (TRUE) or draw a new one (FALSE). Default is TRUE.
... Any parameters related with the plot.

Value

No values will be return. This function is for plotting only.

Author(s)

Ziyi Li<zli16@mdanderson.org>

Examples

n1 = n0 = 500

generate data
Z_D1 <- rbinom(n1, size = 1, prob = 0.3)
Z_D2 <- rnorm(n1, 0.8, 1)
Z_C1 <- rbinom(n0, size = 1, prob = 0.7)
Z_C2 <- rnorm(n0, 0.8, 1)
Y_C_Z0 <- rnorm(n0, 0.1, 1)
Y_D_Z0 <- rnorm(n1, 1.1, 1)
Y_C_Z1 <- rnorm(n0, 0.2, 1)
Y_D_Z1 <- rnorm(n1, 0.9, 1)

M0 <- Y_C_Z0 * (Z_C1 == 0) + Y_C_Z1 * (Z_C1 == 1) + Z_C2
M1 <- Y_D_Z0 * (Z_D1 == 0) + Y_D_Z1 * (Z_D1 == 1) + 1.5 * Z_D2

diseaseData <- data.frame(M = M1, Z1 = Z_D1, Z2 = Z_D2)
controlData <- data.frame(M = M0, Z1 = Z_C1, Z2 = Z_C2)

userFormula = "M~Z1+Z2"
target_covariates = c(1, 0.7, 0.9)
example that takes more than a minute to run
myROC <- sscaROC(diseaseData,
 controlData,
 userFormula,
 target_covariates,
 global_ROC_controlled_by = "sensitivity",
 mono_resp_method = "none")

default nbootstrap is 100
set nbootstrap as 10 here to improve example speed
myROCBand <- sscaROC_CB(diseaseData,
 controlData,
 userFormula,
 mono_resp_method = "none",
 target_covariates,
 global_ROC_controlled_by = "sensitivity",
 CB_alpha = 0.95,
 logit_CB = FALSE,
 nbootstrap = 10,
 nbin = 100,
 verbose = FALSE)

plot_sscarOC(myROC, lwd = 1.6)
plot_sscarOC_CB(myROCBand, col = "purple", lty = 2)

sscaROC

Covariate-adjusted continuous biomarker evaluations for specific population.

Description

Provides evaluation for continuous biomarkers at controlled sensitivity/specificity level, or ROC curve in specified sub-population.

Usage

```r
sscaROC(diseaseData, controlData, userFormula, target_covariates,
    control_sensitivity = NULL, control_specificity = NULL, mono_resp_method = "ROC",
    whichSE = "sample", global_ROC_controlled_by = "sensitivity", nbootstrap = 100,
    CI_alpha = 0.95, logit_CI = TRUE, verbose = TRUE)
```

Arguments

- `diseaseData` Data from patients including dependent (biomarker) and independent (covariates) variables.
controlData Data from controls including dependent (biomarker) and independent (covariates) variables.

userFormula A character string to represent the function for covariate adjustment. For example, let Y denote biomarker, Z1 and Z2 denote two covariates. Then userFormula = "Y ~ Z1 + Z2".

target_covariates Covariates of the interested sub-population. It could be a vector, e.g. `c(1, 0.5, 0.8)`, or a matrix, e.g. `target_covariates = matrix(c(1, 0.7, 0.9, 1, 0.8, 0.8), 2, 3, byrow = TRUE)`

control_sensitivity The level(s) of sensitivity to be controlled at. Could be a scalar (e.g. 0.7) or a numeric vector (e.g. `c(0.7, 0.8, 0.9)`).

control_specificity The level(s) of specificity to be controlled at. Could be a scalar (e.g. 0.7) or a numeric vector (e.g. `c(0.7, 0.8, 0.9)`).

mono_resp_method The method used to restore monotonicity of the ROC curve or computed sensitivity/specificity value. It should one from the following: "none", "ROC". "none" is not applying any monotonicity respecting method. "ROC" is to apply ROC-based monotonicity respecting approach. Default value is "ROC".

whichSE The method used to compute standard error. It should be one from the following: "sample", "bootstrap", meaning to calculate the standard error using sample-based approach or bootstrap. Default is "sample".

global_ROC_controlled_by Whether sensitivity/specificity is used to control when computing global ROC. It should one from the following: "sensitivity", "specificity". Default is "sensitivity".

nbootstrap Number of bootstrap iterations. Default is 100.

CI_alpha Percentage of confidence interval. Default is 0.95.

logit_CI Whether to apply logit-based confidence interval. Logit-transformed CI has been identified to be more robust near border area.

verbose Whether to print out messages. Default value is true.

Value

If control_sensitivity or control_specificity is provided, compute covariate-adjusted specificity (sensitivity) at controlled sensitivity (specificity) level.

Estimate Covariate-adjusted sensitivity/specificity.

SE Estimated standard error.

CI Estimated confidence intervals.

If both control_sensitivity and control_specificity are null, compute covariate-adjusted ROC curve.

sensitivity Estimated sensitivity.

specificity Estimated specificity.

mono_adj Monotonicity adjustment method.
Examples

```r
n1 = n0 = 1000
## generate data
Z_D1 <- rbinom(n1, size = 1, prob = 0.3)
Z_D2 <- rnorm(n1, 0.8, 1)
Z_C1 <- rbinom(n0, size = 1, prob = 0.7)
Z_C2 <- rnorm(n0, 0.8, 1)
Y_C_Z0 <- rnorm(n0, 0.1, 1)
Y_D_Z0 <- rnorm(n1, 1.1, 1)
Y_C_Z1 <- rnorm(n0, 0.2, 1)
Y_D_Z1 <- rnorm(n1, 0.9, 1)
M0 <- Y_C_Z0 * (Z_C1 == 0) + Y_C_Z1 * (Z_C1 == 1) + Z_C2
M1 <- Y_D_Z0 * (Z_D1 == 0) + Y_D_Z1 * (Z_D1 == 1) + 1.5 * Z_D2
diseaseData <- data.frame(M = M1, Z1 = Z_D1, Z2 = Z_D2)
controlData <- data.frame(M = M0, Z1 = Z_C1, Z2 = Z_C2)
userFormula = "M~Z1+Z2"
target_covariates = c(1, 0.7, 0.9)
res <- sscaROC(diseaseData,controlData,
               userFormula = userFormula,
               control_sensitivity = c(0.2,0.8, 0.9),
               target_covariates = target_covariates,
               control_specificity = NULL,
               mono_resp_method = "none",
               whichSE = "sample",nbootstrap = 100,
               CI_alpha = 0.95, logit_CI = TRUE)

## bootstrap-based variance estimation
res <- sscaROC(diseaseData,controlData,
               userFormula = userFormula,
               control_sensitivity = c(0.2,0.8, 0.9),
               target_covariates = target_covariates,
               control_specificity = NULL,
               mono_resp_method = "none",
               whichSE = "bootstrap",nbootstrap = 100,
               CI_alpha = 0.95, logit_CI = TRUE)

## monotonization by ROC-based
res <- sscaROC(diseaseData,controlData,
               userFormula = userFormula,
               control_sensitivity = c(0.2,0.8, 0.9),
               target_covariates = target_covariates,
               control_specificity = NULL,
               mono_resp_method = "ROC",
               whichSE = "bootstrap",nbootstrap = 100,
               CI_alpha = 0.95, logit_CI = TRUE)

## control specificity
res <- sscaROC(diseaseData,controlData,
               userFormula = userFormula,
               control_sensitivity = c(0.2,0.8, 0.9),
               target_covariates = target_covariates,
               control_specificity = NULL,
               mono_resp_method = "none",
               whichSE = "sample",nbootstrap = 100,
               CI_alpha = 0.95, logit_CI = TRUE)
```

References

sscaROC

Author(s)
Ziyi.li <zli16@mdanderson.org>
get ROC curves
myROC <- sccaROC(diseaseData,
 controlData,
 userFormula,
 target_covariates,
 global_ROC_controlled_by = "sensitivity",
 mono_resp_method = "none")

sscaROC_CB

Get confidence band for covariate-adjusted ROC curve for specified sub-population.

Description

Use this function to compute the confidence band for covariate-adjusted ROC curve, with or without monotonicity respecting methods for sub-population.

Usage

sscaROC_CB(diseaseData, controlData, userFormula, mono_resp_method = "none",
 target_covariates, global_ROC_controlled_by = "sensitivity", CB_alpha = 0.95,
 logit_CB = FALSE, nbootstrap = 100, nbin = 100, verbose = FALSE)

Arguments

- **diseaseData**: Data from patients including dependent (biomarker) and independent (covariates) variables.
- **controlData**: Data from controls including dependent (biomarker) and independent (covariates) variables.
- **userFormula**: A character string to represent the function for covariate adjustment. For example, let Y denote biomarker, Z1 and Z2 denote two covariates. Then userFormula = "Y ~ Z1 + Z2".
- **mono_resp_method**: The method used to restore monotonicity of the ROC curve or computed sensitivity/specificity value. It should one from the following: "none", "ROC". "none" is not applying any monotonicity respecting method. "ROC" is to apply ROC-based monotonicity respecting approach. Default value is "ROC".
- **target_covariates**: Covariates of the interested sub-population. It could be a vector, e.g. c(1, 0.5, 0.8), or a matrix, e.g. target_covariates = matrix(c(1, 0.7, 0.9, 1, 0.8, 0.8), 2, 3, byrow = TRUE)
sscaROC_CB

global_ROC_controlled_by
Whether sensitivity/specificity is used to control when computing global ROC. It should one from the following: "sensitivity", "specificity". Default is "sensitivity".

CB_alpha
Percentage of confidence band. Default is 0.95.

logit_CB
Whether to use logit-transformed (then transform back) confidence band. Default is FALSE.

nbootstrap
Number of bootstrap iterations. Default is 100.

nbin
Number of bins used for constructing confidence band. Default is 100.

verbose
Whether to print out messages during bootstrap. Default value is FALSE.

Value

If global ROC is controlled by sensitivity, a list will be output including the following

- **Sensitivity** Vector of sensitivities;
- **Specificity_upper**
 Upper confidence band for specificity estimations;
- **Specificity_lower**
 Lower confidence band for specificity estimations;
- **global_ROC_controlled_by**
 "sensitivity".

If global ROC is controlled by Specificity, a list will be output including the following

- **Specificity** Vector of specificity;
- **Sensitivity_upper**
 Upper confidence band for sensitivity estimations;
- **Sensitivity_lower**
 Lower confidence band for sensitivity estimations;
- **global_ROC_controlled_by**
 "specificity".

Author(s)
Ziyi.li <zli16@mdanderson.org>

Examples

```r
n1 = n0 = 500

## generate data
Z_D1 <- rbinom(n1, size = 1, prob = 0.3)
Z_D2 <- rnorm(n1, 0.8, 1)
Z_C1 <- rbinom(n0, size = 1, prob = 0.7)
Z_C2 <- rnorm(n0, 0.8, 1)
Y_C_Z0 <- rnorm(n0, 0.1, 1)
Y_D_Z0 <- rnorm(n1, 1.1, 1)
```
Y_C_Z1 <- rnorm(n0, 0.2, 1)
Y_D_Z1 <- rnorm(n1, 0.9, 1)

M0 <- Y_C_Z0 * (Z_C1 == 0) + Y_C_Z1 * (Z_C1 == 1) + Z_C2
M1 <- Y_D_Z0 * (Z_D1 == 0) + Y_D_Z1 * (Z_D1 == 1) + 1.5 * Z_D2

diseaseData <- data.frame(M = M1, Z1 = Z_D1, Z2 = Z_D2)
controlData <- data.frame(M = M0, Z1 = Z_C1, Z2 = Z_C2)

userFormula = "M~Z1+Z2"
target_covariates = c(1, 0.7, 0.9)

default nbootstrap is 100
set nbootstrap as 10 here to improve example speed

myROCband <- sscaROC_CB(diseaseData,
controlData,
userFormula,
mono_resp_method = "none",
target_covariates,
global_ROC_controlled_by = "sensitivity",
CB_alpha = 0.95,
logit_CB = FALSE,
nbootstrap = 10,
nbin = 100,
verbose = FALSE)
Index

* Confidence band
 plot_caROC_CB, 9

* Plot
 plot_caROC_CB, 9

* ROC
 caROC, 2
 caROC_CB, 4
 plot_caROC, 8
 plot_caROC_CB, 9
 plot_ssscaROC, 10
 plot_ssscaROC_CB, 12
 ssscaROC, 13
 ssscaROC_CB, 16

* confidence band
 caROC_CB, 4
 plot_ssscaROC_CB, 12
 ssscaROC_CB, 16

* plot
 plot_caROC, 8
 plot_ssscaROC, 10

* sensitivity
 caROC, 2
 caThreshold, 6
 ssscaROC, 13

* specificity
 caROC, 2
 caThreshold, 6
 ssscaROC, 13

* subpopulation
 ssscaROC, 13

* threshold
 caThreshold, 6

caROC, 2
caROC_CB, 4
caThreshold, 6

plot_caROC, 8
plot_caROC_CB, 9
plot_ssscaROC, 10