Package ‘candisc’

April 22, 2020

Type Package
Title Visualizing Generalized Canonical Discriminant and Canonical
 Correlation Analysis
Version 0.8-3
Date 2020-04-20
Depends R (>= 3.5.0), car, heplots (>= 0.8-6), graphics, stats
Suggests rgl, corrplot, knitr, rmarkdown, MASS, rpart, rpart.plot
LazyLoad yes
LazyData yes
Author Michael Friendly [aut, cre],
 John Fox [aut]
Maintainer Michael Friendly <friendly@yorku.ca>
Description Functions for computing and visualizing
generalized canonical discriminant analyses and canonical correlation analysis
for a multivariate linear model.
Traditional canonical discriminant analysis is restricted to a one-way 'MANOVA'
design and is equivalent to canonical correlation analysis between a set of quantitative
response variables and a set of dummy variables coded from the factor variable.
The 'candisc' package generalizes this to higher-way 'MANOVA' designs
for all factors in a multivariate linear model,
computing canonical scores and vectors for each term. The graphic functions provide low-
rank (1D, 2D, 3D)
visualizations of terms in an 'mlm' via the 'plot.candisc' and 'heplot.candisc' methods. Re-
lated plots are
now provided for canonical correlation analysis when all predictors are quantitative.
License GPL (>= 2)
VignetteBuilder knitr
BugReports https://github.com/friendly/candisc/issues
NeedsCompilation no
Repository CRAN
Date/Publication 2020-04-22 12:02:05 UTC
R topics documented:

- candisc-package .. 2
- cancor ... 4
- candisc ... 9
- candiscList ... 13
- can_lm ... 14
- dataIndex ... 15
- Grass ... 16
- heplot.cancor .. 17
- heplot.candisc .. 20
- heplot.candiscList ... 22
- HSB ... 24
- plot.cancor ... 25
- redundancy ... 27
- varOrder .. 29
- vecscale .. 31
- vectors ... 32
- Wilks ... 33
- Wine ... 34
- Wolves ... 36

Index ... 38

candisc-package Visualizing Generalized Canonical Discriminant and Canonical Correlation Analysis

Description

This package includes functions for computing and visualizing generalized canonical discriminant analyses and canonical correlation analysis for a multivariate linear model. The goal is to provide ways of visualizing such models in a low-dimensional space corresponding to dimensions (linear combinations of the response variables) of maximal relationship to the predictor variables.

Traditional canonical discriminant analysis is restricted to a one-way MANOVA design and is equivalent to canonical correlation analysis between a set of quantitative response variables and a set of dummy variables coded from the factor variable. The candisc package generalizes this to multi-way MANOVA designs for all terms in a multivariate linear model (i.e., an mlm object), computing canonical scores and vectors for each term (giving a candiscList object).

The graphic functions are designed to provide low-rank (1D, 2D, 3D) visualizations of terms in a mlm via the plot.candisc method, and the HE plot heplot.candisc and heplot3d.candisc methods. For mlms with more than a few response variables, these methods often provide a much simpler interpretation of the nature of effects in canonical space than heplots for pairs of responses or an HE plot matrix of all responses in variable space.

Analogously, a multivariate linear (regression) model with quantitative predictors can also be represented in a reduced-rank space by means of a canonical correlation transformation of the Y and X
variables to uncorrelated canonical variates, Ycan and Xcan. Computation for this analysis is provided by `cancor` and related methods. Visualization of these results in canonical space are provided by the `plot.cancor`, `heplot.cancor` and `heplot3d.cancor` methods.

These relations among response variables in linear models can also be useful for “effect ordering” (Friendly & Kwan (2003) for variables in other multivariate data displays to make the displayed relationships more coherent. The function `varOrder` implements a collection of these methods.

A new vignette, vignette("diabetes",package="candisc"), illustrates some of these methods. A more comprehensive collection of examples is contained in the vignette for the `heplots` package, vignette("HE-examples",package="heplots").

Details

- **Package:** `candisc`
- **Type:** Package
- **Version:** 0.8-3
- **Date:** 2020-04-20
- **License:** GPL (>= 2)

The organization of functions in this package and the `heplots` package may change in a later version.

Author(s)

Michael Friendly and John Fox

Maintainer: Michael Friendly <friendly@yorku.ca>

References

See Also

- `heplot` for details about HE plots.
- `candisc`, `cancor` for details about canonical discriminant analysis and canonical correlation analysis.
cancor

Canonical Correlation Analysis

Description

The function `cancor` generalizes and regularizes computation for canonical correlation analysis in a way conducive to visualization using methods in the `heplots` package.

Usage

cancor(x, ...)

```r
## S3 method for class 'formula'
cancor(formula, data, subset, weights, na.rm=TRUE, method = "gensvd", ...)

## Default S3 method:
cancor(x, y, weights,
   X.names = colnames(x), Y.names = colnames(y),
   row.names = rownames(x),
   xcenter = TRUE, ycenter = TRUE, xscale = FALSE, yscale = FALSE,
   ndim = min(p, q),
   set.names = c("X", "Y"),
   prefix = c("Xcan", "Ycan"),
   na.rm = TRUE, use = if (na.rm) "complete" else "pairwise",
   method = "gensvd",
   ...
)

## S3 method for class 'cancor'
print(x, digits = max(getOption("digits") - 2, 3), ...)

## S3 method for class 'cancor'
summary(object, digits = max(getOption("digits") - 2, 3), ...)

## S3 method for class 'cancor'
coef(object, type = c("x", "y", "both", "list"), standardize=FALSE, ...)

scores(x, ...)

## S3 method for class 'cancor'
scores(x, type = c("x", "y", "both", "list", "data.frame"), ...)
```

Arguments

- `formula` A two-sided formula of the form `cbind(y1,y2,y3,...) ~ x1 + x2 + x3 + ..."
Details

Canonical correlation analysis (CCA), as traditionally presented is used to identify and measure the associations between two sets of quantitative variables, X and Y. It is often used in the same...
situations for which a multivariate multiple regression analysis (MMRA) would be used. However, CCA is "symmetric" in that the sets X and Y have equivalent status, and the goal is to find orthogonal linear combinations of each having maximal (canonical) correlations. On the other hand, MMRA is "asymmetric", in that the Y set is considered as responses, each one to be explained by separate linear combinations of the Xs.

This implementation of cancorg provides the basic computations for CCA, together with some extractor functions and methods for working with the results in a convenient fashion.

However, for visualization using HE plots, it is most natural to consider plots representing the relations among the canonical variables for the Y variables in terms of a multivariate linear model predicting the Y canonical scores, using either the X variables or the X canonical scores as predictors. Such plots, using heplot.cancor provide a low-rank (1D, 2D, 3D) visualization of the relations between the two sets, and so are useful in cases when there are more than 2 or 3 variables in each of X and Y.

The connection between CCA and HE plots for MMRA models can be developed as follows. CCA can also be viewed as a principal component transformation of the predicted values of one set of variables from a regression on the other set of variables, in the metric of the error covariance matrix.

For example, regress the Y variables on the X variables, giving predicted values $\hat{Y} = X(X'X)^{-1}X'Y$ and residuals $R = Y - \hat{Y}$. The error covariance matrix is $E = R'R/(n - 1)$. Choose a transformation Q that orthogonalizes the error covariance matrix to an identity, that is, $(RQ)'(RQ) = Q'R'RQ = (n - 1)I$, and apply the same transformation to the predicted values to yield, say, $Z = YQ$. Then, a principal component analysis on the covariance matrix of Z gives eigenvalues of $E^{-1}H$, and so is equivalent to the MMRA analysis of $lm(Y \sim X)$ statistically, but visualized here in canonical space.

Value

An object of class cancorg, a list with the following components:

- **cancor**: Canonical correlations, i.e., the correlations between each canonical variate for the Y variables with the corresponding canonical variate for the X variables.
- **names**: Names for various items, a list of 4 components: X, Y, row.names, set.names
- **ndim**: Number of canonical dimensions extracted, <= min(p, q)
- **dim**: Problem dimensions, a list of 3 components: p (number of X variables), q (number of Y variables), n (sample size)
- **coef**: Canonical coefficients, a list of 2 components: X, Y
- **scores**: Canonical variate scores, a list of 2 components:
 - X: Canonical variate scores for the X variables
 - Y: Canonical variate scores for the Y variables
- **X**: The matrix X
- **Y**: The matrix Y
- **weights**: Observation weights, if supplied, else NULL
- **structure**: Structure correlations ("loadings"), a list of 4 components:
 - **Xxxscores**: Structure correlations of the X variables with the Xcan canonical scores
Y.xscores Structure correlations of the Y variables with the Xcan canonical scores

X.yscores Structure correlations of the X variables with the Ycan canonical scores

Y.yscores Structure correlations of the Y variables with the Ycan canonical scores

The formula method also returns components call and terms

Note

Not all features of CCA are presently implemented: standardized vs. raw scores, more flexible handling of missing data, other plot methods, ...

Author(s)

Michael Friendly

References

See Also

Other implementations of CCA: cancor (very basic), cca in the yacca (fairly complete, but very messy return structure), cc in CCA (fairly complete, very messy return structure, no longer maintained).
redudancy, for redundancy analysis; plot.cancor, for enhanced scatterplots of the canonical variates.
heplot.cancor for CCA HE plots and heplots for generic heplot methods.
candisc for related methods focused on multivariate linear models with one or more factors among the X variables.

Examples

data(Rohwer, package="heplots")
X <- as.matrix(Rohwer[,6:10]) # the PA tests
Y <- as.matrix(Rohwer[,3:5]) # the aptitude/ability variables

visualize the correlation matrix using corrplot()
if (require(corrplot)) {
 M <- cor(cbind(X,Y))
corrplot(M, method="ellipse", order="hclust", addrect=2, addCoef.col="black")
}

(cc <- cancor(X, Y, set.names=c("PA", "Ability")))

Canonical correlation analysis of:
5 PA variables: n, s, ns, na, ss
with 3 Ability variables: SAT, PPVT, Raven

<table>
<thead>
<tr>
<th>CanR</th>
<th>CanRSQ</th>
<th>Eigen</th>
<th>percent</th>
<th>cum percent</th>
<th>scree</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 0.6703</td>
<td>0.44934</td>
<td>0.81599</td>
<td>77.30</td>
<td>77.30</td>
<td>******************************</td>
</tr>
<tr>
<td>2 0.3837</td>
<td>0.14719</td>
<td>0.17260</td>
<td>16.35</td>
<td>93.65</td>
<td>******</td>
</tr>
<tr>
<td>3 0.2506</td>
<td>0.06282</td>
<td>0.06704</td>
<td>6.35</td>
<td>100.00</td>
<td>**</td>
</tr>
</tbody>
</table>

Test of H0: The canonical correlations in the current row and all that follow are zero

<table>
<thead>
<tr>
<th>CanR</th>
<th>WilksL</th>
<th>F df1</th>
<th>df2</th>
<th>p.value</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 0.67033</td>
<td>0.44011</td>
<td>3.8961</td>
<td>15</td>
<td>168.8 0.000006</td>
</tr>
<tr>
<td>2 0.38366</td>
<td>0.79923</td>
<td>1.8379</td>
<td>8</td>
<td>124.0 0.076076</td>
</tr>
<tr>
<td>3 0.25065</td>
<td>0.93718</td>
<td>1.4078</td>
<td>3</td>
<td>63.0 0.248814</td>
</tr>
</tbody>
</table>

formula method
c <- cancor(cbind(SAT, PPVT, Raven) ~ n + s + ns + na + ss, data=Rohwer, set.names=c("PA", "Ability"))

using observation weights
s.set(12345)
wts <- sample(0:1, size=nrow(Rohwer), replace=TRUE, prob=c(.05, .95))
cw <- cancor(X, Y, set.names=c("PA", "Ability"), weights=wts)

show correlations of the canonical scores
zapsmall(cor(scores(cc, type="x"), scores(cc, type="y")))

standardized coefficients
coef(cc, type="both", standardize=TRUE)

plot(cc, smooth=TRUE)

fit the MMreg model
school.mod <- lm(cbind(reading, mathematics, selfesteem) ~ education + occupation + visit + counseling + teacher, data=schooldata)
Anova(school.mod)
pairs(school.mod)

canonical correlation analysis
school.cc <- cancor(cbind(reading, mathematics, selfesteem) ~ education + occupation + visit + counseling + teacher, data=schooldata)
school.cc
heplot(school.cc, xpd=TRUE, scale=0.3)
Description

candisc performs a generalized canonical discriminant analysis for one term in a multivariate linear model (i.e., an mlm object), computing canonical scores and vectors. It represents a transformation of the original variables into a canonical space of maximal differences for the term, controlling for other model terms.

In typical usage, the term should be a factor or interaction corresponding to a multivariate test with 2 or more degrees of freedom for the null hypothesis.

Usage

candisc(mod, ...)

S3 method for class 'mlm'
candisc(mod, term, type = "2", manova, ndim = rank, ...)

S3 method for class 'candisc'
coef(object, type = c("std", "raw", "structure"), ...)

S3 method for class 'candisc'
plot(x, which = 1:2, conf = 0.95, col, pch, scale, asp = 1,
 var.col = "blue", var.lwd = par("lwd"), var.labels, var.cex = 1, var.pos,
 rev.axes=c(FALSE, FALSE),
 ellipse=FALSE, ellipse.prob = 0.68, fill.alpha=0.1,
 prefix = "Can", suffix=TRUE,
 titles.1d = c("Canonical scores", "Structure"), ...)

S3 method for class 'candisc'
print(x, digits=max(getOption("digits") - 2, 3), LRtests=TRUE, ...)

S3 method for class 'candisc'
summary(object, means = TRUE, scores = FALSE, coef = c("std"),
 ndim, digits = max(getOption("digits") - 2, 4), ...)

Arguments

mod An mlm object, such as computed by lm() with a multivariate response

term the name of one term from mod for which the canonical analysis is performed.

type type of test for the model term, one of: "II", "III", "2", or "3"

manova the Anova.mlm object corresponding to mod. Normally, this is computed internally by Anova(mod)
ndim Number of dimensions to store in (or retrieve from, for the summary method) the means, structure, scores and coeffs.* components. The default is the rank of the H matrix for the hypothesis term.

object, x A candisc object

which A vector of one or two integers, selecting the canonical dimension(s) to plot. If the canonical structure for a term has ndim==1, or length(which)==1, a 1D representation of canonical scores and structure coefficients is produced by the plot method. Otherwise, a 2D plot is produced.

conf Confidence coefficient for the confidence circles around canonical means plotted in the plot method

col A vector of the unique colors to be used for the levels of the term in the plot method, one for each level of the term. In this version, you should assign colors and point symbols explicitly, rather than relying on the somewhat arbitrary defaults, based on palette

pch A vector of the unique point symbols to be used for the levels of the term in the plot method.

scale Scale factor for the variable vectors in canonical space. If not specified, a scale factor is calculated to make the variable vectors approximately fill the plot space.

asp Aspect ratio for the plot method. The asp=1 (the default) assures that the units on the horizontal and vertical axes are the same, so that lengths and angles of the variable vectors are interpretable.

var.col Color used to plot variable vectors

var.lwd Line width used to plot variable vectors

var.labels Optional vector of variable labels to replace variable names in the plots

var.cex Character expansion size for variable labels in the plots

var.pos Position(s) of variable vector labels wrt. the end point. If not specified, the labels are out-justified left and right with respect to the end points.

rev.axes Logical, a vector of length(which). TRUE causes the orientation of the canonical scores and structure coefficients to be reversed along a given axis.

ellipse Draw data ellipses for canonical scores?

ellipse.prob Coverage probability for the data ellipses

fill.alpha Transparency value for the color used to fill the ellipses. Use fill.alpha to draw the ellipses unfilled.

prefix Prefix used to label the canonical dimensions plotted

suffix Suffix for labels of canonical dimensions. If suffix=TRUE the percent of hypothesis (H) variance accounted for by each canonical dimension is added to the axis label.

titles.1d A character vector of length 2, containing titles for the panels used to plot the canonical scores and structure vectors, for the case in which there is only one canonical dimension.

means Logical value used to determine if canonical means are printed

scores Logical value used to determine if canonical scores are printed
Canal discriminant analysis is typically carried out in conjunction with a one-way MANOVA design. It represents a linear transformation of the response variables into a canonical space in which (a) each successive canonical variate produces maximal separation among the groups (e.g., maximum univariate F statistics), and (b) all canonical variates are mutually uncorrelated. For a one-way MANOVA with g groups and p responses, there are $df_h = \min(g-1, p)$ such canonical dimensions, and tests intially stated by Bartlett (1938) allow one to determine the number of significant canonical dimensions.

A generalized canonical discriminant analysis extends this idea to a general multivariate linear model. Analysis of each term in the mlm produces a rank df_h H matrix sum of squares and cross-products matrix that is tested against the rank df_e E matrix by the standard multivariate tests (Wilks' Lambda, Hotelling-Lawley trace, Pillai trace, Roy's maximum root test). For any given term in the mlm, the generalized canonical discriminant analysis amounts to a standard discriminant analysis based on the H matrix for that term in relation to the full-model E matrix.

The plot method for candisc objects is typically a 2D plot, similar to a biplot. It shows the canonical scores for the groups defined by the term as points and the canonical structure coefficients as vectors from the origin.

If the canonical structure for a term has $ndim==1$, or $length(which)==1$, the 1D representation consists of a boxplot of canonical scores and a vector diagram showing the magnitudes of the structure coefficients.

Value

An object of class candisc with the following components:

- **dfh**
 - hypothesis degrees of freedom for term
- **dfe**
 - error degrees of freedom for the mlm
- **rank**
 - number of non-zero eigenvalues of HE^{-1}
- **eigenvalues**
 - eigenvalues of HE^{-1}
- **canrsq**
 - squared canonical correlations
- **pct**
 - A vector containing the percentages of the canrsq of their total.
- **ndim**
 - Number of canonical dimensions stored in the means, structure and coeffs.* components
means A data.frame containing the class means for the levels of the factor(s) in the term
factors A data frame containing the levels of the factor(s) in the term
term name of the term
terms A character vector containing the names of the terms in the mlm object
coeffs.raw A matrix containing the raw canonical coefficients
coeffs.std A matrix containing the standardized canonical coefficients
structure A matrix containing the canonical structure coefficients on ndim dimensions, i.e., the correlations between the original variates and the canonical scores. These are sometimes referred to as Total Structure Coefficients.
scores A data frame containing the predictors in the mlm model and the canonical scores on ndim dimensions. These are calculated as \(Y \times \text{coeffs.raw} \), where \(Y \) contains the standardized response variables.

Author(s)
Michael Friendly and John Fox

References

See Also
candiscList, heplot, heplot3d

Examples
grass.mod <- lm(cbind(N1,N9,N27,N81,N243) ~ Block + Species, data=Grass)
Anova(grass.mod, test="Wilks")
grass.can1 <- candisc(grass.mod, term="Species")
plot(grass.can1)

library(heplots)
heplot(grass.can1, scale=6, fill=TRUE)

iris data
iris.mod <- lm(cbind(Petal.Length, Sepal.Length, Petal.Width, Sepal.Width) ~ Species, data=iris)
iris.can <- candisc(iris.mod, data=iris)
#-- assign colors and symbols corresponding to species
col <- c("red", "brown", "green3")
pch <- 1:3
plot(iris.can, col=col, pch=pch)
heplot(iris.can)
1-dim plot
iris.can1 <- candisc(iris.mod, data=iris, ndim=1)
plot(iris.can1)

candiscList

Canonical discriminant analyses

candiscList performs a generalized canonical discriminant analysis for all terms in a multivariate linear model (i.e., an mlm object), computing canonical scores and vectors.

Usage

candiscList(mod, ...)

```r
## S3 method for class 'mlm'
candiscList(mod, type = "2", manova, ndim, ...)

## S3 method for class 'candiscList'
plot(x, term, ask = interactive(), graphics = TRUE, ...)

## S3 method for class 'candiscList'
print(x, ...)

## S3 method for class 'candiscList'
summary(object, ...)
```

Arguments

- **mod**: An mlm object, such as computed by lm() with a multivariate response
- **type**: type of test for the model term, one of: "II", "III", "2", or "3"
- **manova**: the Anova.mlm object corresponding to mod. Normally, this is computed internally by Anova(mod)
- **ndim**: Number of dimensions to store in the means, structure, scores and coeffs.* components. The default is the rank of the H matrix for the hypothesis term.
- **x**: A candiscList object
- **term**: The name of one term to be plotted for the plot method. If not specified, one candisc plot is produced for each term in the mlm object.
- **ask**: If TRUE (the default, when running interactively), a menu of terms is presented; if ask is FALSE, canonical plots for all terms are produced.
- **graphics**: if TRUE (the default, when running interactively), then the menu of terms to plot is presented in a dialog box rather than as a text menu.
- **...**: arguments to be passed down.

Value

An object of class `candiscList` which is a list of `candisc` objects for the terms in the `mlm`.

Author(s)

Michael Friendly and John Fox

See Also

candisc, heplot, heplot3d

Examples

gass.mod <- lm(cbind(N1,N9,N27,N81,N243) ~ Block + Species, data=Grass)

```r
gass.canL <- candiscList(gass.mod)
names(gass.canL)
names(gass.canL$Species)
```

```r
## Not run:
print(gass.canL)
## End(Not run)
```  
plot(gass.canL, type="n", ask=FALSE)
heplot(gass.canL$Species, scale=6)
heplot(gass.canL$Block, scale=2)

can_lm

Transform a Multivariate Linear model mlm to a Canonical Representation

Description

This function uses `candisc` to transform the responses in a multivariate linear model to scores on canonical variables for a given term and then uses those scores as responses in a linear (lm) or multivariate linear model (mlm).

Usage

can_lm(mod, term, ...)

Arguments

- `mod`: A `mlm` object
- `term`: One term in that model
- `...`: Arguments passed to `candisc`
The function constructs a model formula of the form \(\text{Can} \sim \text{terms} \) where \(\text{Can} \) is the canonical score(s) and terms are the terms in the original \(\text{mlm} \), then runs \(\text{lm}() \) with that formula.

A \(\text{lm} \) object if \(\text{term} \) is a rank 1 hypothesis, otherwise a \(\text{mlm} \) object.

Michael Friendly

See Also

candisc, cancor

Examples

```r
iris.mod <- lm(cbind(Petal.Length, Sepal.Length, Petal.Width, Sepal.Width) ~ Species, data=iris)
iris.can <- can_lm(iris.mod, "Species")
iris.can
Anova(iris.mod)
Anova(iris.can)
```

Indices of observations in a model data frame

Find sequential indices for observations in a data frame corresponding to the unique combinations of the levels of a given model term from a model object or a data frame.

```r
dataIndex(x, term)
```

Either a data frame or a model object

The name of one term in the model, consisting only of factors

A vector of indices.

Michael Friendly
Examples

```r
factors <- expand.grid(A=factor(1:3),B=factor(1:2),C=factor(1:2))
n <- nrow(factors)
responses <- data.frame(Y1=10+round(10*rnorm(n)),Y2=10+round(10*rnorm(n)))

test <- data.frame(factors, responses)
mod <- lm(cbind(Y1,Y2) ~ A*B, data=test)

dataIndex(mod, "A")
dataIndex(mod, "A:B")
```

Grass

Yields from Nitrogen nutrition of grass species

Description

The data frame Grass gives the yield (10 * log10 dry-weight (g)) of eight grass Species in five replicates (Block) grown in sand culture at five levels of nitrogen.

Usage

data(Grass)

Format

A data frame with 40 observations on the following 7 variables.

- **Species** a factor with levels **B.media D.glomerata F.ovina F.rubra H.pubesens K.cristata L.perenne P.bertolonii**
- **Block** a factor with levels 1 2 3 4 5
- **N1** species yield at 1 ppm Nitrogen
- **N9** species yield at 9 ppm Nitrogen
- **N27** species yield at 27 ppm Nitrogen
- **N81** species yield at 81 ppm Nitrogen
- **N243** species yield at 243 ppm Nitrogen

Details

Nitrogen (NaNO3) levels were chosen to vary from what was expected to be from critically low to almost toxic. The amount of Nitrogen can be considered on a log3 scale, with levels 0, 2, 3, 4, 5. Gittins (1985, Ch. 11) treats these as equally spaced for the purpose of testing polynomial trends in Nitrogen level.

The data are also not truly multivariate, but rather a split-plot experimental design. For the purpose of exposition, he regards Species as the experimental unit, so that correlations among the responses refer to a composite representative of a species rather than to an individual exemplar.
Source

Examples

str(Grass)
grass.mod <- lm(cbind(N1,N9,N27,N81,N243) ~ Block + Species, data=Grass)
Anova(grass.mod)

grass.canL <-candiscList(grass.mod)
names(grass.canL)
names(grass.canL$Species)

heplot.cancor Canonical Correlation HE plots

Description

These functions plot ellipses (or ellipsoids in 3D) in canonical space representing the hypothesis and error sums-of-squares-and-products matrices for terms in a multivariate linear model representing the result of a canonical correlation analysis. They provide a low-rank 2D (or 3D) view of the effects in the space of maximum canonical correlations, together with variable vectors representing the correlations of Y variables with the canonical dimensions.

For consistency with heplot.candisc, the plots show effects in the space of the canonical Y variables selected by which.

Usage

S3 method for class 'cancor'
heplot(mod, which = 1:2, scale, asp=1,
 var.vectors = "Y", var.col = c("blue", "darkgreen"), var.lwd = par("lwd"),
 var.cex = par("cex"), var.xpd = TRUE,
 prefix = "Ycan", suffix = TRUE, terms = TRUE, ...)

S3 method for class 'cancor'
heplot3d(mod, which = 1:3, scale, asp="iso",
 var.vectors = "Y", var.col = c("blue", "darkgreen"), var.lwd = par("lwd"),
 var.cex = par("cex"), var.xpd = NA,
 prefix = "Ycan", suffix = FALSE, terms = TRUE, ...)

Arguments

 mod A cancor object

 which A numeric vector containing the indices of the Y canonical dimensions to plot.
scale

Scale factor for the variable vectors in canonical space. If not specified, the function calculates one to make the variable vectors approximately fill the plot window.

asp

Aspect ratio setting. Use asp=1 in 2D plots and asp="iso" in 3D plots to ensure equal units on the axes. Use asp=NA in 2D plots and asp=NULL in 3D plots to allow separate scaling for the axes. See Details below.

var.vectors

Which variable vectors to plot? A character vector containing one or more of "X" and "Y".

var.col

Color(s) for variable vectors and labels, a vector of length 1 or 2. The first color is used for Y vectors and the second for X vectors, if these are plotted.

var.lwd

Line width for variable vectors

var.cex

Text size for variable vector labels

var.xpd

Logical. Allow variable labels outside the plot box? Does not apply to 3D plots.

prefix

Prefix for labels of the Y canonical dimensions.

suffix

Suffix for labels of canonical dimensions. If suffix=TRUE the percent of hypothesis (H) variance accounted for by each canonical dimension is added to the axis label.

terms

Terms for the X variables to be plotted in canonical space. The default, terms=TRUE or terms="X" plots H ellipses for all of the X variables. terms="Xcan" plots H ellipses for all of the X canonical variables, xcan1, xcan2,

... Other arguments passed to link[heplots]{heplot}. In particular, you can pass linear hypotheses among the term variables via hypotheses.

Details

The interpretation of variable vectors in these plots is different from that of the terms plotted as H "ellipses," which appear as degenerate lines in the plot (because they correspond to 1 df tests of rank(H)=1).

In canonical space, the interpretation of the H ellipses for the terms is the same as in ordinary HE plots: a term is significant iff its H ellipse projects outside the (orthogonalized) E ellipsoid somewhere in the space of the Y canonical dimensions. The orientation of each H ellipse with respect to the Y canonical dimensions indicates which dimensions that X variate contributes to.

On the other hand, the variable vectors shown in these plots are intended only to show the correlations of Y variables with the canonical dimensions. Only their relative lengths and angles with respect to the Y canonical dimensions have meaning. Relative lengths correspond to proportions of variance accounted for in the Y canonical dimensions plotted; angles between the variable vectors and the canonical axes correspond to the structure correlations. The absolute lengths of these vectors are typically manipulated by the scale argument to provide better visual resolution and labeling for the variables.

Setting the aspect ratio of these plots is important for the proper interpretation of angles between the variable vectors and the coordinate axes. However, this then makes it impossible to change the aspect ratio of the plot by re-sizing manually.
Value

Returns invisibly an object of class "heplot", with coordinates for the various hypothesis ellipses and the error ellipse, and the limits of the horizontal and vertical axes.

Author(s)

Michael Friendly

References

See Also

cancor for details on canonical correlation as implemented here; plot.cancor for scatterplots of canonical variable scores.
heplot.candisc, heplot, linearHypothesis

Examples

data(Rohwer, package="heplots")
X <- as.matrix(Rohwer[,6:10])
Y <- as.matrix(Rohwer[,3:5])
cc <- cancor(X, Y, set.names=c("PA", "Ability"))

basic plot
heplot(cc)

note relationship of joint hypothesis to individual ones
heplot(cc, scale=1.25, hypotheses=list("na+ns"=c("na", "ns")))

more options
heplot(cc, hypotheses=list("All X"=colnames(X)),
fill=c(TRUE,FALSE), fill.alpha=0.2,
var.cex=1.5, var.col="red", var.lwd=3,
prefix="Y canonical dimension"
)

3D version
Not run:
heplot3d(cc, var.lwd=3, var.col="red")
End(Not run)
heplot.candisc Canonical Discriminant HE plots

Description

These functions plot ellipses (or ellipsoids in 3D) in canonical discriminant space representing
the hypothesis and error sums-of-squares-and-products matrices for terms in a multivariate linear
model. They provide a low-rank 2D (or 3D) view of the effects for that term in the space of
maximum discrimination.

Usage

S3 method for class 'candisc'
heplot(mod, which = 1:2, scale, asp = 1, var.col = "blue",
 var.lwd = par("lwd"), var.cex=par("cex"), var.pos,
 rev.axes=c(FALSE, FALSE),
 prefix = "Can", suffix = TRUE, terms = mod$term, ...)

S3 method for class 'candisc'
heplot3d(mod, which = 1:3, scale, asp="iso", var.col = "blue",
 var.lwd=par("lwd"), var.cex=rgl::par3d("cex"),
 prefix = "Can", suffix = FALSE, terms = mod$term,
 ...

Arguments

mod A candisc object for one term in a mlm
which A numeric vector containing the indices of the canonical dimensions to plot.
scale Scale factor for the variable vectors in canonical space. If not specified, the
 function calculates one to make the variable vectors approximately fill the plot
 window.
asp Aspect ratio for the horizontal and vertical dimensions. The defaults, asp=1 for
 heplot.candisc and asp="iso" for heplot3d.candisc ensure equal units on
 all axes, so that angles and lengths of variable vectors are interpretable. As well,
 the standardized canonical scores are uncorrelated, so the Error ellipse (ellip-
 soid) should plot as a circle (sphere) in canonical space. For heplot3d.candisc,
 use asp=NULL to suppress this transformation to iso-scaled axes.
var.col Color for variable vectors and labels
var.lwd Line width for variable vectors
var.cex Text size for variable vector labels
var.pos Position(s) of variable vector labels wrt. the end point. If not specified, the
 labels are out-justified left and right with respect to the end points.
rev.axes Logical, a vector of length(which). TRUE causes the orientation of the canoni-
 cal scores and structure coefficients to be reversed along a given axis.
prefix Prefix for labels of canonical dimensions.
suffix Suffix for labels of canonical dimensions. If suffix=TRUE the percent of hypothesis (H) variance accounted for by each canonical dimension is added to the axis label.
terms Terms from the original mlm whose H ellipses are to be plotted in canonical space. The default is the one term for which the canonical scores were computed. If terms=TRUE, all terms are plotted.
... Arguments to be passed down to heplot or heplot3d

Details

The generalized canonical discriminant analysis for one term in a mlm is based on the eigenvalues, \(\lambda_i \), and eigenvectors, \(V \), of the H and E matrices for that term. This produces uncorrelated canonical scores which give the maximum univariate F statistics. The canonical HE plot is then just the HE plot of the canonical scores for the given term.

For heplot3d.candisc, the default asp="iso" now gives a geometrically correct plot, but the third dimension, CAN3, is often small. Passing an expanded range in zlim to heplot3d usually helps.

Value

heplot.candisc returns invisibly an object of class "heplot", with coordinates for the various hypothesis ellipses and the error ellipse, and the limits of the horizontal and vertical axes.

Similarly, heploted.candisc returns an object of class "heplot3d".

Author(s)

Michael Friendly and John Fox

References

See Also

candisc, candiscList, heplot, heplot3d, aspect3d

Examples

Pottery data, from car package
pottery.mod <- lm(cbind(Al, Fe, Mg, Ca, Na) ~ Site, data=Pottery)
pottery.can <- candisc(pottery.mod)

heplot(pottery.can, var.lwd=3)
heplot3d(pottery.can, var.lwd=3, scale=10, zlim=c(-3,3), wire=FALSE)
reduce example for CRAN checks time

grass.mod <- lm(cbind(N1,N9,N27,N81,N243) ~ Block + Species, data=Grass)

grass.can1 <- candisc(grass.mod, term="Species")
grass.canL <- candiscList(grass.mod)

heplot(grass.can1, scale=6)
heplot(grass.can1, scale=6, terms=TRUE)
heplot(grass.canL, terms=TRUE, ask=FALSE)

heplot3d(grass.can1, wire=FALSE)
compare with non-iso scaling
rgl::aspect3d(x=1,y=1,z=1)
or,
heplot3d(grass.can1, asp=NULL)

Can't run this in example
rgl::play3d(rgl::spin3d(axis = c(1, 0, 0), rpm = 5), duration=12)

reduce example for CRAN checks time

FootHead data, from heplots package
library(heplots)
data(FootHead)

use Helmert contrasts for group
contrasts(FootHead$group) <- contr.helmert

foot.mod <- lm(cbind(width, circum,front.back,eye.top,ear.top,jaw)~group, data=FootHead)
foot.can <- candisc(foot.mod)
heplot(foot.can, main="Candisc HE plot",
 hypotheses=list("group.1"="group1","group.2"="group2"),
 col=c("red", "blue", "green3", "green3"), var.col="red")

heplot.candiscList
Canonical Discriminant HE plots

Description

These functions plot ellipses (or ellipsoids in 3D) in canonical discriminant space representing the hypothesis and error sums-of-squares-and-products matrices for terms in a multivariate linear model. They provide a low-rank 2D (or 3D) view of the effects for that term in the space of maximum discrimination.
S3 method for class 'candiscList'
heplot(mod, term, ask = interactive(), graphics = TRUE, ...)

S3 method for class 'candiscList'
heplot3d(mod, term, ask = interactive(), graphics = TRUE, ...)

Arguments

- **mod**: A candiscList object for terms in a mlm
- **term**: The name of one term to be plotted for the heplot and heplot3d methods. If not specified, one plot is produced for each term in the mlm object.
- **ask**: If TRUE (the default), a menu of terms is presented; if ask is FALSE, canonical HE plots for all terms are produced.
- **graphics**: if TRUE (the default, when running interactively), then the menu of terms to plot is presented in a dialog box rather than as a text menu.
- **...**: Arguments to be passed down

Value

No useful value; used for the side-effect of producing canonical HE plots.

Author(s)

Michael Friendly and John Fox

References

See Also

candisc, candiscList, heplot, heplot3d
Description
The High School and Beyond Project was a longitudinal study of students in the U.S. carried out in 1980 by the National Center for Education Statistics. Data were collected from 58,270 high school students (28,240 seniors and 30,030 sophomores) and 1,015 secondary schools. The HSB data frame is a sample of 600 observations, of unknown characteristics, originally taken from Tatsuoka (1988).

Usage
data(HSB)

Format
A data frame with 600 observations on the following 15 variables. There is no missing data.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>id</td>
<td>Observation id: a numeric vector</td>
</tr>
<tr>
<td>gender</td>
<td>a factor with levels male female</td>
</tr>
<tr>
<td>race</td>
<td>Race or ethnicity: a factor with levels hispanic asian african-amer white</td>
</tr>
<tr>
<td>ses</td>
<td>Socioeconomic status: a factor with levels low middle high</td>
</tr>
<tr>
<td>sch</td>
<td>School type: a factor with levels public private</td>
</tr>
<tr>
<td>prog</td>
<td>High school program: a factor with levels general academic vocation</td>
</tr>
<tr>
<td>locus</td>
<td>Locus of control: a numeric vector</td>
</tr>
<tr>
<td>concept</td>
<td>Self-concept: a numeric vector</td>
</tr>
<tr>
<td>mot</td>
<td>Motivation: a numeric vector</td>
</tr>
<tr>
<td>career</td>
<td>Career plan: a factor with levels clerical craftsman farmer homemaker laborer manager military operative prof1 prof2 proprietor protective sales school service technical not working</td>
</tr>
<tr>
<td>read</td>
<td>Standardized reading score: a numeric vector</td>
</tr>
<tr>
<td>write</td>
<td>Standardized writing score: a numeric vector</td>
</tr>
<tr>
<td>math</td>
<td>Standardized math score: a numeric vector</td>
</tr>
<tr>
<td>sci</td>
<td>Standardized science score: a numeric vector</td>
</tr>
<tr>
<td>ss</td>
<td>Standardized social science (civics) score: a numeric vector</td>
</tr>
</tbody>
</table>

Source
plot.cancor

References

High School and Beyond data files: http://www.icpsr.umich.edu/icpsrweb/ICPSR/studies/7896

Examples

str(HSB)
main effects model
hsb.mod <- lm(cbind(read, write, math, sci, ss) ~
gender + race + ses + sch + prog, data=HSB)
Anova(hsb.mod)

Add some interactions
hsb.mod1 <- update(hsb.mod, . ~ . + gender:race + ses:prog)
heplot(hsb.mod1, col=palette()[c(2,1,3:6)], variables=c("read","math"))

hsb.can1 <- candisc(hsb.mod1, term="race")
heplot(hsb.can1, col=c("red", "black"))

show canonical results for all terms
Not run:
hsb.can <- candiscList(hsb.mod)
hsb.can
End(Not run)

plot.cancor Canonical Correlation Plots

Description

This function produces plots to help visualize X, Y data in canonical space.

The present implementation plots the canonical scores for the Y variables against those for the X variables on given dimensions. We treat this as a view of the data in canonical space, and so offer additional annotations to a standard scatterplot.

Usage

S3 method for class 'cancor'
plot(x, which = 1, xlim, ylim, xlab, ylab,
points = TRUE, add = FALSE, col = palette()[1],
ellipse = TRUE, ellipse.args = list(),
smooth = FALSE, smoother.args = list(), col.smooth = palette()[3],
abline = TRUE, col.lines = palette()[2], lwd = 2,
labels = rownames(xy),
id.method = "mahal", id.n = 0, id.cex = 1, id.col = palette()[1],
...)

Arguments

x A "cancor" object
which Which dimension to plot? An integer in 1:x$ndim.
xlim, ylim Limits for x and y axes
xlab, ylab Labels for x and y axes. If not specified, these are constructed from the set.names component of x.
points logical. Display the points?
add logical. Add to an existing plot?
col Color for points.
ellipse logical. Draw a data ellipse for the canonical scores?
ellipse.args A list of arguments passed to dataEllipse. Internally, the function sets the default value for levels to 0.68.
smooth logical. Draw a (loess) smoothed curve?
smoother.args Arguments passed to loessLine, which should be consulted for details and defaults.
col.smooth Color for the smoothed curve.
abline logical. Draw the linear regression line for Ycan[,which] on Xcan[,which]?
col.lines Color for the linear regression line
lwd Line widths
labels Point labels for point identification via the id.method argument.
id.method Method used to identify individual points. See showLabels for details. The default, id.method = "mahal" identifies the id.n points furthest from the centroid.
id.n Number of points to identify
id.cex, id.col Character size and color for labeled points
... Other arguments passed down to plot(...) and points(...)

Details

Canonical correlation analysis assumes that the all correlations between the X and Y variables can be expressed in terms of correlations the canonical variate pairs, (Xcan1, Ycan1), (Xcan2, Ycan2), ..., and that the relations between these pairs are indeed linear.

Data ellipses, and smoothed (loess) curves, together with the linear regression line for each canonical dimension help to assess whether there are peculiarities in the data that might threaten the validity of CCA. Point identification methods can be useful to determine influential cases.

Value

None. Used for its side effect of producing a plot.

Author(s)

Michael Friendly
Redundancy

References

See Also
cancor, dataEllipse, loessLine, showLabels

Examples

data(Rohwer, package="heplots")
X <- as.matrix(Rohwer[,6:10]) # the PA tests
Y <- as.matrix(Rohwer[,3:5]) # the aptitude/ability variables
cc <- cancor(X, Y, set.names=c("PA", "Ability"))

plot(cc)
exercise some options
plot(cc, smooth=TRUE, id.n=3, ellipse.args=list(fill=TRUE))
plot(cc, which=2, smooth=TRUE)
plot(cc, which=3, smooth=TRUE)

plot vectors showing structure correlations of Xcan and Ycan with their own variables
plot(cc)
struc <- cc$structure
Xstruc <- struc$X.xscores[,1]
Ystruc <- struc$Y.yscores[,1]
scale <- 2

place vectors in the margins of the plot
usr <- matrix(par("usr"), nrow=2, dimnames=list(c("min", "max"), c("x", "y")))
ypos <- usr[2,2] - (1:5)/10
arrows(0, ypos, scale*Xstruc, ypos, angle=10, len=0.1, col="blue")
text(scale*Xstruc, ypos, names(Xstruc), pos=2, col="blue")

xpos <- usr[2,1] - (1 + 1:3)/10
arrows(xpos, 0, xpos, scale*Ystruc, angle=10, len=0.1, col="darkgreen")
text(xpos, scale*Ystruc, names(Ystruc), pos=1, col="darkgreen")

Redundancy

Canonical Redundancy Analysis

Description
Calculates indices of redundancy (Stewart & Love, 1968) from a canonical correlation analysis. These give the proportion of variances of the variables in each set (X and Y) which are accounted for by the variables in the other set through the canonical variates.
Usage

redundancy(object, ...)

S3 method for class 'cancor.redundancy'
print(x, digits = max(getOption("digits") - 3, 3), ...)

Arguments

object
 A "cancor" object

x
 A "cancor.redundancy" for the print method.

digits
 Number of digits to print

...
 Other arguments

Details

None yet.

Value

An object of class "cancor.redundancy", a list with the following 5 components:

Xcan.redun
 Canonical redundancies for the X variables, i.e., the total fraction of X variance
 accounted for by the Y variables through each canonical variate.

Ycan.redun
 Canonical redundancies for the Y variables

X.redun
 Total canonical redundancy for the X variables, i.e., the sum of Xcan.redun.

Y.redun
 Total canonical redundancy for the Y variables

set.names
 names for the X and Y sets of variables

Author(s)

Michael Friendly

References

See Also

cancor, ~~~
varOrder

Examples

data(Rohwer, package="heplots")
X <- as.matrix(Rohwer[,6:10]) # the PA tests
Y <- as.matrix(Rohwer[,3:5]) # the aptitude/ability variables

c <- cancor(X, Y, set.names=c("PA", "Ability"))
redundancy(c)

Redundancies for the PA variables & total X canonical redundancy
##
Xcan1 Xcan2 Xcan3 total X|Y
0.17342 0.04211 0.00797 0.22350

Redundancies for the Ability variables & total Y canonical redundancy
##
Ycan1 Ycan2 Ycan3 total Y|X
0.2249 0.0369 0.0156 0.2774

Description

The varOrder function implements some features of “effect ordering” (Friendly & Kwan (2003) for variables in a multivariate data display to make the displayed relationships more coherent.

This can be used in pairwise HE plots, scatterplot matrices, parallel coordinate plots, plots of multivariate means, and so forth.

For a numeric data frame, the most useful displays often order variables according to the angles of variable vectors in a 2D principal component analysis or biplot. For a multivariate linear model, the analog is to use the angles of the variable vectors in a 2D canonical discriminant biplot.

Usage

default

varOrder(x, ...)

S3 method for class 'mlm'
varOrder(x, term, variables,
 type = c("can", "pc"),
 method = c("angles", "dim1", "dim2", "alphabet", "data", "colmean"),
 names = FALSE, descending = FALSE, ...)

S3 method for class 'data.frame'
varOrder(x, variables,
 method = c("angles", "dim1", "dim2", "alphabet", "data", "colmean"),
 names = FALSE, descending = FALSE, ...)
Arguments

- **x**
 A multivariate linear model or a numeric data frame

- **term**
 For the `mlm` method, one term in the model for which the canonical structure coefficients are found.

- **variables**
 indices or names of the variables to be ordered; defaults to all response variables an MLM or all numeric variables in a data frame.

- **type**
 For an MLM, type="can" uses the canonical structure coefficients for the given term; type="pc" uses the principal component variable eigenvectors.

- **method**
 One of c("angles","dim1","dim2","alphabet","data","colmean") giving the effect ordering method.

- **names**
 logical; if TRUE the effect ordered names of the variables are returned; otherwise, their indices in variables are returned.

- **descending**
 If TRUE, the ordered result is reversed to a descending order.

- **...**
 Arguments passed to methods

Value

A vector of integer indices of the variables or a character vector of their names.

Author(s)

Michael Friendly

References

Examples

data(Wine, package="candisc")
Wine.mod <- lm(as.matrix(Wine[, -1]) ~ Cultivar, data=Wine)
Wine.can <- candisc(Wine.mod)
plot(Wine.can, ellipse=TRUE)
pairs.mlm HE plot, variables in given order
pairs(Wine.mod, fill=TRUE, fill.alpha=.1, var.cex=1.5)

order <- varOrder(Wine.mod)
pairs(Wine.mod, variables=order, fill=TRUE, fill.alpha=.1, var.cex=1.5)

vecscale

Scale vectors to fill the current plot

Description

Calculates a scale factor so that a collection of vectors nearly fills the current plot, that is, the longest vector does not extend beyond the plot region.

Usage

vecscale(vectors, bbox = matrix(par("usr"), 2, 2), origin = c(0, 0), factor = 0.95)

Arguments

- **vectors**: a two-column matrix giving the end points of a collection of vectors
- **bbox**: the bounding box of the containing plot region within which the vectors are to be plotted
- **origin**: origin of the vectors
- **factor**: maximum length of the rescaled vectors relative to the maximum possible

Value

scale factor, the multiplier of the vectors

Author(s)

Michael Friendly

See Also

vecscale, vectors
Examples

bbox <- matrix(c(-3, 3, -2, 2), 2, 2)
colnames(bbox) <- c("x", "y")
rownames(bbox) <- c("min", "max")
bbox

vecs <- matrix(runif(10, -1, 1), 5, 2)
plot(bbox)
arrows(0, 0, vecs[,1], vecs[,2], angle=10, col="red")
(s <- vecscale(vecs))
arrows(0, 0, s*vecs[,1], s*vecs[,2], angle=10)

vectors

Draw Labeled Vectors in 2D or 3D

Description

Graphics utility functions to draw vectors from an origin to a collection of points (using arrows in 2D or lines3d in 3D) with labels for each (using text or texts3d).

Usage

vectors(x, origin = c(0, 0), labels = rownames(x),
 scale = 1,
 col="blue",
 lwd=1, cex=1,
 length=.1, angle=13, pos=NULL,
 ...
)
vectors3d(x, origin=c(0,0,0), labels=rownames(x),
 scale=1,
 col="blue",
 lwd=1, cex=1,
 ...
)

Arguments

x
origin
labels
scale
col
lwd
cex

A two-column matrix or a three-column matrix containing the end points of the vectors
Starting point(s) for the vectors
Labels for the vectors
A multiplier for the length of each vector
color(s) for the vectors.
line width(s) for the vectors.
color(s) for the vectors.
length For vectors, length of the edges of the arrow head (in inches).
angle For vectors, angle from the shaft of the arrow to the edge of the arrow head.
pos For vectors, position of the text label relative to the vector head. If \texttt{pos==NULL},
labels are positioned labels outside, relative to arrow ends.
... other graphical parameters, such as \texttt{1ty, xpd, ...}

Details
The graphical parameters \texttt{col, lty and lwd} can be vectors of length greater than one and will be
recycled if necessary

Value
None

Author(s)
Michael Friendly

See Also
arrows, text, segments
lines3d, texts3d

Examples
plot(c(-3, 3), c(-3,3), type="n")
X <- matrix(rnorm(10), ncol=2)
rownames(X) <- LETTERS[1:5]
vectors(X, scale=2, col=palette())

Wilks Lambda Tests for Canonical Correlations

Description
Tests the sequential hypotheses that the \textit{i}th canonical correlation and all that follow it are zero,
\[\rho_i = \rho_{i+1} = \cdots = 0 \]

Usage

\texttt{Wilks(object, ...)}

S3 method for class 'cancor'
Wilks(object, ...)
S3 method for class 'candisc'
Wilks(object, ...)
Arguments

object An object of class "cancor" or \code{"candisc"}
...

Other arguments passed to methods (not used)

Details

Wilks' Lambda values are calculated from the eigenvalues and converted to F statistics using Rao's approximation.

Value

A data.frame (of class "anova") containing the test statistics

Author(s)

Michael Friendly

References

See Also

cancor, ~~~

Examples

data(Rohwer, package="heplots")
X <- as.matrix(Rohwer[,6:10]) # the PA tests
Y <- as.matrix(Rohwer[,3:5]) # the aptitude/ability variables
cc <- cancor(X, Y, set.names=c("PA", "Ability"))
Wilks(cc)

iris.mod <- lm(cbind(Petal.Length, Sepal.Length, Petal.Width, Sepal.Width) ~ Species, data=iris)
iris.can <- candisc(iris.mod, data=iris)
Wilks(iris.can)

Wine

Chemical composition of three cultivars of wine

Description

These data are the results of a chemical analysis of wines grown in the same region in Italy but derived from three different cultivars. The analysis determined the quantities of 13 constituents found in each of the three types of wines.

This data set is a classic in the machine learning literature as an easy high-D classification problem, but is also of interest for examples of MANOVA and discriminant analysis.
Usage

```r
data("Wine")
```

Format

A data frame with 178 observations on the following 14 variables.

- **Cultivar**: a factor with levels `barolo grignolino barbera`
- **Alcohol**: a numeric vector
- **MalicAcid**: a numeric vector
- **Ash**: a numeric vector
- **AlcAsh**: a numeric vector, Alkalinity of ash
- **Mg**: a numeric vector, Magnesium
- **Phenols**: a numeric vector, Total phenols
- **Flav**: a numeric vector, Flavanoids
- **NonFlavPhenols**: a numeric vector
- **Proa**: a numeric vector, Proanthocyanins
- **Color**: a numeric vector, color intensity
- **Hue**: a numeric vector
- **OD**: a numeric vector, OD280/OD315 of diluted wines
- **Proline**: a numeric vector

Details

The precise definitions of these variables is unknown: units, how they were measured, etc.

Source

This data set was obtained from the UCI Machine Learning Repository, http://archive.ics.uci.edu/ml/datasets/Wine.

This page references a large number of papers that use this data set to compare different methods.

References

In R, a comparable data set is contained in the `ggbiplot` package.

Examples

```r
data(Wine)
str(Wine)
#summary(Wine)

Wine.mlm <- lm(as.matrix(Wine[, -1]) ~ Cultivar, data=Wine)
Wine.can <- candisc(Wine.mlm)
Wine.can
```
plot(Wine.can, ellipse=TRUE)
plot(Wine.can, which=1)

Wolves

Wolf skulls

Description

Skull morphometric data on Rocky Mountain and Arctic wolves (Canis Lupus L.) taken from Morrison (1990), originally from Jolicoeur (1959).

Usage

data(Wolves)

Format

A data frame with 25 observations on the following 11 variables.

- **group** a factor with levels ar:f ar:m rm:f rm:m, comprising the combinations of location and sex
- **location** a factor with levels ar=Arctic, rm=Rocky Mountain
- **sex** a factor with levels f=female, m=male
- **x1** palatal length, a numeric vector
- **x2** postpalatal length, a numeric vector
- **x3** zygomatic width, a numeric vector
- **x4** palatal width outside first upper molars, a numeric vector
- **x5** palatal width inside second upper molars, a numeric vector
- **x6** postglenoid foramina width, a numeric vector
- **x7** interorbital width, a numeric vector
- **x8** braincase width, a numeric vector
- **x9** crown length, a numeric vector

Details

All variables are expressed in millimeters.

The goal was to determine how geographic and sex differences among the wolf populations are determined by these skull measurements. For MANOVA or (canonical) discriminant analysis, the factors group or location and sex provide alternative parameterizations.

Source

References

Examples

data(Wolves)

using group
wolf.mod <- lm(cbind(x1, x2, x3, x4, x5, x6, x7, x8, x9) ~ group, data=Wolves)
Anova(wolf.mod)

wolf.can <- candisc(wolf.mod)
plot(wolf.can)
heplot(wolf.can)

using location, sex
wolf.mod2 <- lm(cbind(x1, x2, x3, x4, x5, x6, x7, x8, x9) ~ location*sex, data=Wolves)
Anova(wolf.mod2)

wolf.can2 <- candiscList(wolf.mod2)
plot(wolf.can2)
Index

*Topic aplot
 vectors, 32
*Topic datasets
 Grass, 16
 HSB, 24
 Wine, 34
 Wolves, 36
*Topic hplot
 candisc, 9
 candiscList, 13
 heplot.cancor, 17
 heplot.candisc, 20
 heplot.candiscList, 22
 plot.cancor, 25
*Topic htest
 Wilks, 33
*Topic manip
 dataIndex, 15
 varOrder, 29
 vecscale, 31
*Topic multivariate
 cancort, 4
 candisc, 9
 candisc-package, 2
 candiscList, 13
 heplot.cancor, 17
 heplot.candisc, 20
 heplot.candiscList, 22
 redundancy, 27
 varOrder, 29
*Topic package
 candisc-package, 2
*Topic utilities
 dataIndex, 15

arrows, 32, 33
aspect3d, 21

can_lm, 14
cancor, 3, 4, 7, 15, 19, 27, 28, 34
candisc, 3, 7, 9, 14, 15, 21, 23
candisc-package, 2
candiscList-package, 2
cc, 7
cca, 7
coef.cancor (cancor), 4
coef.candisc (candisc), 9
cov.wt, 5
dataEllipse, 26, 27
dataIndex, 15
Grass, 16
heplot, 3, 12, 14, 19, 21, 23
heplot.cancor, 3, 6, 7, 17
heplot.candisc, 2, 17, 19, 20
heplot.candiscList, 22
heplot3d, 12, 14, 21, 23
heplot3d.cancor, 3
heplot3d.cancor (heplot.cancor), 17
heplot3d.candisc, 2
heplot3d.candisc (heplot.candisc), 20
heplot3d.candiscList
 (heplot.candiscList), 22
heplots, 4, 7
HSB, 24
linearHypothesis, 19
lines3d, 32, 33
loessLine, 26, 27
palette, 10
plot.cancor, 3, 7, 19, 25
plot.candisc, 2
plot.candisc (candisc), 9
plot.candiscList (candiscList), 13
print.cancor (cancor), 4
print.cancor.redundancy (redundancy), 27
print.candisc (candisc), 9
print.candiscList (candiscList), 13
redundancy, 7, 27

scores (cancor), 4
segments, 33
showLabels, 26, 27
summary.cancor (cancor), 4
summary.candisc (candisc), 9
summary.candiscList (candiscList), 13

text, 32, 33
texts3d, 32, 33

varOrder, 3, 29
vecscale, 31
vectors, 31, 32
vectors3d (vectors), 32

Wilks, 33
Wine, 34
Wolves, 36