Package ‘capitalR’

November 23, 2019

Type Package
Title Capital Budgeting Analysis, Annuity Loan Calculations and Amortization Schedules
Version 1.3.0
Author John T. Buynak
Maintainer John T. Buynak <jbuynak94@gmail.com>
Description Provides Capital Budgeting Analysis functionality and the essential Annuity loan functions. Also computes Loan Amortization Schedules including schedules with irregular payments.
License GPL-3
Encoding UTF-8
LazyData true
RoxygenNote 6.1.1
Suggests knitr, rmarkdown
VignetteBuilder knitr
NeedsCompilation no
Repository CRAN
Date/Publication 2019-11-23 05:30:02 UTC

R topics documented:

annuity ... 2
ear .. 2
fv .. 3
geometric .. 4
ipmt .. 4
irregular .. 5
ppmt .. 6
pv ... 6
r.cale ... 7
schedule ... 7

Index 9
annuity

Annuity Loan Calculation

Description

Calculates the payment, present value, future value, rate, or the number of periods

Usage

annuity(type = c("pv", "fv", "pmt", "nper", "rate"), pv, fv = 0, pmt, n, r, end = TRUE)

Arguments

type Loan parameter to return. ("pv", "fv", "pmt", "nper", "rate")
pv Present Value
fv Future Value
pmt Periodic Payment
n Number of Periods
r Rate
end Logical, set to TRUE. If FALSE, payments are made at the beginning the period.

Value

Returns the selected Annuity Loan Parameter

Examples

annuity(type = "pmt", pv = -2000, fv = 0, n = 4 * 12, r = 0.06/12, end = TRUE)

ear

Effective Annual Rate

Description

Effective Annual Rate

Usage

ear(apr, n, p = 5)
fv

Arguments

<table>
<thead>
<tr>
<th>apr</th>
<th>Annual Rate (Nominal Interest Rate)</th>
</tr>
</thead>
<tbody>
<tr>
<td>n</td>
<td>Number of compounds in a year</td>
</tr>
<tr>
<td>p</td>
<td>Calculates the EAR to the (1/10^p) decimal place</td>
</tr>
</tbody>
</table>

Value

Effective Annual Rate

Examples

\(\text{ear}(\text{apr} = 0.05, n = 12)\)

fv

Future Value

Description

Calculates the Future Value given a Present Value

Usage

\(\text{fv}(pv, r, n)\)

Arguments

<table>
<thead>
<tr>
<th>pv</th>
<th>Present Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>r</td>
<td>Discount Rate</td>
</tr>
<tr>
<td>n</td>
<td>Number of Compounding Periods</td>
</tr>
</tbody>
</table>

Value

Returns the Future Value

Examples

\(\text{fv}(5000, 0.08/12, 5\times12)\)
Geometric Mean Return

Description
Geometric Mean Return

Usage
geometric(c)

Arguments
c Periodic returns in decimal form

Value
Returns the Geometric Mean Return

Examples
geometric(c(0.05, 0.02, -0.03, 0.09, -0.02))

Interest Payment

Description
Calculates the interest portion of the payment in period "x"

Usage
ipmt(pv, fv = 0, n, r, x, end = TRUE)

Arguments
pv Present Value
fv Future Value
n Number of Periods
r Rate
x Period in which to calculate the interest portion of the payment
end If FALSE, payments are made at the beginning of the period
irregular

Value

Returns the Interest Portion of the Payment in Period "x"

Examples

`ipmt(pv = 20000, fv = 0, n = 5 * 12, r = 0.05/12, x = 12, end = TRUE)`

irregular
Amortization Schedule With Irregular Payments

Description

Creates an amortization schedule of a loan with irregular payments and withdrawals

Usage

`irregular(payments, dates, apr, pv, info = TRUE)`

Arguments

- `payments` Vector of payments, the first payment must be 0
- `dates` Vector of dates, the first date is the date of origination
- `apr` Annual rate
- `pv` Present Value
- `info` Logical, if set to 'TRUE' information about the dataframe arrangement will be printed

Value

Returns the irregular Amortization Schedule in a Dataframe

Examples

`irregular(payments = c(0, 200, -100), dates = c("2019-01-01", "2019-02-08", "2019-03-20"), apr = 0.05, pv = 2000, info = FALSE)`
ppmt

Principal Payment

Description

Calculates the principal of the payment in period "x"

Usage

\[
\text{ppmt}(pv, \ fv = 0, \ n, \ r, \ x, \ \text{end} = \text{TRUE})
\]

Arguments

- **pv**: Present Value
- **fv**: Future Value
- **n**: Number of Periods
- **r**: Rate
- **x**: Period in which to calculate the principal portion of the payment
- **end**: If FALSE, payments are made at the beginning of the period

Value

Returns the Principal Portion of the Payment in Period "x"

Examples

\[
\text{ppmt}(pv = 5000, \ fv = 0, \ n = 4 \times 12, \ r = 0.06/12, \ x = 12, \ \text{end} = \text{TRUE})
\]

pv

Present Value

Description

Calculates the present value of a given future value

Usage

\[
\text{pv}(fv, \ r, \ n)
\]

Arguments

- **fv**: Future Value
- **r**: Discount Rate
- **n**: Number of Compounding Periods
Value

Returns the Present Value

Examples

\[
pv(5000, 0.08/12, 5*12)
\]

r.calc
Return Calculation

Description

Return Calculation

Usage

\[
r\.calc\(vector)\]

Arguments

vector
Vector from which to calculate the periodic return

Value

Returns the Periodic Percent Return

Examples

\[
r\.calc\(c(100, 75, 50, 80, 125)\)
\]

schedule
Amortization Schedule

Description

Creates an amortization schedule of a loan

Usage

\[
schedule\(r, n, pv, fv = 0, \text{end} = \text{TRUE}\)
\]
Arguments

- **r**: Rate
- **n**: Number of Periods
- **pv**: Present Value
- **fV**: Future Value, set = 0
- **end**: If FALSE, payments are made at the beginning of the period

Value

Returns the Amortization Schedule in a dataframe

Examples

```
schedule(r = 0.06/12, n = 10 * 12, pv = -5000, fV = 0, end = TRUE)
```
Index

annuity, 2
ear, 2
fv, 3
geometric, 4
ipmt, 4
irregular, 5
ppmt, 6
pv, 6
r.calc, 7
schedule, 7