R topics documented:

get_24_hour_clock ... 4
get_adequacy_score ... 5
get_binary_score .. 6
get_camsa_score ... 7
get_camsa_skill_time_score 8
get_camsa_time_score ... 9
get_capl .. 10
get_capl_bar_plot .. 11
get_capl_demo_data ... 12
get_capl_domain_status ... 13
get_capl_interpretation ... 15
get_capl_score ... 16
get_db_score ... 17
get_fill_in_the_blanks_score 18
get_intrinsic_motivation_score 20
get_ku_score ... 21
get_mc_score ... 22
get_missing_capl_variables 23
get_pacer_20m_laps ... 26
get_pacer_score ... 27
get_pa_competence_score 27
get_pc_score ... 29
get_pedometer_wear_time 30
get_plank_score ... 31
get_predilection_score .. 31
get_self_report_pa_score 32
get_step_average .. 33
get_step_score ... 35
import_capl_data .. 35
rename_variable ... 37
validate_age ... 38
validate_character ... 39
validate_domain_score .. 40
validate_gender ... 40
validate_integer ... 41
validate_number ... 42
validate_scale ... 42
validate_steps ... 43

Index ... 44
capitalize_character

Capitalize a character vector.

Description
This function capitalizes a character vector.

Usage
capitalize_character(x = NA)

Arguments
x A character vector.

Details
Other capl functions called by this function include: validate_character().

Value
Returns a character vector (if valid) or NA (if not valid).

Examples
capitalize_character(c("beginning", "progressing", "achieving", "excelling"))
[1] "Beginning" "Progressing" "Achieving" "Excelling"

capl_demo_data CAPL demo raw data.

Description
A dataset containing CAPL-2 demo raw data.

Usage
capl_demo_data

Format
A data frame with 500 rows of data on 60 variables that are required to compute CAPL-2 scores and interpretations:
export_capl_data
Export CAPL-2 data to an Excel workbook.

Description
This function exports CAPL-2 data to an Excel workbook on a local computer.

Usage
`export_capl_data(x = NULL, file_path = NA)`

Arguments
- **x**
 A data frame.
- **file_path**
 A character vector representing the file path to a location on the user’s local computer (e.g., "c:/users/user_name/desktop/file.xlsx") where x will be saved as an Excel workbook on the user’s computer. The file path is not case-sensitive.

Details
Other capl functions called by this function include: `validate_character()`.

Value
No return value.

get_24_hour_clock
Convert 12-hour clock values to 24-hour clock values.

Description
This function converts 12-hour clock values to 24-hour clock values.

Usage
`get_24_hour_clock(x = NA)`

Arguments
- **x**
 A character vector representing values in 12-hour clock format.
get_adequacy_score

Details
Other capl functions called by this function include: validate_character() and validate_integer().

Value
Returns a 24-hour clock vector (if valid) or NA (if not valid).

Examples
get_24_hour_clock(c("5:00 am", "7:10PM", "9:37", NA, "21:13", "", 9, "6:17"))
[1] "05:00" "19:10" "09:37" NA "21:13" NA NA "06:17"

Description
This function computes an adequacy score (adequacy_score) for responses to items 2, 4 and 6 of the CSAPPA (Children’s Self-Perceptions of Adequacy in and Predilection for Physical Activity; Hay, 1992) Questionnaire as they appear in the CAPL-2 Questionnaire. This score is used to compute the motivation and confidence domain score (mc_score).

Usage
get_adequacy_score(csappa2 = NA, csappa4 = NA, csappa6 = NA)

Arguments
csappa2 A numeric (integer) vector representing a response to CSAPPA item 2 (valid values are integers between 1 and 4).
csappa4 A numeric (integer) vector representing a response to CSAPPA item 4 (valid values are integers between 1 and 4).
csappa6 A numeric (integer) vector representing a response to CSAPPA item 6 (valid values are integers between 1 and 4).

Details
Valid values (integers between 1 and 4) represent the following responses:
• 1 = REALLY TRUE for me for "some kids" statements
• 2 = SORT OF TRUE for me for "some kids" statements
• 3 = REALLY TRUE for me for "other kids" statements
• 4 = SORT OF TRUE for me for "other kids" statements

Other capl functions called by this function include: validate_scale().
Value

Returns a numeric vector with values between 1.8 and 7.5 (if valid) or NA (if not valid).

Examples

```r
get_adequacy_score(
  csappa2 = c(1:3, 0),
  csappa4 = c(4, 2, 1, "3"),
  csappa6 = c(4, 4, 2, 2)
)

# [1] 4.9 4.8 4.9 NA
```

get_binary_score

Compute a binary score.

Description

This function computes a binary score (0 = incorrect answer, 1 = correct answer) for a response to a questionnaire item based on the value(s) set as answer(s) to the item.

Usage

```r
get_binary_score(x, answer)
```

Arguments

- **x**: A character or numeric vector representing a response to a questionnaire item.
- **answer**: A character or numeric vector representing the correct answer(s) to the questionnaire item. The answer argument does not have to match x in case for a correct answer to be computed.

Details

This function is called by `get_fill_in_the_blanks_score()`.

Value

Returns 1 (if correct), 0 (if incorrect) or NA (if not valid).
get_camsa_score

Examples

get_binary_score(
 x = c(1:4, NA, ""),
 answer = 3
)
[1] 0 0 1 0 NA 0

get_binary_score(
 x = c("20 minutes", "30 minutes", "60 minutes or 1 hour", "120 minutes or 2 hours"),
 answer = "60 minutes or 1 hour"
)
[1] 0 0 1 0

get_binary_score(
 x = c(1:5, "Heart", "hello, world", NA),
 answer = c(3, "heart")
)
[1] 0 0 1 0 1 0 NA

get_camsa_score

Select the maximum CAMSA skill + time score.

Description

This function selects the maximum CAMSA (Canadian Agility and Movement Skill Assessment) skill + time score for two trials (camsa_score) and then divides by 2.8 so that the score is out of 10. This score is used to compute the physical literacy score (pc_score).

Usage

get_camsa_score(camsa_skill_time_score1 = NA, camsa_skill_time_score2 = NA)

Arguments

camsa_skill_time_score1
 A numeric (integer) vector representing the skill + time score from trial 1 (valid values are between 1 and 28).

camsa_skill_time_score2
 A numeric (integer) vector representing the skill + time score from trial 2 (valid values are between 1 and 28).

Details

Other cap1 functions called by this function include: validate_scale().
Value

Returns a numeric vector with values between 0 and 10 (if valid) or NA (if not valid).

Examples

```r
get_camsa_score(
  camsa_skill_time_score1 = c(1, 5, 10, 28, 29),
  camsa_skill_time_score2 = c(5, 7, 12, NA, 27)
)
# [1] 5 7 12 NA NA
```

Description

This function computes the CAMSA (Canadian Agility and Movement Skill Assessment) skill + time score (e.g., `camsa_skill_time_score1`) for a given trial. This score is used to compute the CAMSA score (`camsa_score`).

Usage

```r
get_camsa_skill_time_score(camsa_skill_score = NA, camsa_time_score = NA)
```

Arguments

- `camsa_skill_score` A numeric (integer) vector representing the CAMSA skill score (valid values are between 0 and 14).
- `camsa_time_score` A numeric vector representing the CAMSA time score (valid values are between 1 and 14).

Details

Other capl functions called by this function include: `validate_scale()`.

Value

Returns a numeric (integer) vector with values between 1 and 28 (if valid) or NA (if not valid).
get_camsa_time_score

Examples

get_camsa_skill_time_score(
 camsa_skill_score = c(0, 5, 10, 14, 15),
 camsa_time_score = c(1, 10, 12, 15, 30)
)

[1] 1 15 22 NA NA

get_camsa_time_score Compute the CAMSA time score.

Description

This function computes the CAMSA (Canadian Agility and Movement Skill Assessment) time score based on the time taken (in seconds) to complete a trial.

Usage

get_camsa_time_score(camsa_time = NA)

Arguments

camsa_time A numeric vector representing the time taken (in seconds) to complete a CAMSA trial (valid values are > 0).

Details

Other capl functions called by this function include: validate_number().

Value

Returns a numeric vector with values between 1 and 14 (if valid) or NA (if not valid).

Examples

get_camsa_time_score(c(14, 12, 30, 25, 0))

[1] 13 14 1 4 NA
get_capl

Compute all CAPL-2 scores and interpretations at once.

Description

This function is the main function in the capl package. It is a wrapper function that calls all other capl functions to compute all CAPL-2 scores and interpretations from raw data at once. If required CAPL-2 variables are missing, the function will create the variables and set values for these variables to NA so the function can proceed.

Usage

get_capl(raw_data = NULL, sort = "asis", version = 2)

Arguments

- raw_data: A data frame of raw CAPL-2 data.
- sort: An optional character vector representing how the variables in the returned data frame are to be sorted (valid values are "asis", "abc" and "zyx"; valid values are not case-sensitive). This argument is set to "asis" by default.
- version: An optional numeric (integer) vector representing the version of CAPL. This argument is set to 2 by default. If set to 1, get_fill_in_the_blanks_score() will ignore the when_cooling_down parameter and re-weight the score so that it’s out of six.

Details

Other capl functions called by this function include: get_missing_capl_variables(), get_pacer_20m_laps(), get_pacer_score(), get_capl_interpretation(), get_plank_score(), get_camlsa_time_score(), get_camlsa_skill_time_score(), get_camlsa_score(), get_pc_score(), get_capl_domain_status(), get_pedometer_wear_time(), validate_steps(), get_step_average(), get_step_score(), get_self_report_pa_score(), get_db_score(), get_predilection_score(), get_adequacy_score(), get_intrinsic_motivation_score(), get_pa_competence_score(), get_mc_score(), get_binary_score(), get_fill_in_the_blanks_score(), get_ku_score() and get_capl_score()

Value

Returns a merged data frame of raw data and CAPL-2 scores and interpretations.

Examples

get_capl(raw_data)
get_capl_bar_plot

Render a bar plot for a given CAPL-2 domain score, grouped by CAPL-2 interpretative categories.

Description
This function renders a bar plot for a given CAPL-2 domain score, grouped by CAPL-2 interpretative categories.

Usage
get_capl_bar_plot(
 score = NA,
 interpretation = NA,
 x_label = "Interpretation",
 y_label = "Score",
 colors = c("#333376", "#00a79d", "#f26522", "#a6ce39")
)

Arguments
- **score**: A numeric vector.
- **interpretation**: A character vector representing CAPL-2 interpretative categories ("beginning", "progressing", "achieving", "excelling").
- **x_label**: An optional character vector representing the x-axis label. This argument is set to "Interpretation" by default.
- **y_label**: An optional character vector representing the y-axis label. This argument is set to "Score" by default.
- **colors**: An optional character vector representing the color palette for the bars. This argument is set to CAPL-2 branding colors by default (c("#333376", "#00a79d", "#f26522", "#a6ce39", "#747474")).

Details
Other capl functions called by this function include: `validate_character()`, `validate_number()` and `capitalize_character()`.

Value
Renders a ggplot2 bar plot (if valid).

Examples
```r
capl_results <- get_capl_demo_data(n = 25)

gcapl_bar_plot(
  score = capl_results$capl_score,
  interpretation = c("beginning", "progressing", "achieving", "excelling"),
  x_label = "Interpretation",
  y_label = "Score",
  colors = c("#333376", "#00a79d", "#f26522", "#a6ce39", "#747474")
)```
get_capl_demo_data

interpretation = capl_results$capl_interpretation,
x_label = "Overall physical literacy interpretation",
y_label = "Overall physical literacy score",
)

get_capl_demo_data Generate CAPL-2 demo (fake) raw data.

Description

This function generates a data frame of CAPL-2 demo (fake) raw data containing the 60 required
variables that the capl package needs to compute scores and interpretations.

Usage

get_capl_demo_data(n = 500)

Arguments

n
A numeric (integer) vector representing the number of rows of data to generate.
By default, n is set to 500.

Value

Returns a data frame containing the 60 required variables that the capl package needs to compute
scores and interpretations.

Examples

capl_demo_data <- get_capl_demo_data(10000)

str(capl_demo_data)

# 'data.frame': 10000 obs. of 60 variables:
# $ age : int  9 10 8 8 11 9 12 NA 10 7 ...
# $ gender : chr  "Girl"  "Boy"  "Boy"  "Girl"  ...
# $ pacer_lap_distance : num   20 15 20 15 15 20 15 20 ...
# $ pacer_laps : int   5 112 150 46 51 82 43 189 55 91 ...
# $ plank_time : int 238 66 95 173 299 172 169 33 277 152 ...
# $ camsa_skill_score1 : int  9 3 7 NA 8 14 13 14 11 11 ...
# $ camsa_time1 : int  17 33 26 22 31 28 NA 24 12 11 ...
# $ camsa_skill_score2 : int 12 11 12 9 NA 9 7 10 14 11 ...
# $ camsa_time2 : int  15 13 15 20 12 15 29 12 12 18 ...
# $ steps1 : int 29663 30231 3157 5751 23362 28283 ...
# $ time_on1 : chr  "05:00"  "5:13am"  "07:00"  "8:00am"  ...
# $ time_off1 : chr  "11:57pm"  "10:57 pm"  "10:57 pm"  "11:57pm"  ...
# $ non_wear_time1 : int  38 47 38 40 36 32 36 82 25 51 ...
# $ steps2 : int 29703 9142 5424 23763 3645 28625 ...
# $ time_on2 : chr  "07:00"  "07:48am"  "6:07"  "06:00"  ...
get_capl_domain_status

Compute the status of a CAPL domain.

```r
$ time_off2 : chr "22:00" "21:00" "8:17pm" "10:57 pm" ...
$ non_wear_time2 : int 5 34 41 60 84 18 19 47 66 55 ...
$ steps3 : int 20380 10987 5885 13518 14385 30680 14120 ...
$ time_on3 : chr "07:00" "06:00" "6:07" "8:00am" ...
$ time_off3 : chr "11:13pm" "11:57pm" "21:00" "08:30am" ...
$ non_wear_time3 : int 54 70 16 36 36 72 89 86 26 81 ...
$ steps4 : int 13224 20817 19640 2326 16605 25783 23078 ...
$ time_on4 : chr "07:48am" "5:13am" "5:13am" "6:07" ...
$ time_off4 : chr "11:13pm" NA "22:00" "23:00" ...
$ non_wear_time4 : int 2 48 61 NA 81 81 2 30 35 14 ...
$ steps5 : int 28408 8845 5802 6966 24499 18561 13771 ...
$ time_on5 : chr "5:13am" NA "06:00" "6:07" ...
$ time_off5 : chr "11:13pm" NA "11:57pm" "11:13pm" ...
$ non_wear_time5 : int 75 10 70 45 77 75 90 61 17 72 ...
$ steps6 : int 9581 18237 6377 3262 16898 15649 19890 ...
$ time_on6 : chr "6:13" "6:07" "8:00am" "8:17pm" ...
$ time_off6 : chr "11:57pm" "21:00" "10:57 pm" "8:17pm" ...
$ non_wear_time6 : int 13 14 37 18 86 89 19 78 40 ...
$ steps7 : int 8205 15351 16948 19442 4026 10830 4644 ...
$ time_on7 : chr "05:00" NA "07:48am" "6:07" ...
$ time_off7 : chr NA "22:00" "08:30pm" "08:30pm" ...
$ non_wear_time7 : int 84 40 42 34 13 58 67 86 64 46 ...
$ self_report_pa : int 4 NA NA 7 1 6 6 6 ...
$ csappa1 : int 2 1 1 1 2 1 4 3 3 3 ...
$ csappa2 : int 3 3 1 4 4 2 3 1 4 4 ...
$ csappa3 : int 1 2 4 1 2 4 1 4 1 1 ...
$ csappa4 : int 4 1 3 4 2 3 1 2 2 4 ...
$ csappa5 : int 2 4 2 2 4 1 1 3 1 1 ...
$ csappa6 : int 2 2 2 3 4 3 2 3 1 1 ...
$ why_active1 : int 5 2 5 5 2 5 11 5 1 ...
$ why_active2 : int 4 5 2 4 3 1 5 1 4 1 ...
$ why_active3 : int 2 1 4 3 1 2 1 5 3 3 ...
$ feelings_about_pa1 : int 4 1 5 3 4 4 4 5 4 5 ...
$ feelings_about_pa2 : int 5 3 4 1 2 5 2 1 3 ...
$ feelings_about_pa3 : int 3 4 3 5 1 1 4 2 1 4 ...
$ pa_guideline : int 1 1 3 1 4 1 1 4 4 2 ...
$ crf_means: int 2 3 2 3 4 1 3 4 1 3 ...
$ ms_means : int 1 1 3 1 4 1 2 4 2 1 1 3 ...
$ sports_skill : int 3 1 4 1 3 1 1 3 2 ...
$ pa_is : int 10 1 9 5 7 8 3 7 10 ...
$ pa_is_also : int 7 1 7 9 1 6 3 4 3 7 ...
$ improve : int 3 3 3 3 3 3 10 3 3 3 ...
$ improve : int 3 3 3 3 3 3 10 3 3 3 ...
$ increase : int 8 8 10 4 8 8 8 9 8 8 ...
$ when_cooling_down : int 5 2 2 2 2 4 2 3 7 ...
$ heart_rate : int 4 9 7 4 4 4 4 5 7 ...
```
get_capl_domain_status

Description

This function computes the status ("complete", "missing interpretation", "missing protocol" or "incomplete") of a CAPL domain (e.g., pc_status, db_status, mc_status, ku_status, capl_status).

Usage

get_capl_domain_status(x = NULL, domain = NA)

Arguments

- x: A data frame that includes the required variables for a given domain (see Details).
- domain: A character vector representing one of the CAPL-2 domains (valid values are "pc", "db", "mc", "ku" and "capl")

Details

If the domain argument is set to "pc", the following variables must be included in the x argument:
- pc_score
- pc_interpretation
- pacer_score
- plank_score
- camsa_score

If the domain argument is set to "db", the following variables must be included the x argument:
- db_score
- db_interpretation
- step_score
- self_report_pa_score

If the domain argument is set to "mc", the following variables must be included the x argument:
- mc_score
- mc_interpretation
- predilection_score
- adequacy_score
- intrinsic_motivation_score
- pa_competence_score

If the domain argument is set to "ku", the following variables must be included the x argument:
- ku_score
- ku_interpretation
- pa_guideline_score
get_capl_interpretation

- crf_means_score
- ms_means_score
- sports_skill_score
- fill_in_the_blanks_score

If the domain argument is set to "capl", the following variables must be included the x argument:

- capl_score
- capl_interpretation
- pc_score
- db_score
- mc_score
- ku_score
- capl_score

Other capl functions called by this function include: validate_character() and validate_number().

Value

Returns a character vector with a value of "complete", "missing interpretation", "missing protocol" or "incomplete".

Examples

```r
capl_demo_data <- get_capl_demo_data(3)
capl_results <- get_capl(capl_demo_data)
get_capl_domain_status(capl_results, "pc")
[1] "complete" "incomplete" "missing interpretation"
```

get_capl_interpretation

*Compute a CAPL-2 interpretation for a given CAPL-2 protocol or domain score.*

Description

This function computes an age- and gender-specific CAPL-2 interpretation for a given CAPL-2 protocol or domain score (e.g., pc_interpretation).

Usage

```r
get_capl_interpretation(age = NA, gender = NA, score = NA, protocol = NA)
```
get_capl_score

Arguments

- **age**: A numeric vector (valid values are between 8 and 12).
- **gender**: A character vector (valid values currently include "girl", "g", "female", "f", "boy", "b", "male", "m").
- **score**: A numeric vector. If the protocol argument is set to "pacer" or "steps", this argument must contain integers.
- **protocol**: A character vector representing a CAPL protocol (valid values include "pacer", "plank", "camsa", "pc", "steps", "self_report_pa", "db", "mc", "ku", "capl"; valid values are not case-sensitive).

Details

Other capl functions called by this function include: validate_age(), validate_gender(), validate_character(), validate_number() and validate_scale(). This function will check whether a score for a given protocol is within a valid range; if not, NA will be returned.

Value

Returns a character vector with values of "beginning", "progressing", "achieving" or "excelling" (if valid) or NA (if not valid).

Examples

```r
get_capl_interpretation(
 age = 7:13,
 gender = c("g", "g", "b", "Boy", "m", "f", "Female"),
 score = c(50, 25, 100, 5, 150, 23, 78),
 protocol = "pacer"
)
[1] NA
[7] NA
```

---

**get_capl_score**

*Compute an overall physical literacy score.*

Description

This function computes an overall physical literacy score (capl_score) based on the physical competence (pc_score), daily behaviour (db_score), motivation and confidence (mc_score), and knowledge and understanding (ku_score) domain scores. If one of the scores is missing or invalid, a weighted score will be computed from the other three scores.

Usage

```r
get_capl_score(pc_score = NA, db_score = NA, mc_score = NA, ku_score = NA)
```
get_db_score

Arguments

- **pc_score**: A numeric vector (valid values are between 0 and 30).
- **db_score**: A numeric (integer) vector (valid values are between 0 and 30).
- **mc_score**: A numeric vector (valid values are between 0 and 30).
- **ku_score**: A numeric vector (valid values are between 0 and 10).

Details

Other capl functions called by this function include: `validate_number()`, `validate_integer()` and `validate_domain_score()`.

Value

Returns a numeric vector with values between 0 and 100 (if valid) or NA (if not valid).

Examples

```r
get_capl_score(
 pc_score = c(20, 15, 12, 5, 31),
 db_score = c(20, 15, 6, 4.1, 25),
 mc_score = c(20, 20, 19, 15.4, 25),
 ku_score = c(11, 4, 5, 7.8, 10)
)
```

# [1] 66.66667 54.00000 42.00000 40.28571 85.71429
get_fill_in_the_blanks_score

Details

Other capl functions called by this function include: validate_scale().

Value

Returns a numeric (integer) vector with values between 0 and 30 (if valid) or NA (if not valid).

Examples

get_db_score(
  step_score = c(20, 6, 13, 5, NA, 4.5),
  self_report_pa_score = c(3, 2, 1, 4, 7, 3)
)

# [1] 23 8 14 9 NA NA

get_fill_in_the_blanks_score

Compute a fill in the blanks score.

Description

This function computes a score (fill_in_the_blanks_score) for responses to the fill in the blanks items (story about Sally) in the CAPL-2 Questionnaire. This score is used to compute the knowledge and understanding domain score (ku_score).

Usage

get_fill_in_the_blanks_score(
  pa_is = NA,
  pa_is_also = NA,
  improve = NA,
  increase = NA,
  when_cooling_down = NA,
  heart_rate = NA,
  version = 2
)

Arguments

pa_is A vector representing a response to the first fill in the blank item (correct answers are 1, 7, "Fun" or "Good").

pa_is_also A vector representing a response to the second fill in the blank item (correct answers are 1, 7, "Fun" or "Good").

improve A vector representing a response to the third fill in the blank item (correct answers are 3 or "Endurance").
get_fill_in_the_blanks_score

increase A vector representing a response to the fourth fill in the blank item (correct answers are 8 or “Strength”).

when_cooling_down A vector representing a response to the fifth fill in the blank item (correct answers are 2 or “Stretches”).

heart_rate A vector representing a response to the sixth fill in the blank item (correct answers are 4 or “Pulse”).

version An optional numeric (integer) vector representing the version of CAPL. This argument is set to 2 by default. If set to 1, the when_cooling_down parameter will be ignored and the score re-weighted so that it’s out of six.

Details

The following integers represent the responses for the items/arguments in this function:

- 1 = Fun
- 2 = Stretches
- 3 = Endurance
- 4 = Pulse
- 5 = Breathing
- 6 = Flexibility
- 7 = Good
- 8 = Strength
- 9 = Bad
- 10 = Sport

Other capl functions called by this function include: get_binary_score().

Value

Returns a numeric (integer) vector with values between 0 and 5 (if valid) or NA (if not valid).

Examples

get_fill_in_the_blanks_score(
  pa_is = c(2, 3, "fun", 9),
  pa_is_also = c(2, 5, "Fun", 9),
  improve = c(1, 3, 10, "Endurance"),
  increase = c(2, 3.5, "strength", "strength"),
  when_cooling_down = c("stretches", 9, 2, ""),
  heart_rate = c(3, 9, 4, "pulse")
)

# [1] 0 1 3 1
get_intrinsic_motivation_score

*Compute an intrinsic motivation score.*

**Description**

This function computes an intrinsic motivation score (`intrinsic_motivation_score`) for responses to items 1-3 of the the Behavioral Regulation in Exercise Questionnaire (BREQ) as they appear in the **CAPL-2 Questionnaire**. This score is used to compute the motivation and confidence domain score (`mc_score`).

**Usage**

```r
get_intrinsic_motivation_score(
 why_active1 = NA,
 why_active2 = NA,
 why_active3 = NA
)
```

**Arguments**

- `why_active1` A numeric (integer) vector representing a response to BREQ item 1 (valid values are integers between 1 and 5).
- `why_active2` A numeric (integer) vector representing a response to BREQ item 2 (valid values are integers between 1 and 5).
- `why_active3` A numeric (integer) vector representing a response to BREQ item 3 (valid values are integers between 1 and 5).

**Details**

Other `capl` functions called by this function include: `validate_scale()`.

Valid values (integers between 1 and 5) represent the following responses:

- 1 = Not true for me
- 2 = Not really true for me
- 3 = Sometimes true for me
- 4 = Often true for me
- 5 = Very true for me

**Value**

Returns a numeric vector with values between 1.5 and 7.5 (if valid) or NA (if not valid).
**Examples**

```r
get_intrinsic_motivation_score(
 why_active1 = c(4, 3, 6, 5, "2"),
 why_active2 = c(1:5),
 why_active3 = c(1, 5, 4, 3, 3)
)

[1] 3 5 NA 6 5
```

**Description**

This function computes a knowledge and understanding domain score (`ku_score`) based on the physical activity guideline (`pa_guideline_score`), cardiorespiratory fitness means (`crf_means_score`), muscular strength and endurance means (`ms_means_score`), sports skill (`sports_skill_score`) and fill in the blanks (`fill_in_the_blanks_score`) scores. If one of the scores is missing or invalid, a weighted domain score will be computed from the other four scores. This score is used to compute the overall physical literacy score (`capl_score`).

**Usage**

```r
get_ku_score(
 pa_guideline_score = NA,
 crf_means_score = NA,
 ms_means_score = NA,
 sports_skill_score = NA,
 fill_in_the_blanks_score = NA
)
```

**Arguments**

- `pa_guideline_score`  
  A numeric (integer) vector (valid values are between 0 and 1).
- `crf_means_score`  
  A numeric (integer) vector (valid values are between 0 and 1).
- `ms_means_score`  
  A numeric (integer) vector (valid values are between 0 and 1).
- `sports_skill_score`  
  A numeric (integer) vector (valid values are between 0 and 1).
- `fill_in_the_blanks_score`  
  A numeric (integer) vector (valid values are between 0 and 6).

**Details**

Other capl functions called by this function include: `validate_scale()`.
get_mc_score

Value

Returns a numeric vector with values between 0 and 10 (if valid) or NA (if not valid).

Examples

get_ku_score(  
  pa_guideline_score = c(1, 0, 1, 1, NA),  
  crf_means_score = c(0, 1, "", 2, 1),  
  ms_means_score = c(1, 1, 1, 0, 0),  
  sports_skill_score = c(0, 0, 1, 0, 1),  
  fill_in_the_blanks_score = c(5, 6, 3, 1, 2)  
)


get_mc_score

Compute a motivation and confidence domain score.

Description

This function computes a motivation and confidence domain score (mc_score) based on the predilection (predilection_score), adequacy (adequacy_score), intrinsic motivation (intrinsic_motivation_score) and physical activity competence (pa_competence_score) scores. If one of the scores is missing or invalid, a weighted domain score will be computed from the other three scores. This score is used to compute the overall physical literacy score (capl_score).

Usage

get_mc_score(  
  predilection_score = NA,  
  adequacy_score = NA,  
  intrinsic_motivation_score = NA,  
  pa_competence_score = NA  
)

Arguments

predilection_score
  A numeric vector (valid values are between 1.8 and 7.5).

adequacy_score  A numeric vector (valid values are between 1.8 and 7.5).

intrinsic_motivation_score
  A numeric vector (valid values are between 1.5 and 7.5).

pa_competence_score
  A numeric vector (valid values are between 1.5 and 7.5).
Details

Other capl functions called by this function include: validate_number().

Value

Returns a numeric vector with values between 0 and 30 (if valid) or NA (if not valid).

Examples

```r
get_mc_score(
 predilection_score = c(7, 7.5, 5, 8, 4),
 adequacy_score = c(NA, 5, 3, 1, 4),
 intrinsic_motivation_score = c(5, 7.5, 4, 2, 3.5),
 pa_competence_score = c(6, 3, 6, 7, 2)
)
```

# [1] 24.0 23.0 18.0 NA 13.5

---

get_missing_capl_variables

Add required CAPL-2 variables to a data frame of raw data if they are missing.

Description

This function adds required CAPL-2 variables (see Details for a full list) to a data frame of raw data if they are missing. When missing variables are added, the values for a given missing variable are set to NA. This function is called within get_capl() so that CAPL-2 score and interpretation computations will run without errors in the presence of missing variables.

Usage

```r
get_missing_capl_variables(raw_data = NULL)
```

Arguments

- `raw_data`: a data frame of raw CAPL-2 data.

Details

The required CAPL-2 variables include:

- age
- gender
- pacer_lap_distance
- pacer_laps
• plank_time
• camsa_skill_score1
• camsa_time1
• camsa_skill_score2
• camsa_time2
• steps1
• time_on1
• time_off1
• non_wear_time1
• steps2
• time_on2
• time_off2
• non_wear_time2
• steps3
• time_on3
• time_off3
• non_wear_time3
• steps4
• time_on4
• time_off4
• non_wear_time4
• steps5
• time_on5
• time_off5
• non_wear_time5
• steps6
• time_on6
• time_off6
• non_wear_time6
• steps7
• time_on7
• time_off7
• non_wear_time7
• self_report_pa
• csappa1
• csappa2
• csappa3
get_missing_capl_variables

- csappa4
- csappa5
- csappa6
- why_active1
- why_active2
- why_active3
- feelings_about_pa1
- feelings_about_pa2
- feelings_about_pa3
- pa_guideline
- crf_means
- ms_means
- sports_skill
- pa_is
- pa_is_also
- improve
- increase
- when_cooling_down
- heart_rate

Examining the structure (see \texttt{str()}) of some CAPL-2 demo data (see \texttt{get_capl_demo_data()}) provides additional information about these variables.

Value

returns a merged data frame of raw data and missing required CAPL-2 variables (values are set to NA).

Examples

\texttt{raw_data <- get_missing_capl_variables(raw_data)}
get_pacer_20m_laps

Convert PACER shuttle run laps to their equivalent in 20-metre laps.

Description

This function converts PACER (Progressive Aerobic Cardiovascular Endurance Run) shuttle run laps to their equivalent in 20-metre laps (pacer_laps_20m). If laps are already 20-metre laps, they are returned unless outside the valid range (1-229). This variable is used to compute the PACER score (pacer_score).

Usage

get_pacer_20m_laps(lap_distance = NA, laps_run = NA)

Arguments

- **lap_distance**: A numeric (integer) vector (valid values are 15 or 20).
- **laps_run**: A numeric (integer) vector (if lap_distance = 15, valid values are integers between 1 and 298; if lap_distance = 20, valid values are integers between 1 and 229).

Details

Other cap1 functions called by this function include: validate_integer() and validate_scale().

Value

Returns a numeric (integer) vector with values between 1 and 229 (if valid) or NA (if not valid).

Examples

```r
get_pacer_20m_laps(
 lap_distance = c(15, 20, NA, "15", 20.5),
 laps_run = rep(100, 5)
)
[1] 77 100 NA 77 NA
```
get_pacer_score

Description

This function computes a PACER (Progressive Aerobic Cardiovascular Endurance Run) score (pacer_score) based on the number of PACER laps run at a 20-metre distance. This score is used to compute the physical competence domain score variable (pc_score).

Usage

get_pacer_score(pacer_laps_20m = NA)

Arguments

pacer_laps_20m A numeric (integer) vector (valid values between 1 and 229).

Details

Other capl functions called by this function include: validate_scale() and validate_integer().

Value

Returns a numeric (integer) vector with values between 0 and 10 (if valid) or NA (if not valid).

Examples

get_pacer_score(c(1, 6, 12, 18, NA, 46, 31, 45.1))

# [1] 0 1 2 3 NA 9 6 NA

get_pa_competence_score

Description

This function computes a physical activity competence score (pa_competence_score) for responses to items 4-6 of the the Behavioral Regulation in Exercise Questionnaire (BREQ) as they appear in the CAPL-2 Questionnaire. This score is used to compute the motivation and confidence domain score (mc_score).
get_pa_competence_score

Usage

get_pa_competence_score(
  feelings_about_pa1 = NA,
  feelings_about_pa2 = NA,
  feelings_about_pa3 = NA
)

Arguments

feelings_about_pa1
  A numeric (integer) vector representing a response to BREQ item 4 (valid values
  are integers between 1 and 5).

feelings_about_pa2
  A numeric (integer) vector representing a response to BREQ item 5 (valid values
  are integers between 1 and 5).

feelings_about_pa3
  A numeric (integer) vector representing a response to BREQ item 6 (valid values
  are integers between 1 and 5).

Details

Other capl functions called by this function include: validate_scale().
Valid elements (integers between 1 and 5) represent the following responses:

• 1 = Not true for me
• 2 = Not really true for me
• 3 = Sometimes true for me
• 4 = Often true for me
• 5 = Very true for me

Value

Returns a numeric vector with values between 1.5 and 7.5 (if valid) or NA (if not valid).

Examples

get_pa_competence_score(
  feelings_about_pa1 = c(4, 3, 6, 5, "2"),
  feelings_about_pa2 = c(1:5),
  feelings_about_pa3 = c(1, 5, 4, 3, 3)
)

# [1] 3 5 NA 6 5
get_pc_score

Compute a physical competence domain score.

Description

This function computes a physical competence domain score (pc_score) based on the PACER (Progressive Aerobic Cardiovascular Endurance Run), plank and CAMSA (Canadian Agility and Movement Skill Assessment) scores. If one protocol score is missing or invalid, a weighted domain score will be computed from the other two protocol scores. This score is used to compute the physical competence domain score (pc_score).

Usage

get_pc_score(pacer_score = NA, plank_score = NA, camsa_score = NA)

Arguments

pacer_score A numeric (integer) vector representing the PACER score (valid values are integers between 0 and 10).
plank_score a numeric (integer) vector representing the plank score (valid values are integers between 0 and 10).
camsa_score A numeric vector representing the best CAMSA skill + skill score divided by 2.8 (valid values are between 0 and 10).

Details

Other capl functions called by this function include: validate_scale().

Value

Returns a numeric vector with values between 0 and 30 (if valid) or NA (if not valid).

Examples

get_pc_score(
  pacer_score = c(1, 5, 8, 10, NA),
  plank_score = c(4, 5, 5, 6, 9),
  camsa_score = c(-1, 0, 6, 4, 3)
)

# [1] 7.5 10.0 19.0 20.0 18.0
get_pedometer_wear_time

Compute pedometer wear time in decimal hours for a given day.

Description

This function computes pedometer wear time in decimal hours for a given day (e.g., wear_time1). This variable is used to compute the step_average variable and the step score (step_score).

Usage

get_pedometer_wear_time(time_on = NA, time_off = NA, non_wear_time = NA)

Arguments

time_on A character vector representing the time (in 12- or 24-hour clock format) when the pedometer was first worn on a given day.

time_off A character vector representing the time (in 12- or 24-hour clock format) when the pedometer was removed at the end of a given day.

non_wear_time A numeric vector representing the total time (in minutes) the pedometer was not worn during waking hours on a given day.

Details

Other capl functions called by this function include: get_24_hour_clock() and validate_number().

Value

Returns a numeric vector with values \( \geq 0 \) (if valid) or NA (if not valid).

Examples

get_pedometer_wear_time(
  time_on = c("6:23", "5:50 am", NA),
  time_off = c("21:37", "9:17pm", ""),
  c(60, 90, 0)
)

# [1] 14.23 13.95 NA
get_plank_score

Compute a plank score.

Description
This function computes a plank score (plank_score) based on the duration of time (in seconds) for which a plank is held. This score is used to compute the physical competence domain score (pc_score).

Usage
get_plank_score(plank_time = NA)

Arguments
plank_time A numeric vector representing time (in seconds).

Details
Other capl functions called by this function include: validate_number().

Value
Returns a numeric vector with values between 0 and 10 (if valid) or NA (if not valid).

Examples
get_plank_score(c(120.5, 75.6, 40, 10.99, 90))
# [1] 10 6 3 0 8

get_predilection_score

Compute a predilection score.

Description
This function computes a predilection score (predilection_score) for responses to items 1, 3 and 5 of the CSAPPA (Children’s Self-Perceptions of Adequacy in and Predilection for Physical Activity; Hay, 1992) Questionnaire as they appear in the CAPL-2 Questionnaire. This score is used to compute the motivation and confidence domain score (mc_score).

Usage
get_predilection_score(csappa1 = NA, csappa3 = NA, csappa5 = NA)
get_self_report_pa_score

Arguments

- csappa1: A numeric (integer) vector representing a response to CSAPPA item 1 (valid values are integers between 1 and 4).
- csappa3: A numeric (integer) vector representing a response to CSAPPA item 3 (valid values are integers between 1 and 4).
- csappa5: A numeric (integer) vector representing a response to CSAPPA item 5 (valid values are integers between 1 and 4).

Details

Valid values (integers between 1 and 4) represent the following responses:

- 1 = REALLY TRUE for me for "some kids" statements
- 2 = SORT OF TRUE for me for "some kids" statements
- 3 = REALLY TRUE for me for "other kids" statements
- 4 = SORT OF TRUE for me for "other kids" statements

Other cap1 functions called by this function include: validate_scale().

Value

Returns a numeric vector with values between 1.8 and 7.5 (if valid) or NA (if not valid).

Examples

```r
get_predilection_score(
 csappa1 = c(1:3, 0),
 csappa3 = c(4, 2, 1, "3"),
 csappa5 = c(4, 4, 2, 2)
)
[1] 4.2 4.2 4.3 NA
```

get_self_report_pa_score

*Compute a score for a response to the self-reported physical activity question.*

Description

This function computes a score (self_report_pa_score) for a response to "During the past week (7 days), on how many days were you physically active for a total of at least 60 minutes per day? (all the time you spent in activities that increased your heart rate and made you breathe hard)?" in the CAPL-2 Questionnaire. This score is used to compute the daily behaviour domain score (db_score).
get_step_average

Usage

get_self_report_pa_score(x = NA)

Arguments

x A numeric (integer) vector representing the self-reported physical activity question (valid values are integers between 0 and 7).

Details

Other cap1 functions called by this function include: validate_scale().

Value

Returns a numeric (integer) vector with values between 0 and 5 (if valid) or NA (if not valid).

Examples

get_self_report_pa_score(c(1, 8, 3, 4, 5, 2, 7))

# [1] 0 NA 2 3 4 1 5

g_step_average  Compute average daily steps taken.

Description

This function computes the daily arithmetic mean of a week of steps taken as measured by a pedometer (step_average). This variable is used to compute the step score (step_score).

Usage

get_step_average(raw_data = NULL)

Arguments

raw_data A data frame that includes seven days of pedometer steps and their corresponding on and off times. See Details for how these variables must be named.

Details

This function will throw an error unless the following variables are found in the raw_data argument:

• steps1
• steps2
• steps3
get_step_average

- steps4
- steps5
- steps6
- steps7
- time_on1
- time_on2
- time_on3
- time_on4
- time_on5
- time_on6
- time_on7
- time_off1
- time_off2
- time_off3
- time_off4
- time_off5
- time_off6
- time_off7

There must be at least three valid days for an arithmetic mean to be computed. If only three valid days, one of the step values from a valid day will be randomly sampled and used for the fourth valid day before computing the mean.

Other capl functions called by this function include: validate_steps() and get_pedometer_wear_time().

Value

Returns a data frame with nine columns: steps1 (validated), steps2 (validated), steps3 (validated), steps4 (validated), steps5 (validated), steps6 (validated), steps7 (validated), valid_days and step_average. The steps are validated with the validate_steps() function.

Examples

capl_demo_data <- get_capl_demo_data(10)

get_step_average(capl_demo_data)$step_average

# [1] 18365 12655 15493 12966 11396 13954 18456 13589 17543 11276
get_step_score

Compute a step score.

Description
This function computes a step score (step_score) based on the average daily steps taken as measured by a pedometer. This score is used to compute the daily behaviour domain score (db_score).

Usage
get_step_score(step_average = NA)

Arguments
step_average A numeric vector representing average daily steps taken. See get_step_average().

Details
Other capl functions called by this function include: validate_number().

Value
Returns a numeric (integer) vector with values between 0 and 25 (if valid) or NA (if not valid).

Examples
capl_demo_data <- get_capl_demo_data(10)
step_average <- get_step_average(capl_demo_data)$step_average
get_step_score(step_average)
# [1] 25 18 22 18 15 20 25 20 24 15

import_capl_data

Import CAPL-2 data from an Excel workbook.

Description
This function imports CAPL-2 data from an Excel workbook on a local computer.

Usage
import_capl_data(file_path = NA, sheet_name = NA)
import_capl_data

Arguments

file_path A character vector representing the file path to an Excel workbook on the user's local computer (e.g., "c:/users/user_name/desktop/file.xlsx"). The file path is not case-sensitive.

sheet_name An optional character vector representing the sheet to import from the Excel workbook. If this argument is not set, the first sheet in the workbook will be imported.

Details

Other capl functions called by this function include: validate_character().

Value

Returns a data frame if the Excel workbook sheet is successfully imported.

Examples

```r
capl_demo_data <- import_capl_data(
 file_path = "c:/users/joel/desktop/capl_demo_data.xlsx",
 sheet_name = "Sheet1"
)
str(capl_demo_data)
```

# tibble [500 x 60] (S3: tbl_df/tbl/data.frame)
# $ age : num [1:500] 8 9 9 8 12 10 12 10 12 10 ...  # non_wear_time4  
# $ gender : chr [1:500] "Male" "Female" "Male" "f" ...  
# $ pacer_lap_distance : num [1:500] 15 20 20 15 15 15 15 15 15 15 ...  
# $ pacer_laps : num [1:500] 23 31 169 50 63 15 32 143 43 182 ...  
# $ plank_time : num [1:500] 14 5 6 13 2 9 4 11 5 11 ...  
# $ camsa_skill_score1 : num [1:500] 14 5 6 13 2 9 4 11 5 11 ...  
# $ camsa_time1 : num [1:500] 34 27 13 35 21 NA NA 11 5 11 ...  
# $ camsa_skill_score2 : num [1:500] 14 5 13 14 11 14 14 11 ...  
# $ camsa_time2 : num [1:500] 35 23 14 35 23 33 30 19 18 ...  
# $ steps1 : num [1:500] 30627 27788 8457 8769 14169 ...  
# $ time_on1 : chr [1:500] "5:13am" "6:07" "6:13" "6:13" ...  
# $ time_off1 : chr [1:500] "22:00" "22:00" "22:00" "22:00" ...  
# $ non_wear_time1 : num [1:500] 25 31 25 83 67 20 10 49 64 ...  
# $ steps2 : num [1:500] 14905 24750 30111 21077 15786 ...  
# $ time_on2 : chr [1:500] "06:00" "5:13am" "6:13" "6:13" ...  
# $ time_off2 : chr [1:500] "21:00" "23:00" "11:13pm" "23:00" ...  
# $ non_wear_time2 : num [1:500] 30 31 25 83 67 20 10 49 64 ...  
# $ steps3 : num [1:500] 21972 15827 14130 13132 18022 ...  
# $ time_on3 : chr [1:500] "07:00" "07:00" "07:00" "07:00" ...  
# $ time_off3 : chr [1:500] "11:57pm" "11:57pm" "11:57pm" "11:57pm" ...  
# $ non_wear_time3 : num [1:500] 6 79 23 65 34 15 72 76 60 40 ...  
# $ steps4 : num [1:500] 28084 27369 14315 9963 6993 ...  
# $ time_on4 : chr [1:500] "05:00" "5:13" "6:07" "6:07" ...  
# $ time_off4 : chr [1:500] "11:13pm" "22:00" "11:13pm" "22:00" ...  
# $ non_wear_time4 : num [1:500] 32 38 74 20 75 22 84 59 42 22 ... 
```
rename_variable

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td><code>$ steps5</code></td>
<td>num [1:500] 14858 21112 16880 11707 20917 ...</td>
</tr>
<tr>
<td><code>$ time_on5</code></td>
<td>chr [1:500] "6:07" "6:13" "06:00" "05:00" ...</td>
</tr>
<tr>
<td><code>$ time_off5</code></td>
<td>chr [1:500] "11:57pm" "23:00" "8:17pm" "8:17pm" ...</td>
</tr>
<tr>
<td><code>$ non_wear_time5</code></td>
<td>num [1:500] 61 64 73 23 82 42 66 38 55 18 ...</td>
</tr>
<tr>
<td><code>$ steps6</code></td>
<td>num [1:500] 17705 5564 16459 12235 27766 ...</td>
</tr>
<tr>
<td><code>$ time_on6</code></td>
<td>chr [1:500] "06:00" "06:00" NA "6:07" ...</td>
</tr>
<tr>
<td><code>$ time_off6</code></td>
<td>chr [1:500] "21:00" NA "10:57 pm" "08:30pm" ...</td>
</tr>
<tr>
<td><code>$ non_wear_time6</code></td>
<td>num [1:500] 33 24 89 8 27 56 66 21 14 7 ...</td>
</tr>
<tr>
<td><code>$ steps7</code></td>
<td>num [1:500] 11067 13540 12106 18795 15039 ...</td>
</tr>
<tr>
<td><code>$ time_on7</code></td>
<td>chr [1:500] "6:07" "6:07" "8:00am" "06:00" ...</td>
</tr>
<tr>
<td><code>$ time_off7</code></td>
<td>chr [1:500] "08:30pm" "11:13pm" "8:17pm" "10:57 pm" ...</td>
</tr>
<tr>
<td><code>$ non_wear_time7</code></td>
<td>num [1:500] 8 72 4 38 9 32 49 36 43 4 ...</td>
</tr>
<tr>
<td><code>$ self_report_pa</code></td>
<td>num [1:500] NA 2 2 4 3 5 NA 7 6 7 ...</td>
</tr>
<tr>
<td><code>$ csappa1</code></td>
<td>num [1:500] 1 2 4 2 2 2 3 2 2 3 ...</td>
</tr>
<tr>
<td><code>$ csappa2</code></td>
<td>num [1:500] 3 2 1 1 1 1 4 1 4 3 ...</td>
</tr>
<tr>
<td><code>$ csappa3</code></td>
<td>num [1:500] 2 3 2 1 NA 1 3 3 4 4 ...</td>
</tr>
<tr>
<td><code>$ csappa4</code></td>
<td>num [1:500] 4 1 1 3 4 4 4 4 4 1 ...</td>
</tr>
<tr>
<td><code>$ csappa5</code></td>
<td>num [1:500] 4 2 3 2 1 2 2 2 4 1 ...</td>
</tr>
<tr>
<td><code>$ csappa6</code></td>
<td>num [1:500] 3 3 4 1 4 2 2 3 4 4 ...</td>
</tr>
<tr>
<td><code>$ why_active1</code></td>
<td>num [1:500] 5 3 3 4 2 3 5 3 5 NA 5 NA ...</td>
</tr>
<tr>
<td><code>$ why_active2</code></td>
<td>num [1:500] 5 3 3 4 2 3 5 3 5 NA 5 NA ...</td>
</tr>
<tr>
<td><code>$ feelings_about_pa1</code></td>
<td>num [1:500] 4 3 2 2 1 1 3 4 4 2 ...</td>
</tr>
<tr>
<td><code>$ feelings_about_pa2</code></td>
<td>num [1:500] 5 2 2 3 4 2 4 4 2 5 ...</td>
</tr>
<tr>
<td><code>$ feelings_about_pa3</code></td>
<td>num [1:500] 2 5 2 5 3 2 2 1 3 5 ...</td>
</tr>
<tr>
<td><code>$ pa_guideline</code></td>
<td>num [1:500] 2 3 4 1 2 4 3 2 2 2 ...</td>
</tr>
<tr>
<td><code>$ crf_means</code></td>
<td>num [1:500] 1 4 4 2 2 1 2 1 4 1 ...</td>
</tr>
<tr>
<td><code>$ ms_means</code></td>
<td>num [1:500] 3 2 1 2 3 1 2 4 2 4 ...</td>
</tr>
<tr>
<td><code>$ sports_skill</code></td>
<td>num [1:500] 2 4 4 1 3 1 3 1 4 3 ...</td>
</tr>
<tr>
<td><code>$ pa_is</code></td>
<td>num [1:500] 10 1 1 1 1 1 2 1 3 1 ...</td>
</tr>
<tr>
<td><code>$ pa_is_also</code></td>
<td>num [1:500] 5 1 4 4 1 7 2 7 2 8 ...</td>
</tr>
<tr>
<td><code>$ improve</code></td>
<td>num [1:500] 3 3 9 3 9 3 9 3 3 6 ...</td>
</tr>
<tr>
<td><code>$ increase</code></td>
<td>num [1:500] 2 8 3 8 1 3 3 8 8 ...</td>
</tr>
<tr>
<td><code>$ when_cooling_down</code></td>
<td>num [1:500] 4 2 4 2 2 2 5 2 2 ...</td>
</tr>
<tr>
<td><code>$ heart_rate</code></td>
<td>num [1:500] 5 6 4 4 4 9 4 8 7 4 ...</td>
</tr>
</tbody>
</table>

rename_variable

Rename variables in a data frame.

Description

This function renames variables in a data frame.

Usage

rename_variable(x = NULL, search = NA, replace = NA)
validate_age

Arguments

 x A data frame.
 search A character vector representing the variable names to be renamed.
 replace A character vector representing the new names for those variables identified in
 the search argument.

Details

 Other capl functions called by this function include: validate_character().

Value

 Returns a data frame with the renamed variables (if variables in the search argument are success-
 fully found and renamed).

Examples

 capl_demo_data <- get_capl_demo_data(n = 25)

 str(capl_demo_data[, 1:2])

 # 'data.frame': 25 obs. of 2 variables:
 # $ age : int 11 9 10 11 9 8 11 9 10 12 ...
 # $ gender: chr "Female" "Girl" "Girl" "f" ...

 capl_demo_data <- rename_variable(
 x = capl_demo_data,
 search = c("age", "gender"),
 replace = c("hello", "world")
)

 str(capl_demo_data[, 1:2])

 # 'data.frame': 25 obs. of 2 variables:
 # $ hello: int 11 9 10 11 9 8 11 9 10 12 ...
 # $ world: chr "Female" "Girl" "Girl" "f" ...

validate_age

 Check whether an age is valid for CAPL-2.

Description

 This function checks whether an age is valid (numeric and between 8 and 12). CAPL-2 scores and
 interpretations are valid for children between the ages of 8 and 12 years.

Usage

 validate_age(x)
validate_character

Check whether a vector is a character and not of length zero or "".

Description

This function checks whether a vector is a character and not of length zero or "".

Usage

```r
validate_character(x)
```

Arguments

- `x` A vector.

Value

Returns a character vector (if valid) or NA (if not valid).

Examples

```r
validate_character(c("beginning", "progressing", "achieving", "excelling", ",", NA, 7))
# [1] "beginning" "progressing" "achieving" "excelling" NA NA
# [7] "7"
```
validate_domain_score Check whether a CAPL-2 domain score is valid.

Description

This function checks whether a CAPL-2 domain score is numeric and within a valid range.

Usage

validate_domain_score(x = NA, domain = NA)

Arguments

x A vector representing a CAPL domain score.

domain A character vector representing domains within CAPL (valid values are "pc", "db", "mc", "ku"; valid values are not case-sensitive).

Details

Other capl functions called by this function include: validate_number() and validate_integer().

Value

Returns a numeric vector (if valid) or NA (if not valid).

Examples

validate_domain_score(
 x = c(34, 15, 10, 12.5, 25),
 domain = "pc"
)

[1] NA 15.0 10.0 12.5 25.0

validate_gender Check whether a vector can be classified as "girl" or "boy".

Description

This function checks whether a vector can be classified as "girl" or "boy".

Usage

validate_gender(x)
validate_integer

Arguments

x A vector (see Examples for valid values).

Value

Returns a character vector with values of "girl" or "boy" (if valid) or NA (if not valid).

Examples

validate_gender(c("Girl", "GIRL", "g", "G", "Female", "f", "F", ",", NA, 1))
[1] "girl" "girl" "girl" "girl" "girl" "girl" "girl" NA NA "girl"

validate_gender(c("Boy", "BOY", "b", "B", "Male", "m", "M", ",", NA, 0))
[1] "boy" "boy" "boy" "boy" "boy" "boy" "boy" NA NA "boy"

validate_integer

Check whether a vector is an integer.

Description

This function checks whether a vector is an integer.

Usage

validate_integer(x)

Arguments

x A vector.

Value

Returns a numeric (integer) vector (if valid) or NA (if not valid).

Examples

validate_integer(c(2, 6, 3.3, ",", NA, "6", "hello, world"))
[1] 2 6 NA NA NA 6 NA
validate_number
Check whether a vector is numeric.

Description
This function checks whether a vector is numeric.

Usage
validate_number(x)

Arguments
x A vector.

Value
Returns a numeric vector (if valid) or NA (if not valid).

Examples
validate_number(c(1:5, "5", "", NA, "hello, world!"))
[1] 1 2 3 4 5 5 NA NA NA

validate_scale
Check whether a response to a given questionnaire item or scale is valid.

Description
This function checks whether a vector for a given questionnaire item or scale is valid.

Usage
validate_scale(x, lower_bound = NA, upper_bound = NA)

Arguments
x A numeric (integer) vector representing the response to a questionnaire item (valid values are between the values set by the lower_bound and upper_bound arguments).
lower_bound A numeric (integer) vector representing the value below which x is invalid.
upper_bound A numeric (integer) vector representing the value above which x is invalid.
validate_steps

Value

Returns a numeric (integer) vector (if valid) or NA (if not valid).

Examples

validate_scale(
 x = c(0:10, NA, "7"),
 lower_bound = 1,
 upper_bound = 7
)

[1] NA 1 2 3 4 5 6 7 NA NA NA NA 7

validate_steps

Check whether daily steps as measured by a pedometer are valid.

Description

This function checks whether daily steps as measured by a pedometer are valid. The variables from this function are used to compute step_average and the step score (step_score).

Usage

validate_steps(steps = NA, wear_time = NA)

Arguments

steps A numeric (integer) vector representing the steps taken on a given day (valid values are between 1000 and 3000).
wear_time A numeric vector representing the duration of time (in decimal hours) that a pedometer was worn on a given day (valid values are >= 10.0 hours).

Details

Other capl functions called by this function include: validate_scale() and validate_number().

Value

Returns the steps argument (if valid) or NA (if not valid).

Examples

validate_steps(
 steps = c(5400, 11001, 999, 31000, 8796),
 wear_time = c(10.1, 12.6, 10.2, 10.9, 9.5)
)

[1] 5400 11001 NA NA NA
Index

* datasets
 capl_demo_data, 3
 capitalize_character, 3
capitalize_character(), 11
capl_demo_data, 3

export_capl_data, 4

floor(). 39

get_24_hour_clock, 4
get_24_hour_clock(). 30
get_adequacy_score, 5
get_adequacy_score(), 10
get_binary_score, 6
get_binary_score(), 10, 19
get_camsa_score, 7
get_camsa_score(), 10
get_camsa_skill_time_score, 8
get_camsa_skill_time_score(), 10
get_camsa_time_score, 9
get_camsa_time_score(), 10
getcapl, 10
getcapl(). 23
getcapl_bar_plot, 11
getcapl_demo_data, 12
getcapl_demo_data(), 25
getcapl_domain_status, 13
getcapl_domain_status(), 10
getcapl_interpretation, 15
getcapl_interpretation(), 10
getcapl_score, 16
getcapl_score(), 10
getcapl_db_score, 17
getcapl_db_score(). 10
get_fill_in_the_blanks_score, 18
get_fill_in_the_blanks_score(), 6, 10
get_intrinsic_motivation_score, 20
get_intrinsic_motivation_score(), 10
get_ku_score, 21
getcapl(). 10
get_mc_score, 22
getcapl(). 10
get_missing_capl_variables, 23
getcapl_missing_capl_variables(), 10
getcapl_pa_competence_score, 27
getcapl_pa_competence_score(), 10
getcapl_pacer_20m_laps, 26
getcapl_pacer_20m_laps(), 10
getcapl_pacer_score, 27
getcapl_pacer_score(), 10
getcapl_pc_score, 29
getcapl_pc_score(), 10
getcapl_pedometer_wear_time, 30
getcapl_pedometer_wear_time(), 10, 34
getcapl_plank_score, 31
getcapl_plank_score(), 10
getcapl_predilection_score, 31
getcapl_predilection_score(), 10
getcapl_self_report_pa_score, 32
getcapl_self_report_pa_score(), 10
getcapl_step_average, 33
getcapl_step_average(), 10, 35
getcapl_step_score, 35
getcapl_step_score(), 10
import_capl_data, 35

rename_variable, 37

str(). 25

validate_age, 38
validate_age(), 16
validate_character, 39
validate_character(), 3–5, 11, 15, 16, 36, 38
validate_domain_score, 40
validate_domain_score(), 17
validate_gender, 40
validate_gender(), 16
validate_integer, 41
validate_integer(), 5, 17, 26, 27, 40
validate_number, 42
validate_number(), 9, 11, 15–17, 23, 30, 31, 35, 39, 40, 43
validate_scale, 42
validate_scale(), 5, 7, 8, 16, 18, 20, 21, 26–29, 32, 33, 43
validate_steps, 43
validate_steps(), 10, 34