Package ‘car’

July 4, 2017

Version 2.1-5
Date 2017-06-25
Title Companion to Applied Regression
Depends R (>= 3.2.0)
Imports MASS, mgcv, nnet, pbkrtest (>= 0.4-4), quantreg, grDevices, utils, stats, graphics
Suggests alr4, boot, coxme, leaps, lme4, lmmtest, Matrix, MatrixModels, nlme, rgl (>= 0.93.960), sandwich, SparseM, survival, survey, nloptr
ByteCompile yes
LazyLoad yes
LazyData yes
License GPL (>= 2)
URL https://r-forge.r-project.org/projects/car/,
https://CRAN.R-project.org/package=car,
http://socserv.socsci.mcmaster.ca/jfox/Books/Companion/index.html
Author John Fox [aut, cre],
Sanford Weisberg [aut],
Daniel Adler [ctb],
Douglas Bates [ctb],
Gabriel Baud-Bovy [ctb],
Steve Ellison [ctb],
David Firth [ctb],
Michael Friendly [ctb],
Gregor Gorjan [ctb],
Spencer Graves [ctb],
Richard Heiberger [ctb],
Rafael Laboissiere [ctb],
Georges Monette [ctb],

1
R topics documented:

- car-package
- Adler
- AMSsurvey
- Angell
- Anova
- Anscombe
- avPlots
- Baumann
- bcPower
- Bfox
- Blackmore
- Boot
- boxCox
- boxCoxVariable
- Boxplot
- boxTidwell
- Burt
- CanPop
- car-deprecated
- car-internal.Rd
- carWeb
- ceresPlots
- Chile
- Chirot
- compareCoefs
- Contrasts
- Cowles
- crPlots

Maintainer: John Fox <jfox@mcmaster.ca>

Repository: CRAN

Repository/R-Forge/Project: car

Repository/R-Forge/Revision: 481

Repository/R-Forge/DateTimeStamp: 2017-07-03 14:10:10

Date/Publication: 2017-07-04 08:00:39 UTC

NeedsCompilation: no
R topics documented:

Davis .. 45
DavisThin ... 46
deltaMethod .. 47
densityPlot ... 50
Depredations ... 53
dfbetaPlots ... 54
Duncan .. 55
durbinWatsonTest 56
Ellipses ... 57
Ericksen .. 61
Florida ... 62
Freedman .. 63
Friendly ... 63
Ginzberg .. 64
Greene ... 65
Guyer ... 66
Hartnagel ... 66
hccm .. 67
Highway1 ... 69
hist.boot .. 70
infIndexPlot .. 72
influencePlot .. 74
invResPlot .. 75
invTranPlot .. 76
KosteckiDillon 79
Leinhardt ... 80
leveneTest .. 81
leveragePlots .. 82
linearHypothesis 84
LoBD .. 90
logit ... 92
Mandel ... 93
mcPlots ... 94
Migration .. 96
mmps .. 97
Moore ... 101
Mroz .. 102
ncvTest ... 103
OBrienKaiser ... 104
Ornstein ... 105
outlierTest .. 106
panel.car .. 107
plot.powerTransform 108
Pottery ... 110
powerTransform 110
Prestige ... 114
qqPlot ... 115
Quartet ... 118
Index 165

car-package

Companion to Applied Regression

Description

Details

Package: car
Version: 2.1-5
Date: 2017-06-25
Depends: R (>= 3.2.0)
LinkingTo: Rcpp
Imports: MASS, mgcv, nnet, pbkrtest (>= 0.4-4), quantreg, grDevices, utils, stats, graphics
Suggests: alr4, boot, coxme, leaps, lme4, lme4test, Matrix, MatrixModels, nlme, rgl (>= 0.93.960), sandwich, SparseM, survival, survey, nloptr
License: GPL (>= 2)

Author(s)

John Fox <jfox@mcmaster.ca> and Sanford Weisberg. We are grateful to Douglas Bates, Gabriel Baud-Bovy, David Firth, Michael Friendly, Gregor Gorjanc, Spencer Graves, Richard Heiberger, Rafael Laboissiere, Georges Monette, Henric Nilsson, Derek Ogle, Brian Ripley, Achim Zeleis, and R Core for various suggestions and contributions.

Maintainer: John Fox <jfox@mcmaster.ca>

Adler

Experimenter Expectations

Description

The Adler data frame has 97 rows and 3 columns.

The “experimenters” were the actual subjects of the study. They collected ratings of the apparent successfulness of people in pictures who were pre-selected for their average appearance. The experimenters were told prior to collecting data that the pictures were either high or low in their appearance of success, and were instructed to get good data, scientific data, or were given no such instruction. Each experimenter collected ratings from 18 randomly assigned respondents; a few subjects were deleted at random to produce an unbalanced design.

Usage

Adler

Format

This data frame contains the following columns:

- **instruction** a factor with levels: GOOD, good data; NONE, no stress; SCIENTIFIC, scientific data.
- **expectation** a factor with levels: HIGH, expect high ratings; LOW, expect low ratings.
- **rating** The average rating obtained.
Source

References

Description

Counts of new PhDs in the mathematical sciences for 2008-09 and 2011-12 categorized by type of institution, gender, and US citizenship status.

Usage

AMSsurvey

Format

A data frame with 24 observations on the following 5 variables.

- **type**: a factor with levels I(Pu) for group I public universities, I(Pr) for group I private universities, II and III for groups II and III, IV for statistics and biostatistics programs, and V for applied mathematics programs.
- **sex**: a factor with levels Female, Male of the recipient
- **citizen**: a factor with levels Non-US, US giving citizenship status
- **count**: The number of individuals of each type in 2008-09
- **count11**: The number of individuals of each type in 2011-12

Details

These data are produced yearly by the American Math Society.

Source

References

Description

The Angell data frame has 43 rows and 4 columns. The observations are 43 U. S. cities around 1950.

Usage

Angell

Format

This data frame contains the following columns:

- **moral** Moral Integration: Composite of crime rate and welfare expenditures.
- **hetero** Ethnic Heterogenity: From percentages of nonwhite and foreign-born white residents.
- **mobility** Geographic Mobility: From percentages of residents moving into and out of the city.
- **region** A factor with levels: E Northeast; M# Midwest; S Southeast; W West.

Source

References

Description

Calculates type-II or type-III analysis-of-variance tables for model objects produced by `lm`, `glm`, `multinom` (in the nnet package), `polr` (in the MASS package), `coxph` (in the survival package), `coxme` (in the coxme package), `svyglm` (in the survey package), `r1m` (in the MASS package), `lmer` in the lme4 package, `lme` in the nlme package, and (by the default method) for most models with a linear predictor and asymptotically normal coefficients (see details below). For linear models, F-tests are calculated; for generalized linear models, likelihood-ratio chisquare, Wald chisquare, or F-tests are calculated; for multinomial logit and proportional-odds logit models, likelihood-ratio tests are calculated. Various test statistics are provided for multivariate linear models produced by `lm` or `manova`. Partial-likelihood-ratio tests or Wald tests are provided for Cox models. Wald chi-square tests are provided for fixed effects in linear and generalized linear mixed-effects models. Wald chi-square or F tests are provided in the default case.
Usage

Anova(mod, ...)

Manova(mod, ...)

S3 method for class 'lm'
Anova(mod, error, type=c("II", "III", 2, 3),
white.adjust=c(FALSE, TRUE, "hc3", "hc0", "hc1", "hc2", "hc4"),
vcov.=NULL, singular.ok, ...)

S3 method for class 'aov'
Anova(mod, ...)

S3 method for class 'glm'
Anova(mod, type=c("II", "III", 2, 3),
test.statistic=c("LR", "Wald", "F"),
error, error.estimate=c("pearson", "dispersion", "deviance"),
singular.ok)

S3 method for class 'multinom'
Anova(mod, type = c("II", "III", 2, 3), ...)

S3 method for class 'polr'
Anova(mod, type = c("II", "III", 2, 3), ...)

S3 method for class 'mlm'
Anova(mod, type=c("II", "III", 2, 3), SSPE, error.df,
idata, idesign, icontраст=c("contr.sum", "contr.poly"), imatrix,
test.statistic=c("Pillai", "Wilks", "Hotelling-Lawley", "Roy"),...)

S3 method for class 'manova'
Anova(mod, ...)

S3 method for class 'mlm'
Manova(mod, ...)

S3 method for class 'Anova.mlm'
print(x, ...)

S3 method for class 'Anova.mlm'
summary(object, test.statistic, univariate=object$repeated, multivariate=TRUE, p.adjust.method, ...)

S3 method for class 'summary.Anova.mlm'
print(x, digits = getOption("digits"),
SSP=TRUE, SSPE=SSP, ...)

S3 method for class 'univaov'

Anova

print(x, digits = max(getOption("digits") - 2L, 3L),
 style = c("wide", "long"),
 by = c("response", "term"),
 ...)

S3 method for class 'univAov'
as.data.frame(x, row.names, optional, by = c("response", "term"), ...)

S3 method for class 'coxph'
Anova(mod, type = c("II", "III", 2, 3),
 test.statistic = c("LR", "Wald"), ...)

S3 method for class 'coxme'
Anova(mod, type = c("II", "III", 2, 3),
 test.statistic = c("Wald", "LR"), ...)

S3 method for class 'lme'
Anova(mod, type = c("II", "III", 2, 3),
 vcov = vcov(mod), singular.ok, ...)

S3 method for class 'mer'
Anova(mod, type = c("II", "III", 2, 3),
 test.statistic = c("Chisq", "F"), vcov = vcov(mod), singular.ok, ...)

S3 method for class 'merMod'
Anova(mod, type = c("II", "III", 2, 3),
 test.statistic = c("Chisq", "F"), vcov = vcov(mod), singular.ok, ...)

S3 method for class 'svyglm'
Anova(mod, ...)

S3 method for class 'rlm'
Anova(mod, ...)

Default S3 method:
Anova(mod, type = c("II", "III", 2, 3),
 test.statistic = c("Chisq", "F"), vcov = vcov(mod),
 singular.ok, ...)

Arguments

mod lm, aov, glm, multinom, polr, mlm, coxph, coxme, lme, mer, merMod, svyglm, rlm, or other suitable model object.

error for a linear model, an lm model object from which the error sum of squares and degrees of freedom are to be calculated. For F-tests for a generalized linear model, a glm object from which the dispersion is to be estimated. If not specified, mod is used.

type type of test, "II", "III", 2, or 3.
Anova

singular.ok defaults to TRUE for type-II tests, and FALSE for type-III tests (where the tests for models with aliased coefficients will not be straightforwardly interpretable); if FALSE, a model with aliased coefficients produces an error.

test.statistic for a generalized linear model, whether to calculate "LR" (likelihood-ratio), "Wald", or "F" tests; for a Cox or Cox mixed-effects model, whether to calculate "LR" (partial-likelihood ratio) or "Wald" tests; in the default case or for linear mixed models fit by lmer, whether to calculate Wald "Chisq" or "F" tests. For a multivariate linear model, the multivariate test statistic to compute — one of "Pillai", "Wilks", "Hotelling-Lawley", or "Roy", with "Pillai" as the default. The summary method for Anova.mlm objects permits the specification of more than one multivariate test statistic, and the default is to report all four.

test.statistic for a generalized linear model, whether to calculate "LR" (likelihood-ratio), "Wald", or "F" tests; for a Cox or Cox mixed-effects model, whether to calculate "LR" (partial-likelihood ratio) or "Wald" tests; in the default case or for linear mixed models fit by lmer, whether to calculate Wald "Chisq" or "F" tests. For a multivariate linear model, the multivariate test statistic to compute — one of "Pillai", "Wilks", "Hotelling-Lawley", or "Roy", with "Pillai" as the default. The summary method for Anova.mlm objects permits the specification of more than one multivariate test statistic, and the default is to report all four.

error.estimate for F-tests for a generalized linear model, base the dispersion estimate on the Pearson residuals ("pearson", the default); use the dispersion estimate in the model object ("dispersion"); or base the dispersion estimate on the residual deviance ("deviance"). For binomial or Poisson GLMs, where the dispersion is fixed to 1, setting error.estimate="dispersion" is changed to "pearson", with a warning.

white.adjust if not FALSE, the default, tests use a heteroscedasticity-corrected coefficient covariance matrix; the various values of the argument specify different corrections. See the documentation for hccm for details. If white.adjust=TRUE then the "hc3" correction is selected.

SSPE For Anova for a multivariate linear model, the error sum-of-squares-and-products matrix; if missing, will be computed from the residuals of the model; for the print method for the summary of an Anova of a multivariate linear model, whether or not to print the error SSP matrix (defaults to TRUE).

SSP if TRUE (the default), print the sum-of-squares and cross-products matrix for the hypothesis and the response-transformation matrix.

error.df The degrees of freedom for error; if missing, will be taken from the model.

idata an optional data frame giving a factor or factors defining the intra-subject model for multivariate repeated-measures data. See Details for an explanation of the intra-subject design and for further explanation of the other arguments relating to intra-subject factors.

idesign a one-sided model formula using the “data” in idata and specifying the intra-subject design.

icontrasts names of contrast-generating functions to be applied by default to factors and ordered factors, respectively, in the within-subject “data”; the contrasts must produce an intra-subject model matrix in which different terms are orthogonal. The default is c("contr.sum", "contr.poly").

imatrix as an alternative to specifying idata, idesign, and (optionally) icontrasts, the model matrix for the within-subject design can be given directly in the form of list of named elements. Each element gives the columns of the within-subject model matrix for a term to be tested, and must have as many rows as there are responses; the columns of the within-subject model matrix for different terms must be mutually orthogonal.

x, object object of class "Anova.mlm" to print or summarize.
compute and print multivariate and univariate tests for a repeated-measures ANOVA or multivariate linear model; the default is TRUE for both for repeated measures and TRUE for multivariate for a multivariate linear model.

if given for a multivariate linear model when univariate tests are requested, the univariate tests are corrected for simultaneous inference by term; if specified, should be one of the methods recognized by \texttt{p.adjust} or TRUE, in which case the default (Holm) adjustment is used.

minimum number of significant digits to print.

for printing univariate tests if requested for a multivariate linear model; one of "wide", the default, or "long".

if univariate tests are printed in "long" style, they can be ordered by "response", the default, or by "term".

not used.

in the default method, an optional coefficient-covariance matrix or function to compute a covariance matrix, computed by default by applying the generic \texttt{vcov} function to the model object. A similar argument may be supplied to the \texttt{lm} method, and the default (NULL) is to ignore the argument; if both \texttt{vcov} and \texttt{white.adjust} are supplied to the \texttt{lm} method, the latter is used.

Details

The designations "type-II" and "type-III" are borrowed from SAS, but the definitions used here do not correspond precisely to those employed by SAS. Type-II tests are calculated according to the principle of marginality, testing each term after all others, except ignoring the term’s higher-order relatives; so-called type-III tests violate marginality, testing each term in the model after all of the others. This definition of Type-II tests corresponds to the tests produced by SAS for analysis-of-variance models, where all of the predictors are factors, but not more generally (i.e., when there are quantitative predictors). Be very careful in formulating the model for type-III tests, or the hypotheses tested will not make sense.

As implemented here, type-II Wald tests are a generalization of the linear hypotheses used to generate these tests in linear models.

For tests for linear models, multivariate linear models, and Wald tests for generalized linear models, Cox models, mixed-effects models, generalized linear models fit to survey data, and in the default case, \texttt{anova} finds the test statistics without refitting the model. The \texttt{svyglm} method simply calls the default method and therefore can take the same arguments.

The standard R \texttt{anova} function calculates sequential ("type-I") tests. These rarely test interesting hypotheses in unbalanced designs.

A MANOVA for a multivariate linear model (i.e., an object of class "mlm" or "manova") can optionally include an intra-subject repeated-measures design. If the intra-subject design is absent (the default), the multivariate tests concern all of the response variables. To specify a repeated-measures design, a data frame is provided defining the repeated-measures factor or factors via \texttt{idata}, with default contrasts given by the \texttt{icontrasts} argument. An intra-subject model-matrix is generated
from the formula specified by the `idesign` argument; columns of the model matrix corresponding to
different terms in the intra-subject model must be orthogonal (as is insured by the default contrasts).
Note that the contrasts given in `icontrasts` can be overridden by assigning specific contrasts to the
factors in `idata`. As an alternative, the within-subjects model matrix can be specified directly via
the `imatrix` argument. `manova` is essentially a synonym for `anova` for multivariate linear models.

If univariate tests are requested for the summary of a multivariate linear model, the object returned
contains a `univaov` component of "univaov"; `print` and `as.data.frame` methods are provided
for the "univaov" class.

For the default method to work, the model object must contain a standard `terms` element, and must
respond to the `vcov`, `coef`, and `model.matrix` functions. If any of these requirements is missing,
then it may be possible to supply it reasonably simply (e.g., by writing a missing `vcov` method for
the class of the model object).

Value

An object of class "anova", or "Anova.mlm", which usually is printed. For objects of class
"Anova.mlm", there is also a `summary` method, which provides much more detail than the `print`
method about the MANOVA, including traditional mixed-model univariate F-tests with Greenhouse-
Geisser and Huynh-Feldt corrections.

Warning

Be careful of type-III tests.

Author(s)

John Fox <jfox@mcmaster.ca>; the code for the Mauchly test and Greenhouse-Geisser and Huynh-
Feldt corrections for non-sphericity in repeated-measures ANOVA are adapted from the functions
`stats::mauchly.test` and `stats::sphericity` by R Core; `summary.Anova.mlm` and `print.summary.Anova.mlm` incorporates code contributed by Gabriel Baud-Bovy.

References

Practical Approach for Behavioural Scientists*. Chapman and Hall.

See Also

`linearHypothesis`, `anova.anova.lm`, `anova.glm`, `anova.mlm`, `anova.coxph`, `link[survey]svyglm`.
Two-Way Anova

```r
mod <- lm(conformity ~ fcategory*partner.status, data=Moore,
            contrasts=list(fcategory=contr.sum, partner.status=contr.sum))
Anova(mod)
```

One-Way MANOVA

See ?Pottery for a description of the data set used in this example.

```r
summary(Anova(lm(cbind(Al, Fe, Mg, Ca, Na) ~ Site, data=Pottery)))
```

MANOVA for a randomized block design (example courtesy of Michael Friendly:

See ?Soils for description of the data set)

```r
soils.mod <- lm(cbind(pH, N, Dens, P, Ca, Mg, K, Na, Conduc) ~ Block + Contour*Depth,
                 data=Soils)
Manova(soils.mod)
summary(Anova(soils.mod), univariate=TRUE, multivariate=FALSE,
         p.adjust.method=TRUE)
```

A multivariate linear model for repeated-measures data

See ?OBrienKaiser for a description of the data set used in this example.

```r
colnames(imatrix) <- c("WL", "SE", "WL.L", "WL.Q", "SE.L", "SE.Q")
rownames(imatrix) <- colnames(WeightLoss)[1]
```

```r
imatrix <- matrix(c(
  1,0,-1, 1, 0, 0,
  1,0, 0,-2, 0, 0,
  1,0, 1, 1, 0, 0,
  0,1, 0, 0,-1, 1,
  0,1, 0, 0, 0,-2,
  0,1, 0, 0, 1, 1), 6, 6, byrow=TRUE)
```
(imatrix <- list(measure=imatrix[,1:2], month=imatrix[,3:6]))
contrasts(WeightLoss$group) <- matrix(c(-2,1,1, 0,-1,1), ncol=2)
(wl.mod<-lm(cbind(wl1, wl2, wl3, se1, se2, se3)-group, data=WeightLoss))
Anova(wl.mod, imatrix=imatrix, test="Roy")

mixed-effects models examples:

Not run:
library(nlme)
example(lme)
Anova(fm2)

End(Not run)

Not run:
library(lme4)
example(glmer)
Anova(gl1)

End(Not run)

Anscombe

U. S. State Public-School Expenditures

Description

The Anscombe data frame has 51 rows and 4 columns. The observations are the U. S. states plus Washington, D. C. in 1970.

Usage

Anscombe

Format

This data frame contains the following columns:

- **education** Per-capita education expenditures, dollars.
- **income** Per-capita income, dollars.
- **young** Proportion under 18, per 1000.
- **urban** Proportion urban, per 1000.

Source

References

Description

These functions construct added-variable (also called partial-regression) plots for linear and generalized linear models.

Usage

```r
avPlots(model, terms=~., intercept=FALSE, layout=NULL, ask, main, ...)
```

```r
avp(...)```

```r
avPlot(model, ...)```

```r
## S3 method for class 'lm'
avPlot(model, variable,
id.method = list(abs(residuals(model, type="pearson")), "x"),
labels,
id.n = if(id.method[[1]]=="identify") Inf else 0,
id.cex=1, id.col=palette()[1], id.location="lr",
col = palette()[1], col.lines = palette()[2],
xlab, ylab, pch = 1, lwd = 2,
main=paste("Added-Variable Plot: ", variable),
grid=TRUE,
ellipse=FALSE, ellipse.args=NULL,
marginal.scale=FALSE, ...)
```

```r
## S3 method for class 'glm'
avPlot(model, variable,
id.method = list(abs(residuals(model, type="pearson")), "x"),
labels,
id.n = if(id.method[[1]]=="identify") Inf else 0,
id.cex=1, id.col=palette()[1], id.location="lr",
col = palette()[1], col.lines = palette()[2],
xlab, ylab, pch = 1, lwd = 2, type=c("Wang", "Weisberg"),
main=paste("Added-Variable Plot: ", variable), grid=TRUE,
ellipse=FALSE, ellipse.args=NULL, ...)
```

Arguments

- `model` model object produced by `lm` or `glm`.
- `terms` A one-sided formula that specifies a subset of the predictors. One added-variable plot is drawn for each term. For example, the specification `terms = ~.-X3` would plot against all terms except for `X3`. If this argument is a quoted name of one of the terms, the added-variable plot is drawn for that term only.
<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>intercept</td>
<td>Include the intercept in the plots; default is FALSE.</td>
</tr>
<tr>
<td>variable</td>
<td>A quoted string giving the name of a regressor in the model matrix for the horizontal axis</td>
</tr>
<tr>
<td>layout</td>
<td>If set to a value like c(1, 1) or c(4, 3), the layout of the graph will have this many rows and columns. If not set, the program will select an appropriate layout. If the number of graphs exceed nine, you must select the layout yourself, or you will get a maximum of nine per page. If layout=NA, the function does not set the layout and the user can use the par function to control the layout, for example to have plots from two models in the same graphics window.</td>
</tr>
<tr>
<td>main</td>
<td>The title of the plot; if missing, one will be supplied.</td>
</tr>
<tr>
<td>ask</td>
<td>If TRUE, ask the user before drawing the next plot; if FALSE don’t ask.</td>
</tr>
<tr>
<td>...</td>
<td>avPlots passes these arguments to avPlot. avPlot passes them to plot.</td>
</tr>
<tr>
<td>id.method, labels, id.n, id.cex, id.col, id.location</td>
<td>Arguments for the labelling of points. The default is id.n=0 for labeling no points. See showlabels for details of these arguments.</td>
</tr>
<tr>
<td>col</td>
<td>color for points; the default is the second entry in the current color palette (see palette and par).</td>
</tr>
<tr>
<td>col.lines</td>
<td>color for the fitted line.</td>
</tr>
<tr>
<td>pch</td>
<td>plotting character for points; default is 1 (a circle, see par).</td>
</tr>
<tr>
<td>lwd</td>
<td>line width; default is 2 (see par).</td>
</tr>
<tr>
<td>xlab</td>
<td>x-axis label. If omitted a label will be constructed.</td>
</tr>
<tr>
<td>ylab</td>
<td>y-axis label. If omitted a label will be constructed.</td>
</tr>
<tr>
<td>type</td>
<td>if "Wang" use the method of Wang (1985); if "Weisberg" use the method in the Arc software associated with Cook and Weisberg (1999).</td>
</tr>
<tr>
<td>grid</td>
<td>If TRUE, the default, a light-gray background grid is put on the graph.</td>
</tr>
<tr>
<td>ellipse</td>
<td>If TRUE, plot a concentration ellipse; default is FALSE.</td>
</tr>
<tr>
<td>ellipse.args</td>
<td>Arguments to pass to the link(dataEllipse) function, in the form of a list with named elements; e.g., ellipse.args=list(robust=TRUE)) will cause the ellipse to be plotted using a robust covariance-matrix.</td>
</tr>
<tr>
<td>marginal.scale</td>
<td>Consider an added-variable plot of Y versus X given Z. If this argument is FALSE then the limits on the horizontal axis are determined by the range of the residuals from the regression of X on Z and the limits on the vertical axis are determined by the range of the residuals from the regresssion of Y on Z. If the argument is TRUE, then the limits on the horizontal axis are determined by the range of X minus it mean, and on the vertical axis by the range of Y minus its means; adjustment is made if necessary to include outliers. This scaling allows visualization of the correlations between Y and Z and between X and Z. For example, if the X and Z are highly correlated, then the points will be concentrated on the middle of the plot.</td>
</tr>
</tbody>
</table>

Details

The function intended for direct use is avPlots (for which avp is an abbreviation).
Value

These functions are used for their side effect id producing plots, but also invisibly return the coordinates of the plotted points.

Author(s)

John Fox <jfox@mcmaster.ca>, Sanford Weisberg <sandy@umn.edu>

References

See Also

residualPlots, crPlots, ceresPlots, link(dataEllipse)

Examples

```r
avPlots(lm(prestige~income+education+type, data=Duncan))
avPlots(glm(partic != "not.work" ~ hincome + children, 
data=Women1f, family=binomial))
m1 <- lm(partic ~ tfr + menwage + womwage + debt + parttime, Bfox)
par(mfrow=c(1,3))
plot(partic ~ womwage, Bfox) # marginal plot, ignoring other predictors
abline(lm(partic ~ womwage, Bfox), col="red", lwd=2)
grid()
avPlots(m1, ~ womwage) # av Plot, adjusting for others
avPlots(m1, ~ womwage, marginal.scale=TRUE) # av Plot, adjusting and scaling as in marginal plot
```

Baumann

Methods of Teaching Reading Comprehension

Description

The Baumann data frame has 66 rows and 6 columns. The data are from an experimental study conducted by Baumann and Jones, as reported by Moore and McCabe (1993) Students were randomly assigned to one of three experimental groups.

Usage

Baumann
Format

This data frame contains the following columns:

group Experimental group; a factor with levels: Basal, traditional method of teaching; DRTA, an innovative method; Strat, another innovative method.

pretest.1 First pretest.
pretest.2 Second pretest.
post.test.1 First post-test.
post.test.2 Second post-test.
post.test.3 Third post-test.

Source

References

<table>
<thead>
<tr>
<th>bcPower</th>
<th>Box-Cox, Box-Cox with Negatives Allowed, Yeo-Johnson and Basic Power Transformations</th>
</tr>
</thead>
</table>

Description

Transform the elements of a vector or columns of a matrix using, the Box-Cox, Box-Cox with negatives allowed, Yeo-Johnson, or simple power transformations.

Usage

bcPower(U, lambda, jacobian.adjusted=FALSE, gamma=NULL)

bcnPower(U, lambda, jacobian.adjusted = FALSE, gamma)

yjPower(U, lambda, jacobian.adjusted = FALSE)

basicPower(U,lambda, gamma=NULL)
bcPower

Arguments

- **U** A vector, matrix or data.frame of values to be transformed
- **lambda** Power transformation parameter with one element for each column of U, usually in the range from -2 to 2, or if U
- **jacobian.adjusted** If TRUE, the transformation is normalized to have Jacobian equal to one. The default FALSE is almost always appropriate
- **gamma** For bcPower or basicPower, the transformation is of $U + \gamma$, where γ is a positive number called a start that must be large enough so that $U + \gamma$ is strictly positive. For the bcnPower, Box-cox power with negatives allowed, see the details below.

Details

The Box-Cox family of scaled power transformations equals $((U + \gamma)^{\lambda} - 1)/\lambda$ for $\lambda \neq 0$, and $\log(U)$ if $\lambda = 0$. If γ is not specified, it is set equal to zero. $U + \gamma$ must be strictly positive to use this family.

The Box-Cox family with negatives allowed was proposed by Hawkins and Weisberg (2017). It is the Box-Cox power transformation of $z = .5 * (y + (y^2 + \gamma^2)^{1/2})$, where γ is strictly positive if y includes negative values and non-negative otherwise. The value of z is always positive. The bcnPower transformations behave very similarly to the bcPower transformations, including much less bias than is introduced by setting the parameter γ to be non-zero in the Box-Cox family.

If family="yeo.johnson" then the Yeo-Johnson transformations are used. This is the Box-Cox transformation of $U + 1$ for nonnegative values, and of $|U| + 1$ with parameter $2 - \lambda$ for U negative.

The basic power transformation returns U^λ if λ is not zero, and $\log(\lambda)$ otherwise for U strictly positive.

If jacobian.adjusted is TRUE, then the scaled transformations are divided by the Jacobian, which is a function of the geometric mean of U for skewPower and yjPower and of $U + \gamma$ for bcPower. With this adjustment, the Jacobian of the transformation is always equal to 1.

Missing values are permitted, and return NA wherever U is equal to NA.

Value

Returns a vector or matrix of transformed values.

Author(s)

Sanford Weisberg, <sandy@umn.edu>

References

See Also

`powerTransform`, `testTransform`

Examples

```r
U <- c(NA, (-3:3))
## Not run: bcPower(U, 0) # produces an error as U has negative values
bcPower(U, 0, gamma=4)
bcPower(U,.5, jacobian.adjusted=TRUE, gamma=4)
basicPower(U, lambda = 0, gamma=4)
yjPower(U, 0)
V <- matrix(1:10, ncol=2)
bcPower(V, c(0, 2))
basicPower(V, c(0,1))
```

Bfox

Canadian Women’s Labour-Force Participation

Description

The Bfox data frame has 30 rows and 7 columns. Time-series data on Canadian women’s labor-force participation, 1946–1975.

Usage

Bfox

Format

This data frame contains the following columns:

- **partic** Percent of adult women in the workforce.
- **tfr** Total fertility rate: expected births to a cohort of 1000 women at current age-specific fertility rates.
- **menwage** Men’s average weekly wages, in constant 1935 dollars and adjusted for current tax rates.
- **womwage** Women’s average weekly wages.
- **debt** Per-capita consumer debt, in constant dollars.
- **parttime** Percent of the active workforce working 34 hours per week or less.

Warning

The value of tfr for 1973 is misrecorded as 2931; it should be 1931.
Source

References

<table>
<thead>
<tr>
<th>Blackmore</th>
<th>Exercise Histories of Eating-Disordered and Control Subjects</th>
</tr>
</thead>
</table>

Description

The Blackmore data frame has 945 rows and 4 columns. Blackmore and Davis’s data on exercise histories of 138 teenaged girls hospitalized for eating disorders and 98 control subjects.

Usage

Blackmore

Format

This data frame contains the following columns:

- **subject**: a factor with subject id codes.
- **age**: age in years.
- **exercise**: hours per week of exercise.
- **group**: a factor with levels: control, Control subjects; patient, Eating-disordered patients.

Source

Personal communication from Elizabeth Blackmore and Caroline Davis, York University.
Bootstrapping for regression models

Description

This function provides a simple front-end to the boot function in the package also called boot. Whereas boot is very general and therefore has many arguments, the Boot function has very few arguments, but should meet the needs of many users.

Usage

Boot(object, f=coef, labels=names(f(object)), R=999, method=c("case", "residual"), ...)

Default S3 method:
Boot(object, f=coef, labels=names(f(object)),
 R=999, method=c("case", "residual"), start = FALSE, ...)

S3 method for class 'lm'
Boot(object, f=coef, labels=names(f(object)),
 R=999, method=c("case", "residual"), ...)

S3 method for class 'glm'
Boot(object, f=coef, labels=names(f(object)),
 R=999, method=c("case", "residual"), ...)

S3 method for class 'nls'
Boot(object, f=coef, labels=names(f(object)),
 R=999, method=c("case", "residual"), ...)

Arguments

- **object**
 A regression object of class lm, glm or nls. The function may work with other regression objects that support the update method and have a subset argument

- **f**
 A function whose one argument is the name of a regression object that will be applied to the updated regression object to compute the statistics of interest. The default is coef, to return to regression coefficient estimates. For example, f = function(obj) coef(obj)[1]/coef(obj)[2] will bootstrap the ratio of the first and second coefficient estimates.

- **labels**
 Provides labels for the statistics computed by f. If this argument is of the wrong length, then generic labels will be generated.

- **R**
 Number of bootstrap samples. The number of bootstrap samples actually computed may be smaller than this value if either the fitting method is iterative, or if the rank of a little lm or glm model is different in the bootstrap replication than in the original data.
method The bootstrap method, either “case” for resampling cases or “residuals” for a residual bootstrap. See the details below. The residual bootstrap is available only for \texttt{lm} and \texttt{nls} objects and will return an error for \texttt{glm} objects.

... Arguments passed to methods. The default method passes these on to the \texttt{boot} function.

start Should the \(f \) parameters be passed as \texttt{start} values to the update in each bootstrap iteration? Alternatively, \texttt{start} can also be a numeric vector that is passed to the update.

Details

Whereas the \texttt{boot} function is very general, \texttt{Boot} is very specific. It takes the information from a regression object and the choice of \texttt{method}, and creates a function that is passed as the \texttt{statistic} argument to \texttt{boot}. The argument \texttt{R} is also passed to \texttt{boot}. All other arguments to \texttt{boot} are kept at their default values.

The methods available for \texttt{lm} and \texttt{nls} objects are “case” and “residual”. The case bootstrap resamples from the joint distribution of the terms in the model and the response. The residual bootstrap fixes the fitted values from the original data, and creates bootstraps by adding a bootstrap sample of the residuals to the fitted values to get a bootstrap response. It is an implementation of Algorithm 6.3, page 271, of Davison and Hinkley (1997). For \texttt{nls} objects ordinary residuals are used in the resampling rather than the standardized residuals used in the \texttt{lm} method. The residual bootstrap for generalized linear models has several competing approaches, but none are without problems. If you want to do a residual bootstrap for a \texttt{glm}, you will need to write your own call to \texttt{boot}.

For the default object to work with other types of regression model, the model must have methods for the following generic functions: \texttt{residuals(object, type="pearson")} must return Pearson residuals; \texttt{fitted(object)} must return fitted values; \texttt{hatvalues(object)} should return the leverages, or perhaps the value 1.

An attempt to model fit to a bootstrap sample may fail. In a \texttt{lm} or \texttt{glm} fit, the bootstrap sample could have a different rank from the original fit. In an \texttt{nls} fit, convergence may not be obtained for some bootstraps. In either case, \texttt{NA} are returned for the value of the function \(f \). The summary methods handle the \texttt{NA}s appropriately.

Value

See \texttt{boot} for the returned value from this function. The \texttt{car} package includes additional generic functions \texttt{summary,vcov.boot,confint.boot} and \texttt{hist.boot} that work with \texttt{boot} objects.

Author(s)

Sanford Weisberg, \texttt{<sandy@umn.edu>}.

References

See Also

Functions that work with Boot objects from the boot package are `boot.array`, `boot.ci`, `plot.boot` and `empinf`. Additional functions in the car package are `summary.boot`, `confint.boot`, and `hist.boot`.

Examples

```r
m1 <- lm(Fertility ~ ., swiss)
betahat.boot <- Boot(m1, R=199) # 199 bootstrap samples--too small to be useful
summary(betahat.boot) # default summary
confint(betahat.boot)
hist(betahat.boot)
# Bootstrap for the estimated residual standard deviation:
sigmahat.boot <- Boot(m1, R=199, f=sigmaHat, labels="sigmaHat")
summary(sigmahat.boot)
confint(sigmahat.boot)
```

boxCox

Graph the profile log-likelihood for Box-Cox transformations in 1D or in 2D with the `bcnPower` family.

Description

Computes and optionally plots profile log-likelihoods for the parameter of the Box-Cox power family, the Yeo-Johnson power family, or for either of the parameters in a skew power family. This is a slight generalization of the `boxcox` function in the MASS package that allows for families of transformations other than the Box-Cox power family.

Usage

```r
boxCox(object, ...) # Default S3 method:
boxCox(object, lambda = seq(-2, 2, 1/10), plotit = TRUE, interp = plotit, eps = 1/50, xlab=NULL, ylab=NULL, family="bcPower", param=c("lambda", "gamma"), gamma=NULL, grid=TRUE, ...)
```

```r
# S3 method for class 'formula'
boxCox(object, lambda = seq(-2, 2, 1/10), plotit = TRUE, family = "bcPower",
```

Box-Cox Graph the profile log-likelihood for Box-Cox transformations in 1D or in 2D with the `bcnPower` family.
boxCox

param = c("lambda", "gamma"), gamma = NULL, grid = TRUE,
...

S3 method for class 'lm'
boxCox(object, lambda = seq(-2, 2, 1/10), plotit = TRUE, ...)

boxCox2d(x, ksd = 4, levels = c(0.5, 0.95, 0.99, 0.999),
 main = "bcnPower Log-likelihood", grid=TRUE, ...)

Arguments

object a formula or fitted model object of class lm or aov.
lambda vector of values of λ, with default (-2, 2) in steps of 0.1, where the profile log-
likelihood will be evaluated.
plotit logical which controls whether the result should be plotted; default TRUE.
interp logical which controls whether spline interpolation is used. Default to TRUE if
plotting with lambda of length less than 100.
eps Tolerance for lambda = 0; defaults to 0.02.
xlab defaults to "lambda" or "gamma".
ylab defaults to "log-Likelihood" or for bcnPower family to the appropriate label.
family Defaults to "bcPower" for the Box-Cox power family of transformations. If
set to "yjPower" the Yeo-Johnson family, which permits negative responses, is
used. If set to bcnPower the function gives the profile log-likelihood for the
parameter selected via param.
param Relevant only to family="bcnPower", produces a profile log-likelihood for the
parameter selected, maximizing over the remaining parameter.
gamma For use when the family="bcnPower", param="gamma". If this is a vec-
tor of positive values, then the profile log-likelihood for the location (or start)
parameter in the bcnPower family is evaluated at these values of gamma. If
gamma is NULL, then evaluation is done at 100 equally spaced points between
min(.01, gmax - 3*sd) and gmax + 3*sd, where gmax is the maximum
likelihood estimate of gamma, and sd is the sd of the response. See bcnPower
for the definition of gamma.
grid If TRUE, the default, a light-gray background grid is put on the graph.
... additional arguments passed to the lm method with boxCox.formula or passed
to contour with boxCox2d.
x An object created by a call to powerTransform using family="bcnPower".
ksds Contour plotting of the log-likelihood surface will cover plus or minus ksd standard deviations on each axis.
levels Contours will be drawn at the values of levels. For example, levels=c(.5, .99)
would display two contours, at the 50% level and at the 99% level.
main Title for the contour plot
Details

The boxCox function is an elaboration of the boxcox function in the MASS package. The first 7 arguments are the same as in boxcox, and if the argument family="bcPower" is used, the result is essentially identical to the function in MASS. Two additional families are the yjPower and bcnPower families that allow a few values of the response to be non-positive. The bcnPower family has two parameters: a power λ and a start or location parameter γ, and the boxCox function can be used to obtain a profile log-likelihood for either parameter with λ as the default. Alternatively, the boxCox2d function can be used to get a contour plot of the profile log-likelihood.

Value

Both functions are designed for their side effects of drawing a graph. The boxCox function returns a list of the lambda (or possibly, gamma) vector and the computed profile log-likelihood vector, invisibly if the result is plotted. If plotit=TRUE plots log-likelihood vs lambda and indicates a 95 lambda. If interp=TRUE, spline interpolation is used to give a smoother plot.

Author(s)

Sanford Weisberg, <sandy@umn.edu>

References

See Also

boxcox, yjPower, bcPower, bcnPower, powerTransform, contour

Examples

```r
with(trees, boxCox(Volume ~ log(Height) + log(Girth), data = trees,
        lambda = seq(-0.25, 0.25, length = 10)))

data("quine", package = "MASS")
with(quine, boxCox(Days ~ Eth*Sex*Age*Lrn, data = quine,
        lambda = seq(-0.05, 0.45, len = 20), family="yjPower")
```

Description

Computes a constructed variable for the Box-Cox transformation of the response variable in a linear model.

Usage

boxCoxVariable(y)

Arguments

y response variable.

Details

The constructed variable is defined as $y[\log(y/\bar{y}) - 1]$, where \bar{y} is the geometric mean of y.

The constructed variable is meant to be added to the right-hand-side of the linear model. The t-test for the coefficient of the constructed variable is an approximate score test for whether a transformation is required.

If b is the coefficient of the constructed variable, then an estimate of the normalizing power transformation based on the score statistic is $1 - b$. An added-variable plot for the constructed variable shows leverage and influence on the decision to transform y.

Value

a numeric vector of the same length as y.

Author(s)

John Fox <jfox@mcmaster.ca>

References

See Also

`boxcox`, `powerTransform`, `bcPower`
Boxplot

Examples

mod <- lm(interlocks + 1 ~ assets, data=Ornstein)
mod.aux <- update(mod, . ~ . + boxCoxVariable(interlocks + 1))
summary(mod.aux)
avPlots(mod.aux, "boxCoxVariable(interlocks + 1)"

Boxplot

Boxplots With Point Identification

Description

Boxplot is a wrapper for the standard R boxplot function, providing point identification, axis labels, and a formula interface for boxplots without a grouping variable.

Usage

Boxplot(y, ...)

Default S3 method:
Boxplot(y, g, labels, id.method = c("y", "identify", "none"),
 id.n=10, xlab, ylab, ...)

S3 method for class 'formula'
Boxplot(formula, data = NULL, subset, na.action = NULL, labels,,
 id.method = c("y", "identify", "none"), xlab, ylab, ...)

S3 method for class 'list'
Boxplot(y, xlab="", ylab="", ...)

S3 method for class 'data.frame'
Boxplot(y, labels=rownames(y), ...)

S3 method for class 'matrix'
Boxplot(y, ...)

Arguments

y

a numeric variable for which the boxplot is to be constructed; a list of numeric variables, each element of which will be treated as a group; a numeric data frame or a numeric matrix, each of whose columns will be treated as a group.

g

a grouping variable, usually a factor, for constructing parallel boxplots.

labels, labels.

point labels; if not specified, Boxplot will use the row names of the data argument, if one is given, or observation numbers, or row names if y is a data frame or matrix (that has row names).
id.method if "y" (the default), all outlying points are labeled; if "identify", points may be labeled interactive; if "none", no point identification is performed.

id.n up to id.n high outliers and low outliers will be identified in each group, (default, 10).

xlab, ylab text labels for the horizontal and vertical axes; if missing, Boxplot will use the variable names, or, in the case of a list, data frame, or matrix, empty labels.

formula a 'model' formula, of the form ~ y to produce a boxplot for the variable y, or of the form y ~ g, y ~ g1*g2*,..., or y ~ g1 + g2 + ... to produce parallel boxplots for y within levels of the grouping variable(s) g, etc., usually factors.

data, subset, na.action as for statistical modeling functions (see, e.g., `lm`).

... further arguments, such as at, to be passed to `boxplot`.

Author(s)

John Fox <jfox@mcmaster.ca>, with a contribution from Steve Ellison to handle at argument (see `boxplot`).

References

See Also

`boxplot`

Examples

```r
Boxplot(~income, data=Prestige, id.n=Inf) # identify all outliers
Boxplot(income ~ type, data=Prestige)
Boxplot(income ~ type, data=Prestige, at=c(1, 3, 2))
Boxplot(k5 + k618 ~ lfp*wc, data=Mroz)
  with(Prestige, Boxplot(income, labels=rownames(Prestige)))
  with(Prestige, Boxplot(income, type, labels=rownames(Prestige)))
  Boxplot(scale(Prestige[, 1:4]))
```
Usage

boxTidwell(y, ...)

S3 method for class 'formula'
boxTidwell(formula, other.x=NULL, data=NULL, subset,
na.action=getOption("na.action"), verbose=FALSE, tol=0.001,
max.iter=25, ...)

Default S3 method:
boxTidwell(y, x1, x2=NULL, max.iter=25, tol=0.001,
verbose=FALSE, ...)

S3 method for class 'boxTidwell'
print(x, digits, ...)

Arguments

formula two-sided formula, the right-hand-side of which gives the predictors to be transformed.
other.x one-sided formula giving the predictors that are not candidates for transformation, including (e.g.) factors.
data an optional data frame containing the variables in the model. By default the variables are taken from the environment from which boxTidwell is called.
subset an optional vector specifying a subset of observations to be used.
na.action a function that indicates what should happen when the data contain NAs. The default is set by the na.action setting of options.
verbose if TRUE a record of iterations is printed; default is FALSE.
tol if the maximum relative change in coefficients is less than tol then convergence is declared.
max.iter maximum number of iterations.
y response variable.
x1 matrix of predictors to transform.
x2 matrix of predictors that are not candidates for transformation.
... not for the user.
x boxTidwell object.
digits number of digits for rounding.

Details

The maximum-likelihood estimates of the transformation parameters are computed by Box and Tidwell’s (1962) method, which is usually more efficient than using a general nonlinear least-squares routine for this problem. Score tests for the transformations are also reported.
Value
an object of class boxTidwell, which is normally just printed.

Author(s)
John Fox <jfox@mcmaster.ca>

References

Examples
boxTidwell(prestige ~ income + education, ~ type + poly(women, 2), data=Prestige)

Description
The Burt data frame has 27 rows and 4 columns. The “data” were simply (and notoriously) manufactured. The same data are in the dataset “twins” in the alr3 package, but with different labels.

Usage
Burt

Format
This data frame contains the following columns:

IQbio IQ of twin raised by biological parents
IQfoster IQ of twin raised by foster parents
class A factor with levels (note: out of order): high; low; medium.

Source
CanPop

Canadian Population Data

Description

Usage

CanPop

Format

This data frame contains the following columns:

- **year**: census year.
- **population**: Population, in millions

Source

Canada (1994) *Canada Year Book*. Statistics Canada, Table 3.2.

Statistics Canada: http://www12.statcan.ca/english/census01/products/standard/popdwell/Table-PR.cfm

References

car-deprecated

Deprecated Functions in car Package

Description

These functions are provided for compatibility with older versions of the `car` package only, and may be removed eventually. Commands that worked in versions of the `car` package prior to version 2.0-0 will not necessarily work in version 2.0-0 and beyond, or may not work in the same manner.
Usage

av.plot(...)
av.plots(...)
box.cox(...)
bc(...)
box.cox.powers(...)
box.cox.var(...)
box.tidwell(...)
cokd(...)
confidence.ellipse(...)
ceres.plot(...)
ceres.plots(...)
cr.plot(...)
cr.plots(...)
data.ellipse(...)
durbin.watson(...)
levene.test(...)
leverage.plot(...)
leverage.plots(...)
linear.hypothesis(...)
ncv.test(...)
outlier.test(...)
qq.plot(...)
scatterplot.matrix(...)
spread.level.plot(...)

Arguments

... pass arguments down.

Details

av.plot and av.plots are now synonyms for the avPlot and avPlots functions.
box.cox and bc are now synonyms for bcPower.
box.cox.powers is now a synonym for powerTransform.
box.cox.var is now a synonym for boxCoxVariable.
box.tidwell is now a synonym for boxTidwell.
cokd is now a synonym for cooks.distance in the stats package.
confidence.ellipse is now a synonym for confidenceEllipse.
ceres.plot and ceres.plots are now synonyms for the ceresPlot and ceresPlots functions.
cr.plot and cr.plots are now synonyms for the crPlot and crPlots functions.
data.ellipse is now a synonym for dataEllipse.
durbin.watson is now a synonym for durbinWatsonTest.
levene.test is now a synonym for leveneTest function.
leverage.plot and leverage.plots are now synonyms for the leveragePlot and leveragePlots functions.

linear.hypothesis is now a synonym for the linearHypothesis function.

ncv.test is now a synonym for ncvTest.

outlier.test is now a synonym for outlierTest.

qq.plot is now a synonym for qqPlot.

scatterplot.matrix is now a synonym for scatterplotMatrix.

spread.level.plot is now a synonym for spreadLevelPlot.

carWeb

Access to the R Companion to Applied Regression website

Description

This function will access the website for *An R Companion to Applied Regression*.

Usage

```r
carWeb(page = c("webpage", "errata", "taskviews"), script, data)
```

Arguments

- **page**: A character string indicating what page to open. The default "webpage" will open the main web page, "errata" displays the errata sheet for the book, and "taskviews" fetches and displays a list of available task views from CRAN.

- **script**: The quoted name of a chapter in *An R Companion to Applied Regression*, like "chap-1", "chap-2", up to "chap-8". All the R commands used in that chapter will be displayed in your browser, where you can save them as a text file.

- **data**: The quoted name of a data file in *An R Companion to Applied Regression*, like "Duncan.txt" or "Prestige.txt". The file will be opened in your web browser. You do not need to specify the extension .txt.
Value

Either a web page or a PDF document is displayed. Only one of the three arguments page, rfile, or data, should be used.

Author(s)

Sanford Weisberg, based on the function UsingR in the UsingR package by John Verzani

References

Examples

```r
## Not run: carWeb()
```

ceresPlots

<table>
<thead>
<tr>
<th>ceresPlots</th>
<th>Ceres Plots</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Description

These functions draw Ceres plots for linear and generalized linear models.

Usage

```r
ceresPlots(model, terms = ~., layout = NULL, ask, main, ...)
ceresPlot(model, ...)
```

```r
## S3 method for class 'lm'
ceresPlot(model, variable,
  id.method = list(abs(residuals(model, type="pearson")), "x"),
  labels,
  id.n = if(id.method[1]=="identify") Inf else 0,
  id.cex=1, id.col=palette()[1], id.location="lr",
  line=TRUE, smoother=loessLine, smoother.args=list(),
  smooth, span,
  col=palette()[1], col.lines=palette()[-1],
  xlab, ylab, pch=1, lwd=2,
  grid=TRUE, ...)
```

```r
## S3 method for class 'glm'
ceresPlot(model, ...)
```
Arguments

model
model object produced by lm or glm.

terms
A one-sided formula that specifies a subset of the predictors. One component-plus-residual plot is drawn for each term. The default ~ . is to plot against all numeric predictors. For example, the specification terms = ~ . - x3 would plot against all predictors except for x3. Factors and nonstandard predictors such as B-splines are skipped. If this argument is a quoted name of one of the predictors, the component-plus-residual plot is drawn for that predictor only.

layout
If set to a value like c(1, 1) or c(4, 3), the layout of the graph will have this many rows and columns. If not set, the program will select an appropriate layout. If the number of graphs exceed nine, you must select the layout yourself, or you will get a maximum of nine per page. If layout=NA, the function does not set the layout and the user can use the par function to control the layout, for example to have plots from two models in the same graphics window.

ask
If TRUE, ask the user before drawing the next plot; if FALSE, the default, don’t ask. This is relevant only if not all the graphs can be drawn in one window.

main
Overall title for any array of ceres plots; if missing a default is provided.

...
ceresPlots passes these arguments to ceresPlot. ceresPlot passes them to plot.

variable
A quoted string giving the name of a variable for the horizontal axis

id.method, labels, id.n, id.cex, id.col, id.location
Arguments for the labelling of points. The default is id.n=0 for labeling no points. See showLabels for details of these arguments.

line
TRUE to plot least-squares line.

smoother
Function to add a nonparametric smooth.

smoother.args
see ScatterplotSmoothers for available smoother.s and arguments.

smooth, span
these arguments are included for backwards compatibility: if smooth=TRUE then smoother is set to loess line, and if span is specified, it is added to smoother.args.

col
color for points; the default is the first entry in the current color palette (see palette and par).

col.lines
a list of at least two colors. The first color is used for the ls line and the second color is used for the fitted lowess line. To use the same color for both, use, for example, col.lines=c("red", "red")

xlab, ylab
labels for the x and y axes, respectively. If not set appropriate labels are created by the function.

pch
plotting character for points; default is 1 (a circle, see par).

lwd
line width; default is 2 (see par).

grid
If TRUE, the default, a light-gray background grid is put on the graph

Details

Ceres plots are a generalization of component+residual (partial residual) plots that are less prone to leakage of nonlinearity among the predictors.
The function intended for direct use is `ceresPlots`.

The model cannot contain interactions, but can contain factors. Factors may be present in the model, but Ceres plots cannot be drawn for them.

Value

NULL. These functions are used for their side effect: producing plots.

Author(s)

John Fox <jfox@mcmaster.ca>

References

See Also

`crPlots, avPlots, showLabels`

Examples

```r
ceresPlots(lm(prestige ~ income + education + type, data=Prestige), terms=~ . - type)
```

Chile

Voting Intentions in the 1988 Chilean Plebiscite

Description

The `Chile` data frame has 2700 rows and 8 columns. The data are from a national survey conducted in April and May of 1988 by FLACSO/Chile. There are some missing data.

Usage

`Chile`
Format

This data frame contains the following columns:

- **region** A factor with levels: C, Central; M, Metropolitan Santiago area; N, North; S, South; SA, city of Santiago.
- **population** Population size of respondent’s community.
- **sex** A factor with levels: F, female; M, male.
- **age** in years.
- **education** A factor with levels (note: out of order): P, Primary; PS, Post-secondary; S, Secondary.
- **income** Monthly income, in Pesos.
- **statusquo** Scale of support for the status-quo.
- **vote** a factor with levels: A, will abstain; N, will vote no (against Pinochet); U, undecided; Y, will vote yes (for Pinochet).

Source

Personal communication from FLACSO/Chile.

References

The 1907 Romanian Peasant Rebellion

Description

The Chirot data frame has 32 rows and 5 columns. The observations are counties in Romania.

Usage

Chirot

Format

This data frame contains the following columns:

- **intensity** Intensity of the rebellion
- **commerce** Commercialization of agriculture
- **tradition** Traditionalism
- **midpeasant** Strength of middle peasantry
- **inequality** Inequality of land tenure
Source

References

compareCoefs

Print estimated coefficients and their standard errors in a table for several regression models.

Description

This simple function extracts estimates of regression parameters and their standard errors from one or more models and prints them in a table.

Usage

```r
compareCoefs(..., se = TRUE, print=TRUE, digits = 3)
```

Arguments

- `...`: One or more regression-model objects. These may be of class `lm`, `glm`, `nls`, or any other regression method for which the functions `coef` and `vcov` return appropriate values, or if the object inherits from the `mer` class created by the `lme4` package or `lme` in the `nlme` package.
- `se`: If `TRUE`, the default, show standard errors as well as estimates, if `FALSE`, show only estimates.
- `print`: If `TRUE`, the default, the results are printed in a nice format using `printCoefmat`. If `FALSE`, the results are returned as a matrix.
- `digits`: Passed to the `printCoefmat` function for printing the result.

Value

This function is used for its side-effect of printing the result. It returns a matrix of estimates and standard errors.

Author(s)

John Fox <jfox@mcmaster.ca>

References

Examples

```r
mod1 <- lm(prestige ~ income + education, data=Duncan)
mod2 <- update(mod1, subset=c(6,16))
mod3 <- update(mod1, . ~ . + type)
compareCoefs(mod1)
compareCoefs(mod1, mod2)
compareCoefs(mod1, mod2, mod3)
compareCoefs(mod1, mod2, se=FALSE)
```

Description

These are substitutes for similarly named functions in the `stats` package (note the uppercase letter starting the second word in each function name). The only difference is that the contrast functions from the `car` package produce easier-to-read names for the contrasts when they are used in statistical models.

The functions and this documentation are adapted from the `stats` package.

Usage

```r
contr.Treatment(n, base = 1, contrasts = TRUE)
contr.Sum(n, contrasts = TRUE)
contr.Helmert(n, contrasts = TRUE)
```

Arguments

- `n`: a vector of levels for a factor, or the number of levels.
- `base`: an integer specifying which level is considered the baseline level. Ignored if `contrasts` is `FALSE`.
- `contrasts`: a logical indicating whether contrasts should be computed.

Details

These functions are used for creating contrast matrices for use in fitting analysis of variance and regression models. The columns of the resulting matrices contain contrasts which can be used for coding a factor with `n` levels. The returned value contains the computed contrasts. If the argument `contrasts` is `FALSE` then a square matrix is returned.

Several aspects of these contrast functions are controlled by options set via the `options` command:

- `decorate.contrasts`: This option should be set to a 2-element character vector containing the prefix and suffix characters to surround contrast names. If the option is not set, then `c("[", "]")` is used. For example, setting `options(decorate.contrasts=c(".", ""))` produces contrast names that are separated from factor names by a period. Setting `options(decorate.contrasts=c("", ""))` reproduces the behaviour of the R base contrast functions.

decorate_contr.Treatment A character string to be appended to contrast names to signify treatment contrasts; if the option is unset, then "T." is used.

decorate_contr.Sum Similar to the above, with default "S."

decorate_contr.Helmert Similar to the above, with default "H."

contr.Sum.show.levels Logical value: if TRUE (the default if unset), then level names are used for contrasts; if FALSE, then numbers are used, as in contr.sum in the base package.

Note that there is no replacement for contr.poly in the base package (which produces orthogonal-polynomial contrasts) since this function already constructs easy-to-read contrast names.

Value

A matrix with \(n \) rows and \(k \) columns, with \(k = n - 1 \) if contrasts is TRUE and \(k = n \) if contrasts is FALSE.

Author(s)

John Fox <jfox@mcmaster.ca>

References

See Also

contr.treatment, contr.sum, contr.helmert, contr.poly

Examples

contr.Treatment vs. contr.treatment in the base package:

```r
lm(prestige ~ (income + education)*type, data=Prestige, 
   contrasts=list(type="contr.Treatment"))
```

```r
## Call:
## lm(formula = prestige ~ (income + education) * type, data = Prestige, 
##    contrasts = list(type = "contr.Treatment"))
##
## ## Coefficients:
## (Intercept)      income      education
##        2.275753 0.0035220 1.713275
##        15.351896  -33.536652 -0.002903
##       -0.002072   1.387809 4.290875
```  

```r
lm(prestige ~ (income + education)*type, data=Prestige, 
   contrasts=list(type="contr.treatment"))
```

```r
## Call:
## lm(formula = prestige ~ (income + education) * type, data = Prestige,
```
The Cowles data frame has 1421 rows and 4 columns. These data come from a study of the personality determinants of volunteering for psychological research.

Usage

Cowles

Format

This data frame contains the following columns:

- neuroticism: scale from Eysenck personality inventory
- extraversion: scale from Eysenck personality inventory
- sex: a factor with levels: female; male
- volunteer: volunteering, a factor with levels: no; yes

Source

Description

These functions construct component+residual plots (also called partial-residual plots) for linear and generalized linear models.

Usage

```r
crPlots(model, terms = ~., layout = NULL, ask, main, ...

  crp(...)

  crPlot(model, ...)
```

```
## S3 method for class 'lm'

  crPlot(model, variable,
  id.method = list(abs(residuals(model, type="pearson")), "x"),
  labels,
  id.n = if(id.method[1]="identify") Inf else 0,
  id.cex=1, id.col=palette()[1], id.location="lr",
  order=1, line=TRUE, smoother=loessLine,
  smoother.args=list(), smooth, span,
  col=palette()[1], col.lines=palette()[-1],
  xlab, ylab, pch=1, lwd=2, grid=TRUE, ...)
```

Arguments

- `model` model object produced by `lm` or `glm`.
- `terms` A one-sided formula that specifies a subset of the predictors. One component-plus-residual plot is drawn for each term. The default `~.` is to plot against all numeric predictors. For example, the specification `terms = ~ . - X3` would plot against all predictors except for `X3`. If this argument is a quoted name of one of the predictors, the component-plus-residual plot is drawn for that predictor only.
- `layout` If set to a value like `c(1, 1)` or `c(4, 3)`, the layout of the graph will have this many rows and columns. If not set, the program will select an appropriate layout. If the number of graphs exceed nine, you must select the layout yourself, or you will get a maximum of nine per page. If `layout=NA`, the function does not set the layout and the user can use the `par` function to control the layout, for example to have plots from two models in the same graphics window.
- `ask` If `TRUE`, ask the user before drawing the next plot; if `FALSE`, the default, don’t ask. This is relevant only if not all the graphs can be drawn in one window.
- `main` The title of the plot; if missing, one will be supplied.
... crPlots passes these arguments to crPlot. crPlot passes them to plot.

variable A quoted string giving the name of a variable for the horizontal axis
id.method,labels,id.n,id.cex,id.col,id.location
 Arguments for the labelling of points. The default is id.n=0 for labeling no
 points. See showLabels for details of these arguments.
order order of polynomial regression performed for predictor to be plotted; default 1.
line TRUE to plot least-squares line.
smoother Function to add a nonparametric smooth.
smoother.args see ScatterplotSmoothers for available smoothers and arguments.
smooth, span these arguments are included for backwards compatibility: if smooth=TRUE then
 smoother is set to loessLine, and if span is specified, it is added to smoother.args.
col color for points; the default is the first entry in the current color palette (see
 palette and par).
col.lines a list of at least two colors. The first color is used for the ls line and the second
 color is used for the fitted lowess line. To use the same color for both, use, for
 example, col.lines=c("red", "red")
xlab,ylab labels for the x and y axes, respectively. If not set appropriate labels are created
 by the function.
pch plotting character for points; default is 1 (a circle, see par).
lwd line width; default is 2 (see par).
grid If TRUE, the default, a light-gray background grid is put on the graph

Details

The function intended for direct use is crPlots, for which crp is an abbreviation.

The model cannot contain interactions, but can contain factors. Parallel boxplots of the partial
residuals are drawn for the levels of a factor.

Value

NULL. These functions are used for their side effect of producing plots.

Author(s)

John Fox <jfox@mcmaster.ca>

References

Wiley.
See Also

ceresPlots, avPlots

Examples

crPlots(m~-lm(prestige~income+education, data=Prestige))
get only one plot
crPlots(m, terms=- -education)

crPlots(lm(prestige ~ log2(income) + education + poly(women,2), data=Prestige))

crPlots(glm(partic != "not.work" ~ hincome + children,
data=Womenlf, family=binomial))

Self-Reports of Height and Weight

Description

The Davis data frame has 200 rows and 5 columns. The subjects were men and women engaged in regular exercise. There are some missing data.

Usage

Davis

Format

This data frame contains the following columns:

- **sex**: A factor with levels: F, female; M, male.
- **weight**: Measured weight in kg.
- **height**: Measured height in cm.
- **repwt**: Reported weight in kg.
- **repht**: Reported height in cm.

Source

Personal communication from C. Davis, Departments of Physical Education and Psychology, York University.

References

Description

The DavisThin data frame has 191 rows and 7 columns. This is part of a larger dataset for a study of eating disorders. The seven variables in the data frame comprise a "drive for thinness" scale, to be formed by summing the items.

Usage

DavisThin

Format

This data frame contains the following columns:

<table>
<thead>
<tr>
<th>Column</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>DT1</td>
<td>a numeric vector</td>
</tr>
<tr>
<td>DT2</td>
<td>a numeric vector</td>
</tr>
<tr>
<td>DT3</td>
<td>a numeric vector</td>
</tr>
<tr>
<td>DT4</td>
<td>a numeric vector</td>
</tr>
<tr>
<td>DT5</td>
<td>a numeric vector</td>
</tr>
<tr>
<td>DT6</td>
<td>a numeric vector</td>
</tr>
<tr>
<td>DT7</td>
<td>a numeric vector</td>
</tr>
</tbody>
</table>

Source

References

deltaMethod

Estimate and Standard Error of a Nonlinear Function of Estimated Regression Coefficients

Description

deltaMethod is a generic function that uses the delta method to get a first-order approximate standard error for a nonlinear function of a vector of random variables with known or estimated covariance matrix.

Usage

deltaMethod(object, ...)

Default S3 method:
deltaMethod(object, g, vcov., func=g, constants, level=0.95, ...)
S3 method for class 'lm'
deltaMethod(object, g, vcov.=vcov,
 parameterNames=names(coef(object)), ...)
S3 method for class 'nls'
deltaMethod(object, g, vcov.=vcov, ...)
S3 method for class 'multinom'
deltaMethod(object, g, vcov. = vcov,
 parameterNames = if (is.matrix(coef(object)))
 colnames(coef(object)) else names(coef(object)), ...)
S3 method for class 'polr'
deltaMethod(object, g, vcov.=vcov, ...)
S3 method for class 'survreg'
deltaMethod(object, g, vcov. = vcov,
 parameterNames = names(coef(object)), ...)
S3 method for class 'coxph'
deltaMethod(object, g, vcov. = vcov,
 parameterNames = names(coef(object)), ...)
S3 method for class 'mer'
deltaMethod(object, g, vcov. = vcov,
 parameterNames = names(fixef(object)), ...)
S3 method for class 'merMod'
deltaMethod(object, g, vcov. = vcov,
 parameterNames = names(fixef(object)), ...)
S3 method for class 'lme'
deltaMethod(object, g, vcov. = vcov,
 parameterNames = names(fixef(object)), ...)
S3 method for class 'lmeList'
deltaMethod(object, g, ...)

Arguments

object For the default method, object is either (1) a vector of \(p \) named elements, so
\(\text{names(object)} \) returns a list of \(p \) character strings that are the names of the ele-
ments of object; or (2) a model object for which there are \(\text{coef} \) and \(\text{vcov} \) meth-
ods, and for which the named coefficient vector returned by \(\text{coef} \) is asymptoti-
cally normally distributed with asymptotic covariance matrix returned by \(\text{vcov} \).
For the other methods, object is a regression object for which \(\text{coef(object)} \)
or \(\text{fixef(object)} \) returns a vector of parameter estimates.

g A quoted string that is the function of the parameter estimates to be evaluated; see the details below.

vcov. The (estimated) covariance matrix of the coefficient estimates. For the default
method, this argument is required. For all other methods, this argument must
either provide the estimated covariance matrix or a function that when applied
to object returns a covariance matrix. The default is to use the function \(\text{vcov} \).

func A quoted string used to annotate output. The default of \(\text{func} = g \) is usually
appropriate.

parameterNames A character vector of length \(p \) that gives the names of the parameters in the same
order as they appear in the vector of estimates. This argument will be useful if
some of the names in the vector of estimates include special characters, like
\(\text{I(x2^2)} \), or \(x1:x2 \) that will confuse the numerical differentiation function. See
details below.

constants This argument is a named vector whose elements are constants that are used in
the \(f \) argument. This is needed only when the function is called from within
another function to comply to R scoping rules. See example below.

level level for confidence interval, default 0.95.

Details

Suppose \(x \) is a random vector of length \(p \) that is at least approximately normally distributed with
mean \(\beta \) and estimated covariance matrix \(C \). Then any function \(g(\beta) \) of \(\beta \), is estimated by \(g(x) \),
which is in large samples normally distributed with mean \(g(\beta) \) and estimated variance \(h'Ch \), where
\(h \) is the first derivative of \(g(\beta) \) with respect to \(\beta \) evaluated at \(x \). This function returns both \(g(x) \) and
its standard error, the square root of the estimated variance.

The default method requires that you provide \(x \) in the argument \(\text{object} \), \(C \) in the argument \(\text{vcov} \),
and a text expression in argument \(\text{g} \) that when evaluated gives the function \(g \). The call \(\text{names(object)} \)
must return the names of the elements of \(x \) that are used in the expression \(g \).

Since the delta method is often applied to functions of regression parameter estimates, the argu-
ment \(\text{object} \) may be the name of a regression object from which the the estimates and their es-
timated variance matrix can be extracted. In most regression models, estimates are returned by
the \(\text{coef(object)} \) and the variance matrix from \(\text{vcov(object)} \). You can provide an alternative
function for computing the sample variance matrix, for example to use a sandwich estimator.

For mixed models using \(\text{lme4} \) or \(\text{nlme} \), the coefficient estimates are returned by the \(\text{fixef} \) function,
while for \(\text{multinom} \), \(\text{lmList} \) and \(\text{nlsList} \) coefficient estimates are returned by \(\text{coef} \) as a matrix.
Methods for these models are provided to get the correct estimates and variance matrix.
The argument g must be a quoted character string that gives the function of interest. For example, if you set m2 <- lm(Y ~ X1 + X2 + X1:X2), then deltaMethod(m2,"X1/X2") applies the delta method to the ratio of the coefficient estimates for X1 and X2. The argument g can consist of constants and names associated with the elements of the vector of coefficient estimates.

In some cases the names may include characters including such as the colon : used in interactions, or mathematical symbols like + or - signs that would confuse the function that computes numerical derivatives, and for this case you can replace the names of the estimates with the parameterNames argument. For example, the ratio of the X2 main effect to the interaction term could be computed using deltaMethod(m2, "b1/b3", parameterNames=c("b0", "b1", "b2", "b3")). The name "(Intercept)" used for the intercept in linear and generalized linear models is an exception, and it will be correctly interpreted by deltaMethod.

For multinom objects, the coef function returns a matrix of coefficients, with each row giving the estimates for comparisons of one category to the baseline. The deltaMethod function applies the delta method to each row of this matrix. Similarly, for lmlist and nlslist objects, the delta method is computed for each element of the list of models fit.

For nonlinear regression objects of type nls, the call coef(object) returns the estimated coefficient vectors with names corresponding to parameter names. For example, m2 <- nls(Y ~ theta/(1 + gamma * x), start = list(theta = 1, gamma = 1)) will have parameters named c("theta", "gamma"). In many other familiar regression methods, such as lm and glm, the names of the coefficient estimates are the corresponding variable names, not parameter names.

For mixed-effects models fit with lmer and nlmer from the lme4 package or lme and nlme from the nlme package, only fixed-effect coefficients are considered.

For regression models for which methods are not provided, you can extract the named vector of coefficient estimates and estimate of its covariance matrix and then apply the default deltaMethod function.

Earlier versions of deltaMethod included an argument parameterPrefix that implemented the same functionality as the parameterNames argument, but it caused several unintended bugs that were not easily fixed without the change in syntax.

Value

A data.frame with two components named Estimate for the estimate, SE for its standard error. The value of g is given as a row label.

Author(s)

Sanford Weisberg, <sandy@umn.edu>, and John Fox <jfox@mcmaster.ca>

References

See Also

First derivatives of g are computed using symbolic differentiation by the function D.
Examples

m1 <- lm(time ~ t1 + t2, data = Transact)
deltaMethod(m1, "b1/b2", parameterNames= paste("b", 0:2, sep=""))
deltaMethod(m1, "t1/t2") # use names of preds. rather than coefs.
deltaMethod(m1, "t1/t2", vcov=hccm) # use hccm function to est. vars.
 # to get the SE of l/intercept, rename coefficients
deltaMethod(m1, "l/b0", parameterNames= paste("b", 0:2, sep=""))
 # The next example calls the default method by extracting the
 # vector of estimates and covariance matrix explicitly
deltaMethod(coef(m1), "t1/t2", vcov.=vcov(m1))
 # the following works:
a <- 5
deltaMethod(m1, "(t1 + a)/t2")
 # ...but embedded in a function this will fail
f1 <- function(mod, ...) {
z <- 3
 deltaMethod(m1, "(t1+z)/t2", ...)
}
 ## Not run: f1(m1)
 # if z is defined globally f1 could even return the wrong answer.
 # the following function works
f2 <- function(mod, ...) {
 deltaMethod(m1, "(t1+z)/t2", ...)
}
f2(m1, constants=c(z=3))
 # as does
f3 <- function(mod) {
 a <- 3
 deltaMethod(m1, "(t1+z)/t2", constants=c(z=a))
}
f3(m1)

densityPlot
Nonparametric Density Estimates

densityPlot contracts and graphs nonparametric density estimates, possibly conditioned on a fac-
tor. By default it uses the standard R density function or optionally adaptiveKernel.

Usage
densityPlot(x, ...)
Arguments

x a numeric variable, the density of which is estimated.
g an optional factor to divide the data.
formula an R model formula, of the form \(\sim \) variable to estimate the unconditional density of variable, or variable \(\sim \) factor to estimate the density of variable within each level of factor.
data an optional data frame containing the data.
subset an optional vector defining a subset of the data.
na.action a function to handle missing values; defaults to the value of the R na.action option, initially set to na.omit.
method either "adaptive" (the default) for an adaptive-kernel estimate or "kernel" for a fixed-bandwidth kernel estimate.
bw the geometric mean bandwidth for the adaptive-kernel or bandwidth of the kernel density estimate(s). Must be a numerical value or a function to compute the bandwidth (default \texttt{bw.nrd0}) for the adaptive kernel estimate; for the kernel estimate, may either the quoted name of a rule to compute the bandwidth, or a numeric value. If plotting by groups, bw may be a vector of values, one for each group. See \texttt{density} and \texttt{bw.SJ} for details of the kernel estimator.
adjust a multiplicative adjustment factor for the bandwidth; the default, 1, indicates no adjustment; if plotting by groups, adjust may be a vector of adjustment factors, one for each group. The default bandwidth-selection rule tends to give a value that's too large if the distribution is asymmetric or has multiple modes; try setting adjust < 1, particularly for the adaptive-kernel estimator.
kernel for \texttt{densityPlot} this is the name of the kernel function for the kernel estimator (the default is "gaussian", see \texttt{density}); or a kernel function for the adaptive-kernel estimator (the default is \texttt{dnorm}, producing the Gaussian kernel). For \texttt{adaptiveKernel} this is a kernel function, defaulting to \texttt{dnorm}, which is the Gaussian kernel (standard-normal density).
xlim, ylim axis limits; if missing, determined from the range of x-values at which the densities are estimated and the estimated densities.
normalize if TRUE (the default is FALSE), the estimated densities are rescaled to integrate approximately to 1; particularly useful if the density is estimated over a restricted domain, as when \texttt{from} or \texttt{to} are specified.
xlab label for the horizontal-axis; defaults to the name of the variable x.
ylab label for the vertical axis; defaults to "Density".
col vector of colors for the density estimate(s); defaults to the color palette.
lty vector of line types for the density estimate(s); defaults to the successive integers, starting at 1.
lwd line width for the density estimate(s); defaults to 2.
grid if TRUE (the default), grid lines are drawn on the plot.
legend.location location for the legend when densities are plotted for several groups; defaults to "uppperright"; see legend.
legend.title label for the legend, which is drawn if densities are plotted by groups; the default is the name of the factor g.
n number of equally spaced points at which the adaptive-kernel estimator is evaluated; the default is 500.
from, to, cut the range over which the density estimate is computed; the default, if missing, is min(x) - cut*bw, max(x) + cut*bw.
na.rm remove missing values from x in computing the adaptive-kernel estimate? The default is TRUE.
show.bw if TRUE, show the bandwidth(s) in the horizontal-axis label or (for multiple groups) the legend; the default is FALSE.
rug if TRUE (the default), draw a rug plot (one-dimensional scatterplot) at the bottom of the density estimate.
... arguments to be passed down.

Value
densityPlot invisibly returns the "density" object computed (or list of "density" objects) and draws a graph. adaptiveKernel returns an object of class "density" (see density).

Author(s)
John Fox <jfox@mcmaster.ca>

References

See Also
density, bw.SJ.plot.density
Depredations

Examples

densityPlot(~ income, show.bw=TRUE, data=Prestige)
densityPlot(~ income, method="adaptive", show.bw=TRUE, data=Prestige)
densityPlot(~ income, method="adaptive", from=0, normalize=TRUE, show.bw=TRUE, data=Prestige)

densityPlot(income ~ type, method="adaptive", data=Prestige)

plot(adaptiveKernel(un$infant.mortality, from=0, adjust=0.75), col="magenta")
lines(density(na.omit(un$infant.mortality), from=0, adjust=0.75), col="blue")
rug(un$infant.mortality, col="cyan")
legend("topright", col=c("magenta", "blue"), lty=1,
 legend=c("adaptive kernel", "kernel"), inset=0.02)

Depredations

<table>
<thead>
<tr>
<th>Depredations</th>
<th>Minnesota Wolf Depredation Data</th>
</tr>
</thead>
</table>

Description

Usage

Depredations

Format

A data frame with 434 observations on the following 5 variables.

longitude longitude of the farm
latitude latitude of the farm
number number of depredations 1976-1998
early number of depredations 1991 or before
late number of depredations 1992 or later

References

dfbetaPlots

dfbeta and dfbetas Index Plots

Description

These functions display index plots of dfbeta (effect on coefficients of deleting each observation in turn) and dfbetas (effect on coefficients of deleting each observation in turn, standardized by a deleted estimate of the coefficient standard error). In the plot of dfbeta, horizontal lines are drawn at 0 and +/- one standard error; in the plot of dfbetas, horizontal lines are drawn at 0 and +/- 1.

Usage

```r
dfbetaPlots(model, ...)  
dfbetasPlots(model, ...)
```

S3 method for class 'lm'

```r
dfbetaPlots(model, terms=~., intercept=FALSE, layout=NULL, ask,  
main, xlab, ylab, labels=rownames(dfbeta),  
id.method="y",  
id.n=if(id.method[1]="identify") Inf else 0, id.cex=1,  
id.col=palette()[1], id.location="lr", col=palette()[1], grid=TRUE, ...)
```

S3 method for class 'glm'

```r
dfbetasPlots(model, terms=~., intercept=FALSE, layout=NULL, ask,  
main, xlab, ylab,  
labels=rownames(dfbeta), id.method="y",  
id.n=if(id.method[1]="identify") Inf else 0, id.cex=1,  
id.col=palette()[1], id.location="lr", col=palette()[1], grid=TRUE, ...)
```

Arguments

- **model**
 model object produced by `lm` or `glm`.

- **terms**
 A one-sided formula that specifies a subset of the terms in the model. One dfbeta or dfbetas plot is drawn for each regressor. The default `~.` is to plot against all terms in the model with the exception of an intercept. For example, the specification `terms = ~ . - X3` would plot against all terms except for `X3`. If this argument is a quoted name of one of the terms, the index plot is drawn for that term only.

- **intercept**
 Include the intercept in the plots; default is `FALSE`.

- **layout**
 If set to a value like `c(1, 1)` or `c(4, 3)`, the layout of the graph will have this many rows and columns. If not set, the program will select an appropriate layout. If the number of graphs exceed nine, you must select the layout yourself, or you will get a maximum of nine per page. If `layout=NA`, the function does not set the layout and the user can use the `par` function to control the layout, for example to have plots from two models in the same graphics window.
main: The title of the graph; if missing, one will be supplied.
xlab: Horizontal axis label; defaults to "Index".
ylab: Vertical axis label; defaults to coefficient name.
ask: If TRUE, ask the user before drawing the next plot; if FALSE, the default, don’t ask.
... optional additional arguments to be passed to plot, points, and showLabels.

id.method, labels, id.n, id.cex, id.col, id.location
Arguments for the labelling of points. The default is id.n=0 for labeling no points. See showLabels for details of these arguments.
col: color for points; defaults to the first entry in the color palette.
grid: If TRUE, the default, a light-gray background grid is put on the graph

Value
NULL. These functions are used for their side effect: producing plots.

Author(s)
John Fox <jfox@mcmaster.ca>, Sanford Weisberg <sandy@umn.edu>

References

See Also
dfbeta, dfbetas

Examples
dfbetaPlots(lm(prestige ~ income + education + type, data=Duncan))
dfbetasPlots(glm(partic != "not.work" ~ hincome + children,
 data=Women1f, family=binomial))

Duncan

Duncan’s Occupational Prestige Data

Description
The Duncan data frame has 45 rows and 4 columns. Data on the prestige and other characteristics of 45 U. S. occupations in 1950.

Usage
Duncan
Format

This data frame contains the following columns:

- **type**: Type of occupation. A factor with the following levels: `prof`, professional and managerial; `wc`, white-collar; `bc`, blue-collar.
- **income**: Percent of males in occupation earning $3500 or more in 1950.
- **education**: Percent of males in occupation in 1950 who were high-school graduates.
- **prestige**: Percent of raters in NORC study rating occupation as excellent or good in prestige.

Source

References

durbinWatsonTest
Durbin-Watson Test for Autocorrelated Errors

Description

Computes residual autocorrelations and generalized Durbin-Watson statistics and their bootstrapped p-values. `dwt` is an abbreviation for `durbinWatsonTest`.

Usage

```
durbinWatsonTest(model, ...)

dwt(...)
```

```
# S3 method for class 'lm'
durbinWatsonTest(model, max.lag=1, simulate=TRUE, reps=1000,
    method=c("resample","normal"),
    alternative=c("two.sided","positive","negative"), ...)
```

```
# Default S3 method:
durbinWatsonTest(model, max.lag=1, ...)
```

```
# S3 method for class 'durbinWatsonTest'
print(x, ...
```
Arguments

- `model`: a linear-model object, or a vector of residuals from a linear model.
- `max.lag`: maximum lag to which to compute residual autocorrelations and Durbin-Watson statistics.
- `simulate`: if TRUE p-values will be estimated by bootstrapping.
- `reps`: number of bootstrap replications.
- `method`: bootstrap method: "resample" to resample from the observed residuals; "normal" to sample normally distributed errors with 0 mean and standard deviation equal to the standard error of the regression.
- `alternative`: sign of autocorrelation in alternative hypothesis; specify only if `max.lag = 1`; if `max.lag > 1`, then alternative is taken to be "two.sided".
- `...`: arguments to be passed down.
- `x`: `durbinWatsonTest` object.

Value

Returns an object of type "`durbinWatsonTest`".

Note

p-values are available only from the `lm` method.

Author(s)

John Fox <jfox@mcmaster.ca>

References

Examples

```
durbinWatsonTest(lm(fconvict ~ tfr + partic + degrees + mconvict, data=Hartnagel))
```

Description

These functions draw ellipses, including data ellipses, and confidence ellipses for linear, generalized linear, and possibly other models.
Ellipses

Usage

\begin{verbatim}
ellipse(center, shape, radius, log="", center.pch=19, center.cex=1.5,
 segments=51, draw=TRUE, add=FALSE, xlab="", ylab="",
col=palette()[2], lwd=2, fill=FALSE, fill.alpha=0.3, grid=TRUE, ...

dataEllipse(x, y, groups, group.labels = group.levels, ellipse.label,
 weights, log = "", levels = c(0.5, 0.95), center.pch = 19,
 center.cex = 1.5, draw = TRUE, plot.points = draw, add = !plot.points,
 segments = 51, robust = FALSE, xlab = deparse(substitute(x)),
ylab = deparse(substitute(y)),
col = if (missing(groups)) palette()[1:2] else palette()[1:length(group.levels)],
pch = if (missing(groups)) 1 else seq(group.levels), lwd = 2,
fill = FALSE, fill.alpha = 0.3, grid = TRUE, labels, id.method = "mahal",
id.n = if (id.method[1] == "identify") Inf else 0, id.cex = 1,
id.col = if (missing(groups)) palette()[1] else palette()[1:length(groups)],
id.location="lr", ...)

confidenceEllipse(model, ...

S3 method for class 'lm'
confidenceEllipse(model, which.coef, L, levels=0.95, Scheffe=FALSE, dfn,
 center.pch=19, center.cex=1.5, segments=51, xlab, ylab,
col=palette()[2], lwd=2, fill=FALSE, fill.alpha=0.3, draw=TRUE, add=!draw, ...

S3 method for class 'glm'
confidenceEllipse(model, chisq, ...)

Default S3 method:
confidenceEllipse(model, which.coef, L, levels=0.95, Scheffe=FALSE, dfn,
 center.pch=19, center.cex=1.5, segments=51, xlab, ylab,
col=palette()[2], lwd=2, fill=FALSE, fill.alpha=0.3, draw=TRUE, add=!draw, ...
\end{verbatim}

Arguments

- **center**: 2-element vector with coordinates of center of ellipse.
- **shape**: 2×2 shape (or covariance) matrix.
- **radius**: radius of circle generating the ellipse.
- **log**: when an ellipse is to be added to an existing plot, indicates whether computations were on logged values and to be plotted on logged axes; "x" if the x-axis is logged, "y" if the y-axis is logged, and "xy" if both axes are logged. The default is "", indicating that neither axis is logged.
- **center.pch**: character for plotting ellipse center; if FALSE or NULL the center point isn’t plotted.
- **center.cex**: relative size of character for plotting ellipse center.
- **segments**: number of line-segments used to draw ellipse.
- **draw**: if TRUE produce graphical output; if FALSE, only invisibly return coordinates of ellipse(s).
Ellipses

add if TRUE add ellipse(s) to current plot.
xlab label for horizontal axis.
ylab label for vertical axis.
x a numeric vector, or (if y is missing) a 2-column numeric matrix.
y a numeric vector, of the same length as x.
groups optional: a factor to divide the data into groups; a separate ellipse will be plotted for each group (level of the factor).
group.labels labels to be plotted for the groups; by default, the levels of the groups factor.
ellipse.label a label for the ellipse(s) or a vector of labels; if several ellipses are drawn and just one label is given, then that label will be repeated. The default is not to label the ellipses.
weights a numeric vector of weights, of the same length as x and y to be used by cov.wt or cov.trob in computing a weighted covariance matrix; if absent, weights of 1 are used.
plot.points if FALSE data ellipses are drawn, but points are not plotted.
levels draw elliptical contours at these (normal) probability or confidence levels.
robust if TRUE use the cov.trob function in the MASS package to calculate the center and covariance matrix for the data ellipse.
model a model object produced by lm or glm.
which.coef 2-element vector giving indices of coefficients to plot; if missing, the first two coefficients (disregarding the regression constant) will be selected.
L As an alternative to selecting coefficients to plot, a transformation matrix can be specified to compute two linear combinations of the coefficients; if the L matrix is given, it takes precedence over the which.coef argument. L should have two rows and as many columns as there are coefficients. It can be given directly as a numeric matrix, or specified by a pair of character-valued expressions, in the same manner as for the link{linearHypothesis} function, but with no right-hand side.
Scheffe if TRUE scale the ellipse so that its projections onto the axes give Scheffe confidence intervals for the coefficients.
dfn “numerator” degrees of freedom (or just degrees of freedom for a GLM) for drawing the confidence ellipse. Defaults to the number of coefficients in the model (disregarding the constant) if Scheffe is TRUE, or to 2 otherwise; selecting dfn = 1 will draw the “confidence-interval generating” ellipse, with projections on the axes corresponding to individual confidence intervals with the stated level of coverage.
chisq if TRUE, the confidence ellipse for the coefficients in a generalized linear model are based on the chisquare statistic, if FALSE on the F-statistic. This corresponds to using the default and linear-model methods respectively.
col color for lines and ellipse center; the default is the second entry in the current color palette (see palette and par). For dataEllipse, two colors can be given, in which case the first is for plotted points and the second for lines and the ellipse center; if ellipses are plotted for groups, then this is a vector of colors for the groups.
Ellipses

for dataEllipse this is the plotting character (default, symbol 1, a hollow circle) to use for the points; if ellipses are plotted by groups, then this a vector of plotting characters, with consecutive symbols starting with 1 as the default.

line width; default is 2 (see par).

fill the ellipse with translucent color col (default, FALSE)?

transparency of fill (default = 0.3).

other plotting parameters to be passed to plot and line.

Arguments for the labelling of points. The default is id.n=0 for labeling no points. See showLabels for details of these arguments.

If TRUE, the default, a light-gray background grid is put on the graph

Details

The ellipse is computed by suitably transforming a unit circle.

dataEllipse superimposes the normal-probability contours over a scatterplot of the data.

Value

These functions are mainly used for their side effect of producing plots. For greater flexibility (e.g., adding plot annotations), however, ellipse returns invisibly the (x, y) coordinates of the calculated ellipse. dataEllipse and confidenceEllipse return invisibly the coordinates of one or more ellipses, in the latter instance a list named by levels.

Author(s)

Georges Monette, John Fox <jfox@mcmaster.ca>, and Michael Friendly.

References

See Also

cov.trob, cov.wt, linearHypothesis.

Examples

dataEllipse(Duncan$income, Duncan$education, levels=0.1^1:9, ellipse.label=0.1^1:9, lty=2, fill=TRUE, fill.alpha=0.1)
confidenceEllipse(lm(prestige~income+education, data=Duncan), Scheffe=TRUE)
confidenceEllipse(lm(prestige~income+education, data=Duncan), L=c("income + education", "income - education"))
wts <- rep(1, nrow(Duncan))
wts[c(6, 16)] <- 0 # delete Minister, Conductor
with(Duncan, {
 dataEllipse(income, prestige, levels=0.68)
dataEllipse(income, prestige, levels=0.68, robust=TRUE, plot.points=FALSE, col="green3")
dataEllipse(income, prestige, weights=wts, levels=0.68, plot.points=FALSE, col="brown")
dataEllipse(income, prestige, weights=wts, robust=TRUE, levels=0.68,
 plot.points=FALSE, col="blue")
})

with(Prestige, dataEllipse(income, education, type, id.n=2, pch=15:17,
 labels=rownames(Prestige), xlim=c(0, 25000), center.pch="+",
 group.labels=c("Blue Collar", "Professional", "White Collar"),
 ylim=c(5, 20), level=.95, fill=TRUE, fill.alpha=0.1))

Ericksen The 1980 U.S. Census Undercount

Description

The Ericksen data frame has 66 rows and 9 columns. The observations are 16 large cities, the remaining parts of the states in which these cities are located, and the other U. S. states.

Usage

Ericksen

Format

This data frame contains the following columns:

- **minority** Percentage black or Hispanic.
- **crime** Rate of serious crimes per 1000 population.
- **poverty** Percentage poor.
- **language** Percentage having difficulty speaking or writing English.
- **highschool** Percentage age 25 or older who had not finished highschool.
- **housing** Percentage of housing in small, multiunit buildings.
- **city** A factor with levels: city, major city; state, state or state-remainder.
- **conventional** Percentage of households counted by conventional personal enumeration.
- **undercount** Preliminary estimate of percentage undercount.

Source

References

Florida County Voting

Description

The Florida data frame has 67 rows and 11 columns. Vote by county in Florida for President in the 2000 election.

Usage

Florida

Format

This data frame contains the following columns:

- **GORE** Number of votes for Gore
- **BUSH** Number of votes for Bush.
- **BUCHANAN** Number of votes for Buchanan.
- **NADER** Number of votes for Nader.
- **BROWNE** Number of votes for Browne (whoever that is).
- **HAGELIN** Number of votes for Hagelin (whoever that is).
- **HARRIS** Number of votes for Harris (whoever that is).
- **MCREYNOLDS** Number of votes for McReynolds (whoever that is).
- **MOOREHEAD** Number of votes for Moorehead (whoever that is).
- **PHILLIPS** Number of votes for Phillips (whoever that is).
- **Total** Total number of votes.

Source

Freedman Crowding and Crime in U. S. Metropolitan Areas

Description

The Freedman data frame has 110 rows and 4 columns. The observations are U. S. metropolitan areas with 1968 populations of 250,000 or more. There are some missing data.

Usage

Freedman

Format

This data frame contains the following columns:

- **population**: Total 1968 population, 1000s.
- **nonwhite**: Percent nonwhite population, 1960.
- **density**: Population per square mile, 1968.
- **crime**: Crime rate per 100,000, 1969.

Source

References

Friendly Format Effects on Recall

Description

The Friendly data frame has 30 rows and 2 columns. The data are from an experiment on subjects’ ability to remember words based on the presentation format.

Usage

Friendly
This data frame contains the following columns:

- **condition**: A factor with levels: *Before*, Recalled words presented before others; *Meshed*, Recalled words meshed with others; *SFR*, Standard free recall.
- **correct**: Number of words correctly recalled, out of 40 on final trial of the experiment.

Source

References

The *ginzberg* data frame has 82 rows and 6 columns. The data are for psychiatric patients hospitalized for depression.

Format

This data frame contains the following columns:

- **simplicity**: Measures subject’s need to see the world in black and white.
- **fatalism**: Fatalism scale.
- **depression**: Beck self-report depression scale.
- **adjsimp**: Adjusted Simplicity: Simplicity adjusted (by regression) for other variables thought to influence depression.
- **adjfatal**: Adjusted Fatalism.
- **adjdep**: Adjusted Depression.

Source

Personal communication from Georges Monette, Department of Mathematics and Statistics, York University, with the permission of the original investigator.
Referenced

Greene

Refugee Appeals

Description

The Greene data frame has 384 rows and 7 columns. These are cases filed in 1990, in which refugee claimants rejected by the Canadian Immigration and Refugee Board asked the Federal Court of Appeal for leave to appeal the negative ruling of the Board.

Usage

Greene

Format

This data frame contains the following columns:

- **judge** Name of judge hearing case. A factor with levels: Desjardins, Heald, Hugessen, Iacobucci, MacGuigan, Mahoney, Marceau, Pratte, Stone, Urie.
- **nation** Nation of origin of claimant. A factor with levels: Argentina, Bulgaria, China, Czechoslovakia, El Salvador, Fiji, Ghana, Guatemala, India, Iran, Lebanon, Nicaragua, Nigeria, Pakistan, Poland, Somalia, Sri Lanka.
- **rater** Judgment of independent rater. A factor with levels: no, case has no merit; yes, case has some merit (leave to appeal should be granted).
- **decision** Judge’s decision. A factor with levels: no, leave to appeal not granted; yes, leave to appeal granted.
- **language** Language of case. A factor with levels: English, French.
- **location** Location of original refugee claim. A factor with levels: Montreal, other, Toronto.
- **success** Logit of success rate, for all cases from the applicant’s nation.

Source

Personal communication from Ian Greene, Department of Political Science, York University.

References

Description

The `Guyer` data frame has 20 rows and 3 columns. The data are from an experiment in which four-person groups played a prisoner’s dilemma game for 30 trials, each person making either a cooperative or competitive choice on each trial. Choices were made either anonymously or in public; groups were composed either of females or of males. The observations are 20 groups.

Usage

`Guyer`

Format

This data frame contains the following columns:

- **cooperation**: Number of cooperative choices (out of 120 in all).
- **sex**: Sex. A factor with levels: F, Female; M, Male.

Source

References

Hartnagel

Canadian Crime-Rates Time Series

Description

The `Hartnagel` data frame has 38 rows and 7 columns. The data are an annual time-series from 1931 to 1968. There are some missing data.

Usage

`Hartnagel`
Format

This data frame contains the following columns:

- **year**: 1931–1968.
- **tfr**: Total fertility rate per 1000 women.
- **partic**: Women’s labor-force participation rate per 1000.
- **degrees**: Women’s post-secondary degree rate per 10,000.
- **fconvict**: Female indictable-offense conviction rate per 100,000.
- **ftheft**: Female theft conviction rate per 100,000.
- **mconvict**: Male indictable-offense conviction rate per 100,000.
- **mtheft**: Male theft conviction rate per 100,000.

Details

The post-1948 crime rates have been adjusted to account for a difference in method of recording. Some of your results will differ in the last decimal place from those in Table 14.1 of Fox (1997) due to rounding of the data. Missing values for 1950 were interpolated.

Source

Personal communication from T. Hartnagel, Department of Sociology, University of Alberta.

References

<table>
<thead>
<tr>
<th>hccm</th>
<th>Heteroscedasticity-Corrected Covariance Matrices</th>
</tr>
</thead>
</table>

Description

Calculates heteroscedasticity-corrected covariance matrices linear models fit by least squares or weighted least squares. These are also called “White-corrected” or “White-Huber” covariance matrices.

Usage

```
hccm(model, ...)

### S3 method for class 'lm'
hccm(model, type=c("hc3", "hc0", "hc1", "hc2", "hc4"),
singular.ok=TRUE, ...)

### Default S3 method:
hccm(model, ...)
```
Arguments

model | a unweighted or weighted linear model, produced by `lm`.

type | one of "hc0", "hc1", "hc2", "hc3", or "hc4"; the first of these gives the classic White correction. The "hc1", "hc2", and "hc3" corrections are described in Long and Ervin (2000); "hc4" is described in Cribari-Neto (2004).

singular.ok | if FALSE (the default is TRUE), a model with aliased coefficients produces an error; otherwise, the aliased coefficients are ignored in the coefficient covariance matrix that’s returned.

... | arguments to pass to `hccm.lm`.

Details

The classical White-corrected coefficient covariance matrix ("hc0") (for an unweighted model) is

\[V(b) = (X'X)^{-1}X'\text{diag}(e_i^2)X(X'X)^{-1} \]

where \(e_i^2 \) are the squared residuals, and \(X \) is the model matrix. The other methods represent adjustments to this formula. If there are weights, these are incorporated in the corrected covariance matrix.

The function `hccm.default` simply catches non-

Value

The heteroscedasticity-corrected covariance matrix for the model.

Author(s)

John Fox <jfox@mcmaster.ca>

References

Examples

```r
options(digits=4)
mod<-lm(interlocks~assets+nation, data=Ornstein)
vcov(mod)
## (Intercept) assets nationOTH nationUK nationUS
## (Intercept)  1.079e+00 -1.588e+05 -1.037e+00 -1.057e+00 -1.032e+00
```
Description

The data comes from a unpublished master's paper by Carl Hoffstedt. They relate the automobile accident rate, in accidents per million vehicle miles to several potential terms. The data include 39 sections of large highways in the state of Minnesota in 1973. The goal of this analysis was to understand the impact of design variables, acpts, slim, sig, and shld that are under the control of the highway department, on accidents.

Usage

Highway1

Format

This data frame contains the following columns:

- **rate** 1973 accident rate per million vehicle miles
- **len** length of the Highway1 segment in miles
- **adt** average daily traffic count in thousands
- **trks** truck volume as a percent of the total volume
- **sigs1** (number of signalized interchanges per mile times len + 1)/len, the number of signals per mile of roadway, adjusted to have no zero values.
- **slim** speed limit in 1973
- **shld** width in feet of outer shoulder on the roadway
- **lane** total number of lanes of traffic
- **acpt** number of access points per mile
- **itg** number of freeway-type interchanges per mile
- **lwid** lane width, in feet
- **htype** An indicator of the type of roadway or the source of funding for the road, either MC, FAI, PA, or MA
hist.boot

Methods Functions to Support boot Objects

Description

The `hist.boot` function in the `car` package uses the `boot` function from the `boot` package to do a straightforward case or residual bootstrap for a least-squares regression object. These are method functions for standard generics to summarize the results of the bootstrap.

Usage

```r
## S3 method for class 'boot'
hist(x, parm, layout = NULL, ask, main = "", freq = FALSE,
estPoint = TRUE, point.col = "black", point.lty = 2, point.lwd = 2,
estDensity = !freq, den.col = "blue", den.lty = 1, den.lwd = 2,
estNormal = !freq, nor.col = "red", nor.lty = 2, nor.lwd = 2,
ci = c("bca", "none", "perc"), level = 0.95, legend = c("top",
    "none", "separate"), box = TRUE, ...)

## S3 method for class 'boot'
summary(object, parm, high.moments = FALSE, extremes = FALSE, ...)

## S3 method for class 'boot'
confint(object, parm, level = 0.95, type = c("bca", "norm",
    "basic", "perc", "all"), ...)

## S3 method for class 'boot'
vcov(object, ...)
```

Arguments

- **x, object**: An object created by a call to `boot` of class "boot".
- **parm**: A vector of numbers or coefficient names giving the coefficients for which a histogram or confidence interval is desired. If numbers are used, 1 corresponds to the intercept, if any. The default is all coefficients.

Source

Carl Hofstedt. This differs from the dataset Highway in the alr4 package only by addition of transformation of some of the columns.

References

layout
If set to a value like c(1, 1) or c(4, 3), the layout of the graph will have this many rows and columns. If not set, the program will select an appropriate layout. If the number of graphs exceed nine, you must select the layout yourself, or you will get a maximum of nine per page. If layout=NA, the function does not set the layout and the user can use the par function to control the layout, for example to have plots from two models in the same graphics window.

ask
If TRUE, ask the user before drawing the next plot; if FALSE, don’t ask.

main
Main title for the graphs. The default is main="" for no title.

freq
The usual default for hist is freq=TRUE to give a frequency histogram. The default here is freq=FALSE to give a density histogram. A density estimate and/or a fitted normal density can be added to the graph if freq=FALSE but not if freq=TRUE.
estPoint, point.col, point.lty, point.lwd
If estPoint=TRUE, the default, a vertical line is drawn on the histogram at the value of the point estimate computed from the complete data. The remaining three optional arguments set the color, line type and line width of the line that is drawn.
estDensity, den.col, den.lty, den.lwd
If estDensity=TRUE and freq=FALSE, the default, a kernel density estimate is drawn on the plot with a call to the density function with no additional arguments. The remaining three optional arguments set the color, line type and line width of the lines that are drawn.
estNormal, nor.col, nor.lty, nor.lwd
If estNormal=TRUE and freq=FALSE, the default, a normal density with mean and sd computed from the data is drawn on the plot. The remaining three optional arguments set the color, line type and line width of the lines that are drawn.

ci
A confidence interval based on the bootstrap will be added to the histogram using the BCa method if ci="bca" or using the percentile method if ci="perc". No interval is drawn if ci="none". The default is "bca". The interval is indicated by a thick horizontal line at y=P. For some bootstraps the BCa method is unavailable, in which case a warning is issued and ci="perc" is substituted.

legend
A legend can be added to the (array of) histograms. The value ""top"" puts at the top-left of the plots. The value ""separate"" puts the legend in its own graph following all the histograms. The value ""none"" suppresses the legend.

box
Add a box around each histogram.

high.moments
Should the skewness and kurtosis be included in the summary? Default is FALSE.

extremes
Should the minimum, maximum and range be included in the summary? Default is FALSE.

level
Confidence level, a number between 0 and 1. In confint, level can be a vector; for example level=c(.68, .90, .95) will return the estimated quantiles at c(.025, .05, .16, .84, .95, .975).
type

Selects the confidence interval type. The types implemented are the "percentile" method, which uses the function quantile to return the appropriate quantiles for the confidence limit specified, the default bca which uses the bias-corrected and accelerated method presented by Efron and Tibshirani (1993, Chapter 14). For the other types, see the documentation for boot.

Value

hist is used for the side-effect of drawing an array of histograms of each column of the first argument. summary returns a matrix of summary statistics for each of the columns in the bootstrap object. The confint method returns confidence intervals. The vcov returns the sample covariance of the bootstrap sample estimates.

Author(s)

Sanford Weisberg, <sandy@umn.edu>

References

See Also

See Also *Boot*, *hist*, *density*

Examples

m1 <- lm(Fertility ~ ., swiss)
betahat.boot <- Boot(m1, R=99) # 99 bootstrap samples--too small to be useful
summary(betahat.boot) # default summary
confint(betahat.boot)
hist(betahat.boot)
Usage

infIndexPlot(model, ...)

influenceIndexPlot(model, ...)

S3 method for class 'lm'
infIndexPlot(model,
 vars=c("Cook", "Studentized", "Bonf", "hat"),
 main="Diagnostic Plots",
 labels, id.method = "y",
 id.n = if(id.method[1]=="identify") Inf else 0,
 id.cex=1, id.col=palette()[1], id.location="lr", grid=TRUE, ...)

Arguments

model A regression object of class lm or glm.
vars All the quantities listed in this argument are plotted. Use "Cook" for Cook's
distances, "Studentized" for Studentized residuals, "Bonf" for Bonferroni p-
values for an outlier test, and and "hat" for hat-values (or leverages). Capital-
ization is optional. All may be abbreviated by the first one or more letters.
main main title for graph
id.method,labels,id.n,id.cex,id.col,id.location
 Arguments for the labelling of points. The default is id.n=0 for labeling no
 points. See showLabels for details of these arguments.
grid If TRUE, the default, a light-gray background grid is put on the graph
... Arguments passed to plot

Value

Used for its side effect of producing a graph. Produces four index plots of Cook's distance, Student-
tized Residuals, the corresponding Bonferroni p-values for outlier tests, and leverages.

Author(s)

Sanford Weisberg, <sandy@umn.edu>

References

See Also

cooks.distance, rstudent, outlierTest, hatvalues

Examples

```r
m1 <- lm(prestige ~ income + education + type, Duncan)
influenceIndexPlot(m1)
```

Description

This function creates a “bubble” plot of Studentized residuals by hat values, with the areas of the circles representing the observations proportional to Cook’s distances. Vertical reference lines are drawn at twice and three times the average hat value, horizontal reference lines at -2, 0, and 2 on the Studentized-residual scale.

Usage

```r
influencePlot(model, ...)
```

S3 method for class 'lm'
influencePlot(model, scale=10,
xlab="Hat-Values", ylab="Studentized Residuals",
labels, id.method = "noteworthy",
id.n = if(id.method[1]=="identify") Inf else 0,
id.cex=1, id.col=palette()[1], id.location="lr", ...)

Arguments

- **model** a linear or generalized-linear model.
- **scale** a factor to adjust the size of the circles.
- **xlab, ylab** axis labels.
- **labels, id.method, id.n, id.cex, id.col, id.location** settings for labelling points; see link{showLabels} for details. To omit point labelling, set id.n=0, the default. The default id.method="noteworthy" is used only in this function and indicates setting labels for points with large Studentized residuals, hat-values or Cook’s distances. Set id.method="identify" for interactive point identification.
- **...** arguments to pass to the plot and points functions.

Value

If points are identified, returns a data frame with the hat values, Studentized residuals and Cook’s distance of the identified points. If no points are identified, nothing is returned. This function is primarily used for its side-effect of drawing a plot.
invResPlot

Author(s)
John Fox <jfox@mcmaster.ca>, minor changes by S. Weisberg <sandy@umn.edu>

References

See Also
cooks.distance, rstudent, hatvalues, showLabels

Examples
influencePlot(lm(prestige ~ income + education, data=Duncan))

Description
For a lm model, draws an inverse.response plot with the response Y on the vertical axis and the fitted values \(\hat{Y} \) on the horizontal axis. Uses nls to estimate \(\lambda \) in the function \(\hat{Y} = b_0 + b_1 Y^\lambda \). Adds the fitted curve to the plot. invResPlot is an alias for inverseResponsePlot.

Usage
inverseResponsePlot(model, lambda=c(-1,0,1), robust=FALSE, xlab=NULL, ...)

S3 method for class 'lm'
inverseResponsePlot(model, lambda=c(-1,0,1), robust=FALSE,
 xlab=NULL, labels=names(residuals(model)), ...)

invResPlot(model, ...)

Arguments
model A lm regression object
lambda A vector of values for lambda. A plot will be produced with curves corresponding to these lambdas and to the least squares estimate of lambda
xlab The horizontal axis label. If NULL, it is constructed by the function.
labels Case labels if labeling is turned on; see invTranPlot and showLabels for arguments.
robust If TRUE, then estimation uses Huber M-estimates with the median absolute deviation to estimate scale and k=1.345. The default is FALSE.
... Other arguments passed to invTranPlot and then to plot.
Value

As a side effect, a plot is produced with the response on the horizontal axis and fitted values on the vertical axis. Several lines are added to be plot as the ols estimates of the regression of \hat{Y} on Y^λ, interpreting $\lambda = 0$ to be natural logarithms.

Numeric output is a list with elements

- `lambda` Estimate of transformation parameter for the response
- `RSS` The residual sum of squares at the minimum if robust=FALSE. If robust = TRUE, the value of Huber objective function is returned.

Author(s)

Sanford Weisberg, sandy@umn.edu

References

See Also

`invtranplot`, `powertransform`, `showlabels`

Examples

```r
m2 <- lm(rate ~ log(len) + log(adt) + slim + shld + log(sigs1), Highway1)
invResPlot(m2)
```

`invTranPlot` Choose a Predictor Transformation Visually or Numerically

Description

`invTranPlot` draws a two-dimensional scatterplot of Y versus X, along with the OLS fit from the regression of \hat{Y} on $(X^\lambda - 1)/\lambda$. `invTranEstimate` finds the nonlinear least squares estimate of λ and its standard error.
Usage

invTranPlot(x, ...)

S3 method for class 'formula'
invTranPlot(x, data, subset, na.action, ...)

Default S3 method:
invTranPlot(x, y, lambda=c(-1, 0, 1), robust=FALSE,
 lty.lines=rep(c("solid", "dashed", "dotdash", "longdash", "twodash"),
 length=1 + length(lambda)), lwd.lines=2,
 col=palette()[1], col.lines=palette(),
 xlab=deparse(substitute(x)), ylab=deparse(substitute(y)),
 family="bcPower", optimal=TRUE, key="auto",
 id.method = "x",
 labels,
 id.n = if(id.method[1]=="identify") Inf else 0,
 id.cex=1, id.col=palette()[1], id.location="lr", grid=TRUE, ...)

invTranEstimate(x, y, family="bcPower", confidence=0.95, robust=FALSE)

Arguments

x The predictor variable, or a formula with a single response and a single predictor
y The response variable
data An optional data frame to get the data for the formula
subset Optional, as in lm, select a subset of the cases
na.action Optional, as in lm, the action for missing data
lambda The powers used in the plot. The optimal power than minimizes the residual
 sum of squares is always added unless optimal is FALSE.
robust If TRUE, then the estimated transformation is computed using Huber M-estimation
 with the MAD used to estimate scale and k=1.345. The default is FALSE.
family The transformation family to use, "bcPower", "yjPower", or a user-defined
 family.
confidence returns a profile likelihood confidence interval for the optimal transformation
 with this confidence level. If FALSE, or if robust=TRUE, no interval is returned.
optimal Include the optimal value of lambda?
lty.lines line types corresponding to the powers
lwd.lines the width of the plotted lines, defaults to 2 times the standard
col color(s) of the points in the plot. If you wish to distinguish points according
 to the levels of a factor, we recommend using symbols, specified with the pch
 argument, rather than colors.
col.lines color of the fitted lines corresponding to the powers. The default is to use the
 colors returned by palette
The default is "auto", in which case a legend is added to the plot, either above the top margin or in the bottom right or top right corner. Set to NULL to suppress the legend.

Label for the horizontal axis.

Label for the vertical axis.

Arguments for the labelling of points. The default is id.n=0 for labeling no points. See showLabels for details of these arguments.

Additional arguments passed to the plot method, such as pch.

If TRUE, the default, a light-gray background grid is put on the graph

Value

invTranPlot plots a graph and returns a data frame with λ in the first column, and the residual sum of squares from the regression for that λ in the second column.

invTranEstimate returns a list with elements lambda for the estimate, se for its standard error, and RSS, the minimum value of the residual sum of squares.

Author(s)

Sanford Weisberg, <sandy@umn.edu>

References

See Also

inverseResponsePlot.optimize

Examples

with(UN, invTranPlot(gdp, infant.mortality))
with(UN, invTranEstimate(gdp, infant.mortality))
Description

Subset of data on migraine treatments collected by Tammy Kostecki-Dillon.

Usage

KosteckiDillon

Format

A data frame with 4152 observations on 133 subjects for the following 9 variables.

id Patient id.
time time in days relative to the onset of treatment, which occurs at time 0.
dos time in days from the start of the study, January 1 of the first year of the study.
hatype a factor with levels Aura Mixed No Aura, the type of migraine experienced by a subject.
age at onset of treatment, in years.
airq a measure of air quality.
medication a factor with levels none reduced continuing, representing subjects who discontinued their medication, who continued but at a reduced dose, or who continued at the previous dose.
headache a factor with levels no yes.
sex a factor with levels female male.

Details

The data consist of headache logs kept by 133 patients in a treatment program in which bio-feedback was used to attempt to reduce migraine frequency and severity. Patients entered the program at different times over a period of about 3 years. Patients were encouraged to begin their logs four weeks before the onset of treatment and to continue for one month afterwards, but only 55 patients have data preceding the onset of treatment.

Source

Personal communication from Georges Monette (and adapted from his description of the data).

References

Examples

summary(KosteckiDillon)
Leinhardt Data on Infant-Mortality

Description

The Leinhardt data frame has 105 rows and 4 columns. The observations are nations of the world around 1970.

Usage

Leinhardt

Format

This data frame contains the following columns:

income Per-capita income in U. S. dollars.
infant Infant-mortality rate per 1000 live births.
region A factor with levels: Africa; Americas; Asia, Asia and Oceania; Europe.
oil Oil-exporting country. A factor with levels: no, yes.

Details

The infant-mortality rate for Jamaica is misprinted in Leinhardt and Wasserman; the correct value is given here. Some of the values given in Leinhardt and Wasserman do not appear in the original New York Times table and are of dubious validity.

Source

References

Levene’s Test

Description

Computes Levene’s test for homogeneity of variance across groups.

Usage

leveneTest(y, ...)
S3 method for class 'formula'
leveneTest(y, data, ...)
S3 method for class 'lm'
leveneTest(y, ...)
Default S3 method:
leveneTest(y, group, center=median, ...)

Arguments

y
response variable for the default method, or a lm or formula object. If y is a linear-model object or a formula, the variables on the right-hand-side of the model must all be factors and must be completely crossed.

group
factor defining groups.

center
The name of a function to compute the center of each group; mean gives the original Levene’s test; the default, median, provides a more robust test.

data
a data frame for evaluating the formula.

...
arguments to be passed down, e.g., data for the formula and lm methods; can also be used to pass arguments to the function given by center (e.g., center=mean and trim=0.1 specify the 10% trimmed mean).

Value

returns an object meant to be printed showing the results of the test.

Note

adapted from a response posted by Brian Ripley to the r-help email list.

Author(s)

John Fox <jfox@mcmaster.ca>; original generic version contributed by Derek Ogle

References

Examples

with(Moore, leveneTest(conformity, fcategory))
with(Moore, leveneTest(conformity, interaction(fcategory, partner.status)))
leveneTest(conformity ~ fcategory*partner.status, data=Moore)
leveneTest(lm(conformity ~ fcategory*partner.status, data=Moore))
leveneTest(conformity ~ fcategory*partner.status, data=Moore, center=mean)
leveneTest(conformity ~ fcategory*partner.status, data=Moore, center=mean, trim=0.1)

leveragePlots

Regression Leverage Plots

Description

These functions display a generalization, due to Sall (1990) and Cook and Weisberg (1991), of added-variable plots to multiple-df terms in a linear model. When a term has just 1 df, the leverage plot is a rescaled version of the usual added-variable (partial-regression) plot.

Usage

leveragePlots(model, terms = ~., layout = NULL, ask, main, ...)
leveragePlot(model, ...)

S3 method for class 'lm'
leveragePlot(model, term.name, id.method = list(abs(residuals(model, type="pearson")), "x"), labels, id.n = if(id.method[1]=="identify") Inf else 0, id.cex=1, id.col=palette()[1], id.location="lr", col=palette()[1], col.lines=palette()[2], lwd=2, xlab, ylab, main="Leverage Plot", grid=TRUE, ...)

S3 method for class 'glm'
leveragePlot(model, ...)

Arguments

model model object produced by lm

terms A one-sided formula that specifies a subset of the predictors. One added-variable plot is drawn for each term. The default ~. is to plot against all numeric predictors. For example, the specification terms = ~ . ~ X3 would plot against all predictors except for X3. If this argument is a quoted name of one of the predictors, the added-variable plot is drawn for that predictor only.
leveragePlots

layout
If set to a value like c(1, 1) or c(4, 3), the layout of the graph will have this many rows and columns. If not set, the program will select an appropriate layout. If the number of graphs exceed nine, you must select the layout yourself, or you will get a maximum of nine per page. If layout=NA, the function does not set the layout and the user can use the par function to control the layout, for example to have plots from two models in the same graphics window.

ask
if TRUE, a menu is provided in the R Console for the user to select the term(s) to plot.

xlab, ylab
axis labels; if missing, labels will be supplied.

main
title for plot; if missing, a title will be supplied.

... arguments passed down to method functions.

term.name
Quoted name of term in the model to be plotted; this argument is omitted for leveragePlots.

id.method, labels, id.n, id.cex, id.col, id.location
Arguments for the labelling of points. The default is id.n=0 for labeling no points. See showLabels for details of these arguments.

col
color(s) of points

col.lines
color of the fitted line

lwd
line width; default is R (see par).

grid
If TRUE, the default, a light-gray background grid is put on the graph

Details
The function intended for direct use is leveragePlots.

The model can contain factors and interactions. A leverage plot can be drawn for each term in the model, including the constant.

leveragePlot.glm is a dummy function, which generates an error message.

Value
NULL. These functions are used for their side effect: producing plots.

Author(s)
John Fox <jfox@mcmaster.ca>

References
See Also
 avPlots

Examples
 leveragePlots(lm(prestige~(income+education)*type, data=Duncan))
linearHypothesis

linearHypothesis(model, hypothesis.matrix, rhs=NULL, vcov.,
verbose=FALSE, ...)

```r
## S3 method for class 'linearHypothesis.mlm'
print(x, SSP=TRUE, SSPE=SSP,
digits=getOption("digits"), ...)
```

```r
## S3 method for class 'lme'
linearHypothesis(model, hypothesis.matrix, rhs=NULL,
vcov.=NULL, singular.ok=FALSE, verbose=FALSE, ...)
```

```r
## S3 method for class 'mer'
linearHypothesis(model, hypothesis.matrix, rhs=NULL,
vcov.=NULL, test=c("Chisq", "F"), singular.ok=FALSE, verbose=FALSE, ...)
```

```r
## S3 method for class 'merMod'
linearHypothesis(model, hypothesis.matrix, rhs=NULL,
vcov.=NULL, test=c("Chisq", "F"), singular.ok=FALSE, verbose=FALSE, ...)
```

```r
## S3 method for class 'svyglm'
linearHypothesis(model, ...)
```

```r
## S3 method for class 'rlm'
linearHypothesis(model, ...)
```

Arguments

- **model**: fitted model object. The default method of `linearHypothesis` works for models for which the estimated parameters can be retrieved by `coef` and the corresponding estimated covariance matrix by `vcov`. See the Details for more infor-
linearHypothesis

hypothesis.matrix
matrix (or vector) giving linear combinations of coefficients by rows, or a character vector giving the hypothesis in symbolic form (see Details).

rhs
right-hand-side vector for hypothesis, with as many entries as rows in the hypothesis matrix; can be omitted, in which case it defaults to a vector of zeroes. For a multivariate linear model, rhs is a matrix, defaulting to 0.

singular.ok
if FALSE (the default), a model with aliased coefficients produces an error; if TRUE, the aliased coefficients are ignored, and the hypothesis matrix should not have columns for them. For a multivariate linear model: will return the hypothesis and error SSP matrices even if the latter is singular; useful for computing univariate repeated-measures ANOVAs where there are fewer subjects than df for within-subject effects.

idata
an optional data frame giving a factor or factors defining the intra-subject model for multivariate repeated-measures data. See Details for an explanation of the intra-subject design and for further explanation of the other arguments relating to intra-subject factors.

icontrasts
names of contrast-generating functions to be applied by default to factors and ordered factors, respectively, in the within-subject “data”; the contrasts must produce an intra-subject model matrix in which different terms are orthogonal.

idesign
a one-sided model formula using the “data” in idata and specifying the intra-subject design.

iterms
the quoted name of a term, or a vector of quoted names of terms, in the intra-subject design to be tested.

check.imatrix
check that columns of the intra-subject model matrix for different terms are mutually orthogonal (default, TRUE). Set to FALSE only if you have already checked that the intra-subject model matrix is block-orthogonal.

P
transformation matrix to be applied to the repeated measures in multivariate repeated-measures data; if NULL and no intra-subject model is specified, no response-transformation is applied; if an intra-subject model is specified via the idata, idesign, and (optionally) icontrasts arguments, then P is generated automatically from the iterms argument.

SSPE
in linearHypothesis method for mlm objects: optional error sum-of-squares-and-products matrix; if missing, it is computed from the model. In print method for linearHypothesis.mlml objects: if TRUE, print the sum-of-squares and cross-products matrix for error.

test
character string, "F" or "Chisq", specifying whether to compute the finite-sample F statistic (with approximate F distribution) or the large-sample Chi-squared statistic (with asymptotic Chi-squared distribution). For a multivariate linear model, the multivariate test statistic to report — one or more of "Pillai", "Wilks", "Hotelling-Lawley", or "Roy", with "Pillai" as the default.

title
an optional character string to label the output.

V
inverse of sum of squares and products of the model matrix; if missing it is computed from the model.
linearHypothesis computes either a finite-sample F statistic or asymptotic Chi-squared statistic for carrying out a Wald-test-based comparison between a model and a linearly restricted model. The default method will work with any model object for which the coefficient vector can be retrieved by `coef` and the coefficient-covariance matrix by `vcov` (otherwise the argument `vcov` has to be set explicitly). For computing the F statistic (but not the Chi-squared statistic) a `df.residual` method needs to be available. If a `formula` method exists, it is used for pretty printing.

The method for "lm" objects calls the default method, but it changes the default test to "F", supports the convenience argument `white.adjust` (for backwards compatibility), and enhances the output by the residual sums of squares. For "glm" objects just the default method is called (bypassing the "lm" method). The `svyglm` method also calls the default method.

The function `lht` also dispatches to `linearHypothesis`.

The hypothesis matrix can be supplied as a numeric matrix (or vector), the rows of which specify linear combinations of the model coefficients, which are tested equal to the corresponding entries in the right-hand-side vector, which defaults to a vector of zeroes.

Alternatively, the hypothesis can be specified symbolically as a character vector with one or more elements, each of which gives either a linear combination of coefficients, or a linear equation in the coefficients (i.e., with both a left and right side separated by an equals sign). Components of a linear expression or linear equation can consist of numeric constants, or numeric constants multiplying coefficient names (in which case the number precedes the coefficient, and may be separated from it by spaces or an asterisk); constants of 1 or -1 may be omitted. Spaces are always optional. Components are separated by plus or minus signs. Newlines or tabs in hypotheses will be treated as spaces. See the examples below.

If the user sets the arguments `coef` and `vcov`, then the computations are done without reference to the `model` argument. This is like assuming that `coef` is normally distributed with estimated
and the linearHypothesis will compute tests on the mean vector for coef., without actually using the model argument.

A linear hypothesis for a multivariate linear model (i.e., an object of class "mlm") can optionally include an intra-subject transformation matrix for a repeated-measures design. If the intra-subject transformation is absent (the default), the multivariate test concerns all of the corresponding coefficients for the response variables. There are two ways to specify the transformation matrix for the repeated measures:

1. The transformation matrix can be specified directly via the P argument.
2. A data frame can be provided defining the repeated-measures factor or factors via idata, with default contrasts given by the icontrasts argument. An intra-subject model-matrix is generated from the one-sided formula specified by the idesign argument; columns of the model matrix corresponding to different terms in the intra-subject model must be orthogonal (as is insured by the default contrasts). Note that the contrasts given in icontrasts can be overridden by assigning specific contrasts to the factors in idata. The repeated-measures transformation matrix consists of the columns of the intra-subject model matrix corresponding to the term or terms in iters. In most instances, this will be the simpler approach, and indeed, most tests of interests can be generated automatically via the Anova function.

matchCoefs is a convenience function that can sometimes help in formulating hypotheses; for example matchCoefs(mod, ":") will return the names of all interaction coefficients in the model mod.

Value

For a univariate model, an object of class "anova" which contains the residual degrees of freedom in the model, the difference in degrees of freedom, Wald statistic (either "F" or "Chisq"), and corresponding p value. The value of the linear hypothesis and its covariance matrix are returned respectively as "value" and "vcov" attributes of the object (but not printed).

For a multivariate linear model, an object of class "linearHypothesis.mlm", which contains sums-of-squares-and-product matrices for the hypothesis and for error, degrees of freedom for the hypothesis and error, and some other information.

The returned object normally would be printed.

Author(s)

Achim Zeileis and John Fox <jfox@mcmaster.ca>

References

linearHypothesis

See Also

anova, Anova, waldtest, hccm, vcovHC, vcovHAC, coef, vcov

Examples

```r
mod.davis <- lm(weight ~ repwt, data=Davis)

## the following are equivalent:
linearHypothesis(mod.davis, diag(2), c(0,1))
linearHypothesis(mod.davis, c("(Intercept) = 0", "repwt = 1"))
linearHypothesis(mod.davis, c("(Intercept)", "repwt"), c(0,1))
linearHypothesis(mod.davis, c("(Intercept)", "repwt = 1"))

## use asymptotic Chi-squared statistic
linearHypothesis(mod.davis, c("(Intercept) = 0", "repwt = 1"), test = "Chisq")

## the following are equivalent:
## use HC3 standard errors via white.adjust option
linearHypothesis(mod.davis, c("(Intercept) = 0", "repwt = 1"),
                   white.adjust = TRUE)
## covariance matrix *function*
linearHypothesis(mod.davis, c("(Intercept) = 0", "repwt = 1"), vcov = hccm)
## covariance matrix *estimate*
linearHypothesis(mod.davis, c("(Intercept) = 0", "repwt = 1"),
                   vcov = hccm(mod.davis, type = "hc3"))

mod.duncan <- lm(prestige ~ income + education, data=Duncan)

## the following are all equivalent:
linearHypothesis(mod.duncan, "1*income - 1*education = 0")
linearHypothesis(mod.duncan, "income = education")
linearHypothesis(mod.duncan, "income - education")
linearHypothesis(mod.duncan, "1*income - 1*education = 0")
linearHypothesis(mod.duncan, "0 = 1*income - 1*education")
linearHypothesis(mod.duncan, "income - education = 0")
linearHypothesis(mod.duncan, "1*income - 1*education + 1 = 1")
linearHypothesis(mod.duncan, "2*income = 2*education")

mod.duncan.2 <- lm(prestige ~ type*(income + education), data=Duncan)
coefs <- names(coef(mod.duncan.2))

## test against the null model (i.e., only the intercept is not set to 0)
linearHypothesis(mod.duncan.2, coefs[-1])

## test all interaction coefficients equal to 0
linearHypothesis(mod.duncan.2, coefs[grep("\.", coefs)], verbose=TRUE)
linearHypothesis(mod.duncan.2, matchCoefs(mod.duncan.2, "."), verbose=TRUE) # equivalent
lh <- linearHypothesis(mod.duncan.2, coefs[grep("\.", coefs)])
attr(lh, "value") # value of linear function
attr(lh, "vcov") # covariance matrix of linear function
```
a multivariate linear model for repeated-measures data
see ?OBrienKaiser for a description of the data set used in this example.

```r
mod.ok <- lm(cbind(pre.1, pre.2, pre.3, pre.4, pre.5,
                  post.1, post.2, post.3, post.4, post.5,
                  fup.1, fup.2, fup.3, fup.4, fup.5) ~ treatment*gender,
                  data=OBrienKaiser)
coef(mod.ok)
```

specify the model for the repeated measures:

```r
phase <- factor(rep(c("pretest", "posttest", "followup"), c(5, 5, 5)),
                levels=c("pretest", "posttest", "followup"))
hour <- ordered(rep(1:5, 3))
idata <- data.frame(phase, hour)
idata
```

test the four-way interaction among the between-subject factors
treatment and gender, and the intra-subject factors phase and hour

```r
linearHypothesis(mod.ok, c("treatment1:gender1", "treatment2:gender1"),
                 title="treatment:gender:phase:hour", idata=idata, idesign=~phase*hour,
                 iterm="phase:hour")
```

mixed-effects models examples:

```r
# Not run:
library(nlme)
example(lme)
linearHypothesis(fm2, "age = 0")
```

End(Not run)

```r
# Not run:
library(lme4)
example(glmer)
linearHypothesis(gm1, matchCoefs(gm1, "period"))
```

End(Not run)

Description

Cancer drug data use to provide an example of the use of the skew power distributions.

A portion of an experiment to determine the limit of blank/limit of detection in a biochemical assay.
Usage
LoBD

Format
A data frame with 84 observations on the following 9 variables.

- pool a factor with levels 1 2 3 4 5 6 7 8 9 10 11 12 denoting the 12 pools used in the experiment; each pool had a different level of drug.
- I1L1 a numeric vector giving the measured concentration in pmol/L of drug in the assay
- I1L2 a numeric vector giving the measured concentration in pmol/L of drug in the assay
- I2L1 a numeric vector giving the measured concentration in pmol/L of drug in the assay
- I2L2 a numeric vector giving the measured concentration in pmol/L of drug in the assay
- I3L1 a numeric vector giving the measured concentration in pmol/L of drug in the assay
- I3L2 a numeric vector giving the measured concentration in pmol/L of drug in the assay
- I4L1 a numeric vector giving the measured concentration in pmol/L of drug in the assay
- I4L2 a numeric vector giving the measured concentration in pmol/L of drug in the assay

Details
Important characteristics of a clinical chemistry assay are its limit of blank (LoB), and its limit of detection (LoD). The LoB, conceptually the highest reading likely to be obtained from a zero-concentration sample, is defined operationally by the upper 95% point of readings obtained from samples that do not contain the analyte. The LoD, conceptually the lowest level of analyte that can be reliably determined not to be blank, is defined operationally as true value at which there is a 95% chance of the reading being above the LoB.

These data are from a portion of a LoB/D study of an assay for a drug used to treat certain cancers. Twelve pools were used, four of them blanks of different types, and eight with successively increasing drug levels. The 8 columns of the data set refer to measurements made using different instruments I and reagent lots L.

Source
Used as an illustrative example for Box-Cox type transformations with negative readings in Hawkins and Weisberg (2015). For examples of its use, see bcnpower.

References

Examples
LoBD
logit

Logit Transformation

Description

Compute the logit transformation of proportions or percentages.

Usage

logit(p, percents=range.p[2] > 1, adjust)

Arguments

- **p**: numeric vector or array of proportions or percentages.
- **percents**: TRUE for percentages.
- **adjust**: adjustment factor to avoid proportions of 0 or 1; defaults to 0 if there are no such proportions in the data, and to .025 if there are.

Details

Computes the logit transformation \(\text{logit} = \log \left(\frac{p}{1 - p} \right) \) for the proportion \(p \).

If \(p = 0 \) or 1, then the logit is undefined. \text{logit} can remap the proportions to the interval \((\text{adjust}, 1 - \text{adjust}) \) prior to the transformation. If it adjusts the data automatically, \text{logit} will print a warning message.

Value

a numeric vector or array of the same shape and size as \(p \).

Author(s)

John Fox <jfox@mcmaster.ca>

References

See Also

probabilityAxis
Examples

```r
options(digits=4)
logit(.1*0:10)
## [1] -3.6636 -1.9924 -1.2950 -0.8001 -0.3847 0.0000 0.3847
## [8] 0.8001 1.2950 1.9924 3.6636
# Warning message:
# proportions remapped to (0.025, 0.975) in: logit(0.1 * 0:10)

logit(.1*0:10, adjust=0)
## [1]  Inf -2.1972 -1.3863 -0.8473 -0.4055 0.0000 0.4055
## [8] 0.8473 1.3863 2.1972  Inf
```

Mandel

Contrived Collinear Data

Description

The Mandel data frame has 8 rows and 3 columns.

Usage

Mandel

Format

This data frame contains the following columns:

- **x1** first predictor.
- **x2** second predictor.
- **y** response.

Source

References

mcPlots

Draw Linear Model Marginal and Conditional Plots in Parallel or Overlaid

Description

The `mcplot` function draws two plots, or overlay the two graphs on one plot. For a response Y and a regressor X, the first plot is the marginal plot of Y versus X with both variables centered, visualizing the conditional distribution of Y given X ignoring all other regressors. The second plot is an added-variable for X after all other regressors, visualizing the conditional distribution of Y given X after adjusting for all other predictors. The added variable plot by default is drawn using the same xlim and ylim as the centered marginal plot to emphasize that conditioning removes variation in both the regressor and the response. The plot is primarily intended as a pedagogical tool for understanding coefficients in first-order models.

Usage

```r
mcPlots(model, terms=-., layout=NULL, ask, overlaid=TRUE, ...)

mcPlot(model, ...)
```

S3 method for class 'lm'

```r
mcPlot(model, variable,
       id.method = list(abs(residuals(model, type="pearson")), "x"),
       labels,
       id.n = if(id.method[1]=="identify") Inf else 0,
       id.cex=1, id.col=palette()[1], id.location="lr",
       col.marginal="blue", col.conditional="red", col.arrows="gray",
       pch = c(16, 1), lwd = 2, grid=TRUE, ###removed arg main
       ellipse=FALSE, ellipse.args=list(levels=0.5),
       overlaid=TRUE, new=TRUE, ...)
```

Arguments

- **model**
 - model object produced by `lm`.

- **terms**
 - A one-sided formula that specifies a subset of the predictors. One added-variable plot is drawn for each numeric predictor and for each basis function used to define a factor. For example, the specification `terms = ~ - x3` would plot against all terms except for `x3`. If this argument is a quoted name of one of the terms, the added-variable plot is drawn for that term only.

- **variable**
 - A quoted string giving the name of a numeric predictor in the model matrix for the horizontal axis. To plot against a factor, you need to specify the full name of one of the indicator variables that define the factor. For example, for a factor called `type` with levels `A`, `B` and `C`, using the usual drop-first level parameterization of the factor, the regressors for type would be `typeB` or `typeC`.

mcPlots

Draw Linear Model Marginal and Conditional Plots in Parallel or Overlaid

Description

The `mcPlot` function draws two plots, or overlay the two graphs on one plot. For a response Y and a regressor X, the first plot is the marginal plot of Y versus X with both variables centered, visualizing the conditional distribution of Y given X ignoring all other regressors. The second plot is an added-variable for X after all other regressors, visualizing the conditional distribution of Y given X after adjusting for all other predictors. The added variable plot by default is drawn using the same xlim and ylim as the centered marginal plot to emphasize that conditioning removes variation in both the regressor and the response. The plot is primarily intended as a pedagogical tool for understanding coefficients in first-order models.

Usage

```r
mcPlots(model, terms=-., layout=NULL, ask, overlaid=TRUE, ...)

mcPlot(model, ...)
```

S3 method for class 'lm'

```r
mcPlot(model, variable,
       id.method = list(abs(residuals(model, type="pearson")), "x"),
       labels,
       id.n = if(id.method[1]=="identify") Inf else 0,
       id.cex=1, id.col=palette()[1], id.location="lr",
       col.marginal="blue", col.conditional="red", col.arrows="gray",
       pch = c(16, 1), lwd = 2, grid=TRUE, ###removed arg main
       ellipse=FALSE, ellipse.args=list(levels=0.5),
       overlaid=TRUE, new=TRUE, ...)
```

Arguments

- **model**
 - model object produced by `lm`.

- **terms**
 - A one-sided formula that specifies a subset of the predictors. One added-variable plot is drawn for each numeric predictor and for each basis function used to define a factor. For example, the specification `terms = ~ - x3` would plot against all terms except for `x3`. If this argument is a quoted name of one of the terms, the added-variable plot is drawn for that term only.

- **variable**
 - A quoted string giving the name of a numeric predictor in the model matrix for the horizontal axis. To plot against a factor, you need to specify the full name of one of the indicator variables that define the factor. For example, for a factor called `type` with levels `A`, `B` and `C`, using the usual drop-first level parameterization of the factor, the regressors for type would be `typeB` or `typeC`.

mcPlots

layout
If set to a value like c(1, 2) or c(6, 2), the layout of the graph will have this many rows and columns. If not set, behavior depends on the value of the overlaid argument; see the details

ask
If TRUE, ask the user before drawing the next plot; if FALSE don’t ask.

... mcPlots passes these arguments to mcmPlot. mcmPlot passes arguments to plot.

id.method, labels, id.n, id.cex, id.col, id.location
Arguments for the labelling of points. The default is id.n=0 for labeling no points. See showLabels for details of these arguments.

overlaid
If TRUE, the default, overlay the marginal and conditional plots on the same graph; otherwise plot them side-by-side. See the details below

col.marginal, col.conditional
Colors for points, lines, ellipses in the marginal and conditional plots, respectively

col.arrows
color for the arrows with overlaid=TRUE

pch
Plotting character for marginal and conditional plots, respectively.

lwd
line width; default is 2 (see par).

grid
If TRUE, the default, a light-gray background grid is put on the graph.

ellipse
If TRUE, plot a concentration ellipse; default is FALSE.

ellipse.args
Arguments to pass to the dataEllipse function, in the form of a list with named elements; e.g., ellipse.args=list(robust=TRUE)) will cause the ellipse to be plotted using a robust covariance-matrix.

new
if TRUE, the default, the plot window is reset when overlaid=FALSE using par(mfrow=c(1, 2)). If FALSE, the layout of the plot window is not reset. Users will ordinarily ignore this argument.

Details
With an lm object, suppose the response is Y, X is a focal numeric predictor of interest, and Z is all the remaining predictors, possibly including interactions and factors. This function produces two graphs. The first graph is the marginal plot of Y versus X, with each variable centered around its mean. The second conditional plot is the added-variable plot of e(Y|Z) versus e(X|Z) where e(a|b) means the Pearson residuals from the regression of a on b. If overlaid=TRUE, these two plots are overlaid in one graph, with the points in different colors. In addition, each point in the marginal plot is joined to its value in the conditional plot by an arrow. Least squares regression lines fit to the marginal and conditional graphs are also shown; data ellipsoids can also be added. If overlaid=FALSE, then the two graphs are shown in side-by-side plots as long as the second argument to layout is equal to 2, or layout is set by the function. The arrows are omitted if the graphs are not overlaid.

These graphs are primarily for teaching, as the marginal plot shows the relationship between Y and X ignoring Z, while the conditional is the relationship between Y and X given X. By keeping the scales the same in both graphs the effect of conditioning on both X and Y can be visualized.

This function is intended for first-order models with numeric predictors only. If the focal predictor is a factor, then one (pair) of mcPlots will be produced for each of the basis variables that define the factor, and the resulting plots are not generally meaningful because they depend on parameterization. If the mean function includes interactions, then mcPlots for main effects may violate
the hierarchy principle, and may also be of little interest. mcPlots for interactions of numerical predictors, however, can be useful.

These graphs are closely related to the ARES plots proposed by Cook and Weisberg (1989). This plot would benefit from animation.

Value

These functions are used for their side effect of producing plots.

Author(s)

John Fox <jfox@mcmaster.ca>, Sanford Weisberg <sandy@umn.edu>

References

See Also

avPlots, residualPlots, crPlots, ceresPlots, dataEllipse

Examples

```R
ml <- lm(partic ~ tfr + menwage + womwage + debt + parttime, data = Bfox)
mcPlot(ml, "womwage")
mcPlot(ml, "womwage", overlaid=FALSE, ellipse=TRUE)
```

Migration

Canadian Interprovincial Migration Data

Description

The Migration data frame has 90 rows and 8 columns.

Usage

```
Migration
```
mmps

Format

This data frame contains the following columns:

source Province of origin (source). A factor with levels: ALTA, Alberta; BC, British Columbia; MAN, Manitoba; NB, New Brunswick; NFLD, New Foundland; NS, Nova Scotia; ONT, Ontario; PEI, Prince Edward Island; QUE, Quebec; SASK, Saskatchewan.

destination Province of destination (1971 residence). A factor with levels: ALTA, Alberta; BC, British Columbia; MAN, Manitoba; NB, New Brunswick; NFLD, New Foundland; NS, Nova Scotia; ONT, Ontario; PEI, Prince Edward Island; QUE, Quebec; SASK, Saskatchewan.

migrants Number of migrants (from source to destination) in the period 1966–1971.

distance Distance (between principal cities of provinces): NFLD, St. John; PEI, Charlottetown; NS, Halifax; NB, Fredericton; QUE, Montreal; ONT, Toronto; MAN, Winnipeg; SASK, Regina; ALTA, Edmonton; BC, Vancouver.

pops66 1966 population of source province.

pops71 1971 population of source province.

popd66 1966 population of destination province.

popd71 1971 population of destination province.

Details

There is one record in the data file for each migration stream. You can average the 1966 and 1971 population figures for each of the source and destination provinces.

Source

Canada (1972) Canada Year Book. Statistics Canada [p. 1369].

References

mmps Marginal Model Plotting

Description

For a regression object, draw a plot of the response on the vertical axis versus a linear combination u of regressors in the mean function on the horizontal axis. Added to the plot are a smooth for the graph, along with a smooth from the plot of the fitted values on u. mmps is an alias for marginalModelPlots, and mmp is an alias for marginalModelPlot.
Usage

marginalModelPlots(...)

mmps(model, terms= ~ ., fitted=TRUE, layout=NULL, ask, main, groups, key=TRUE, ...)

marginalModelPlot(...)

S3 method for class 'lm'
mmp(model, variable, sd = FALSE,
 xlab = deparse(substitute(variable)),
 smoother = loessLine, smoother.args=list(span=2/3),
 key=TRUE, pch, groups=NULL, ...)

Default S3 method:
mmp(model, variable, sd = FALSE,
 xlab = deparse(substitute(variable)), smoother=loessLine,
 smoother.args, key=TRUE, pch, groups=NULL,
 col.line = palette()[c(4, 2)], col=palette()[1],
 labels, id.method="y",
 id.n=if(id.method[1]=="identify") Inf else 0,
 id.cex=1, id.col=palette()[1], id.location="lr", grid=TRUE, ...)

S3 method for class 'glm'
mmp(model, variable, sd = FALSE,
 xlab = deparse(substitute(variable)), smoother=gamLine,
 smoother.args=list(k=3), key=TRUE, pch, groups=NULL,
 col.line = palette()[c(4, 2)], col=palette()[1],
 labels, id.method="y",
 id.n=if(id.method[1]=="identify") Inf else 0,
 id.cex=1, id.col=palette()[1], id.location="lr", grid=TRUE, ...)

Arguments

model A regression object, usually of class either lm or glm, for which there is a predict method defined.

terms A one-sided formula. A marginal model plot will be drawn for each term on the right-side of this formula that is not a factor. The default is ~ ., which specifies that all the terms in formula(object) will be used. If a conditioning argument is given, eg terms = ~ . | a, then separate colors and smoothers are used for each unique non-missing value of a. See examples below.

fitted If the default TRUE, then a marginal model plot in the direction of the fitted values or linear predictor of a generalized linear model will be drawn.

layout If set to a value like c(1, 1) or c(4, 3), the layout of the graph will have this many rows and columns. If not set, the program will select an appropriate layout. If the number of graphs exceed nine, you must select the layout yourself, or you will get a maximum of nine per page. If layout=NA, the function does
not set the layout and the user can use the `par` function to control the layout, for
example to have plots from two models in the same graphics window.

ask If TRUE, ask before clearing the graph window to draw more plots.

main Main title for the array of plots. Use `main=""` to suppress the title; if missing, a
title will be supplied.

... Additional arguments passed from `mmps` to `mmp` and then to `plot`. Users should
generally use `mmps`, or equivalently `marginalModelPlots`.

variable The quantity to be plotted on the horizontal axis. The default is the predicted
values `predict(object)`. It can be any other vector of length equal to the
number of observations in the object. Thus the `mmp` function can be used to get
a marginal model plot versus any regressor or predictor while the `mmps` function
can be used only to get marginal model plots for the first-order regressors in the
formula. In particular, terms defined by a spline basis are skipped by `mmps`, but
you can use `mmp` to get the plot for the variable used to define the splines.

sd If TRUE, display sd smooths. For a binomial regression with all sample sizes
equal to one, this argument is ignored as the SD bounds don’t make any sense.

xlab label for horizontal axis

smoother the name of the smoother to use, selected from the choices described at `ScatterplotSmoothers`.
For linear models and the default method, the default smoother is the function `loessLine`. For generalized linear models the default is `gamLine`,
using the `gam` package and using splines.

smoother.args arguments passed to the smoother. For linear models the defaults match the
smoother used before September 2012, and may be changed later. See `ScatterplotSmoothers`.

groups The name of a vector that specifies a grouping variable for separate colors/smoothers.
This can also be specified as a conditioning argument on the `terms` argument.

key If TRUE, include a key at the top of the plot, if FALSE omit the key. If grouping
is present, the key is only printed for the upper-left plot.

id.method,labels,id.n,id.cex,id.col,id.location
Arguments for labeling points. The default `id.n=0` suppresses labeling, and
setting this argument greater than zero will include labeling. See `showLabels`
for these arguments.

pch plotting character to use if no grouping is present.

col.line colors for data and model smooth, respectively. Using the default palette, these
are blue and red.

col color(s) for the plotted points.

grid If TRUE, the default, a light-gray background grid is put on the graph

Details

`mmp` and `marginalModelPlot` draw one marginal model plot against whatever is specified as the
horizontal axis. `mmps` and `marginalModelPlots` draws marginal model plots versus each of the
terms in the `terms` argument and versus fitted values. `mmps` skips factors and interactions if they are
specified in the `terms` argument. Terms based on polynomials or on splines (or potentially any term
that is represented by a matrix of regressors) will be used to form a marginal model plot by returning
a linear combination of the terms. For example, if you specify `terms = ~ X1 + poly(X2, 3)` and `poly(X2, 3)` was part of the original model formula, the horizontal axis of the marginal model plot for X2 will be the value of `predict(model, type="terms"[, "poly(X2, 3)"`)]. If the predict method for the model you are using doesn't support `type="terms"`, then the polynomial/spline term is skipped. Adding a conditioning variable, e.g., `terms = ~ a + b | c`, will produce marginal model plots for a and b with different colors and smoothers for each unique non-missing value of c.

The smoothers used were changed in September 2012. For linear models, the default smoother is still loess with the same smoothing parameters as were used in the past, but these can be changed with the argument smoother.args. For generalized linear models, the default smoother uses gamLine, fitting a generalized additive model with the same family, link and weights as the fit of the model. SD smooths are not computed for for generalized linear models.

For generalized linear models the default number of elements in the spline basis is k=3; this is done to allow fitting for predictors with just a few support points. If you have many support points you may wish to set k to a higher number, or k=-1 for the default used by `gam`.

Value

Used for its side effect of producing plots.

Author(s)

Sanford Weisberg, <sandy@umn.edu>

References

See Also

`ScatterplotSmoothers, plot`

Examples

```r
## Not run:
c1 <- lm(infant.mortality ~ gdp, UN)
mmps(c1)
c2 <- update(c1, - poly(gdp, 4), data=na.omit(UN))
# plot against predict(c2, type="terms"[, "poly(gdp, 4)" and
# and against gdp
mmps(c2, ~ poly(gdp,4) + gdp)
# include SD lines
pl <- lm(prestige ~ income + education, Prestige)
mmps(pl, sd=TRUE)
# condition on type:
mmps(pl, ~ . | type)
# logistic regression example
```
Moore Status, Authoritarianism, and Conformity

Description

The Moore data frame has 45 rows and 4 columns. The data are for subjects in a social-psychological experiment, who were faced with manipulated disagreement from a partner of either of low or high status. The subjects could either conform to the partner's judgment or stick with their own judgment.

Usage

Moore

Format

This data frame contains the following columns:

- **partner.status** Partner's status. A factor with levels: high, low.
- **conformity** Number of conforming responses in 40 critical trials.
- **fcategory** F-Scale Categorized. A factor with levels (note levels out of order): high, low, medium.
- **fscore** Authoritarianism: F-Scale score.

Source

Personal communication from J. Moore, Department of Sociology, York University.

References

Description

The Mroz data frame has 753 rows and 8 columns. The observations, from the Panel Study of Income Dynamics (PSID), are married women.

Usage

Mroz

Format

This data frame contains the following columns:

- **lfp** labor-force participation; a factor with levels: no; yes.
- **k5** number of children 5 years old or younger.
- **k618** number of children 6 to 18 years old.
- **age** in years.
- **wc** wife’s college attendance; a factor with levels: no; yes.
- **hc** husband’s college attendance; a factor with levels: no; yes.
- **lwg** log expected wage rate; for women in the labor force, the actual wage rate; for women not in the labor force, an imputed value based on the regression of lwg on the other variables.
- **inc** family income exclusive of wife’s income.

Source

References

ncvTest

Score Test for Non-Constant Error Variance

Description

Computes a score test of the hypothesis of constant error variance against the alternative that the error variance changes with the level of the response (fitted values), or with a linear combination of predictors.

Usage

```r
ncvTest(model, ...)  
## S3 method for class 'lm'
ncvTest(model, var.formula, ...)

## S3 method for class 'glm'
ncvTest(model, ...) # to report an error
```

Arguments

- `model` a weighted or unweighted linear model, produced by `lm`.
- `var.formula` a one-sided formula for the error variance; if omitted, the error variance depends on the fitted values.
- `...` arguments passed down to methods functions; not currently used.

Details

This test is often called the Breusch-Pagan test; it was independently suggested with some extension by Cook and Weisberg (1983).

`ncvTest.glm` is a dummy function to generate an error when a `glm` model is used.

Value

The function returns a `chisqtest` object, which is usually just printed.

Author(s)

John Fox <jfox@mcmaster.ca>, Sandy Weisberg <sandy@umn.edu>

References

See Also

`hccm, spreadLevelPlot`

Examples

```r
ncvTest(lm(interlocks ~ assets + sector + nation, data=ornstein))
ncvTest(lm(interlocks ~ assets + sector + nation, data=ornstein),
       - assets + sector + nation, data=ornstein)
```

Description

These contrived repeated-measures data are taken from O’Brien and Kaiser (1985). The data are from an imaginary study in which 16 female and male subjects, who are divided into three treatments, are measured at a pretest, postest, and a follow-up session; during each session, they are measured at five occasions at intervals of one hour. The design, therefore, has two between-subject and two within-subject factors.

The contrasts for the treatment factor are set to $-2, 1, 1$ and $0, -1, 1$. The contrasts for the gender factor are set to `contr.sum`.

Usage

`OBrienKaiser`

Format

A data frame with 16 observations on the following 17 variables.

- `treatment`: a factor with levels `control A B`
- `gender`: a factor with levels `F M`
- `pre.1`: pretest, hour 1
- `pre.2`: pretest, hour 2
- `pre.3`: pretest, hour 3
- `pre.4`: pretest, hour 4
- `pre.5`: pretest, hour 5
- `post.1`: posttest, hour 1
- `post.2`: posttest, hour 2
post.3 posttest, hour 3
post.4 posttest, hour 4
post.5 posttest, hour 5
fup.1 follow-up, hour 1
fup.2 follow-up, hour 2
fup.3 follow-up, hour 3
fup.4 follow-up, hour 4
fup.5 follow-up, hour 5

Source

Examples
O'BrienKaiser
contrasts(O'BrienKaiser$treatment)
contrasts(O'BrienKaiser$gender)

Interlocking Directorates Among Major Canadian Firms

Description
The Ornstein data frame has 248 rows and 4 columns. The observations are the 248 largest Canadian firms with publicly available information in the mid-1970s. The names of the firms were not available.

Usage
Ornstein

Format
This data frame contains the following columns:

- **assets**: Assets in millions of dollars.
- **sector**: Industrial sector. A factor with levels: AGR, agriculture, food, light industry; BNK, banking; CON, construction; FIN, other financial; HLD, holding companies; MAN, heavy manufacturing; MER, merchandizing; MIN, mining, metals, etc.; TRN, transport; WOD, wood and paper.
- **nation**: Nation of control. A factor with levels: CAN, Canada; OTH, other foreign; UK, Britain; US, United States.
- **interlocks**: Number of interlocking director and executive positions shared with other major firms.
outlierTest

Source

Personal communication from M. Ornstein, Department of Sociology, York University.

References

outlierTest
Bonferroni Outlier Test

Description

Reports the Bonferroni p-values for Studentized residuals in linear and generalized linear models, based on a t-test for linear models and normal-distribution test for generalized linear models.

Usage

```r
outliertest(model, ...)  
## S3 method for class 'lm'
outliertest(model, cutoff=0.05, n.max=10, order=TRUE, labels=names(rstudent), ...)

## S3 method for class 'outlierTest'
print(x, digits=5, ...)
```

Arguments

- `model`: an `lm` or `glm` model object.
- `cutoff`: observations with Bonferroni p-values exceeding `cutoff` are not reported, unless no observations are nominated, in which case the one with the largest Studentized residual is reported.
- `n.max`: maximum number of observations to report (default, 10).
- `order`: report Studentized residuals in descending order of magnitude? (default, TRUE).
- `labels`: an optional vector of observation names.
- `...`: arguments passed down to methods functions.
- `x`: `outlierTest` object.
- `digits`: number of digits for reported p-values.
panel.car

Details

For a linear model, p-values reported use the t distribution with degrees of freedom one less than the residual df for the model. For a generalized linear model, p-values are based on the standard-normal distribution. The Bonferroni adjustment multiplies the usual two-sided p-value by the number of observations. The lm method works for glm objects. To show all of the observations set cutoff=Inf and n.max=Inf.

Value

an object of class outlierTest, which is normally just printed.

Author(s)

John Fox <jfox@mcmaster.ca> and Sanford Weisberg

References

Examples

outlierTest(lm(prestige ~ income + education, data=Duncan))

Description

a panel function for use with coplot that plots points, a lowess line, and a regression line.

Usage

panel.car(x, y, col, pch, cex=1, span=0.5, lwd=2,
 reg.line=lm, lowess.line=TRUE, ...)

Arguments

 x vector giving horizontal coordinates.
 y vector giving vertical coordinates.
 col point color.
 pch plotting character for points.
 cex character expansion factor for points.
 span span for lowess smoother.
 lwd line width, default is 2.
 reg.line function to compute coefficients of regression line, or FALSE for no line.
 lowess.line if TRUE plot lowess smooth.
 ... other arguments to pass to functions lines and regLine.

Value

 NULL. This function is used for its side effect: producing a panel in a coplot.

Author(s)

 John Fox <jfox@mcmaster.ca>

See Also

 coplot, regLine

Examples

 coplot(prestige ~ income|education, panel=panel.car,
 col="red", data=Prestige)

plot.powerTransform plot Method for powerTransform Objects

Description

 This function provides a simple function for plotting data using power transformations.

Usage

 ## S3 method for class 'powerTransform'
 plot(x, z = NULL, round = TRUE, plot = pairs, ...)
plot.powerTransform

Arguments

- **x**: name of the power transformation object
- **z**: Additional variables of the same length as those used to get the transformation to be plotted, default is NULL.
- **round**: If TRUE, the default, use rounded transforms, if FALSE use the MLEs.
- **plot**: Plotting method. Default is `pairs`. Another possible choice is `scatterplot.matrix` from the `car` package.
- **...**: Optional arguments passed to the plotting method

Details

The data used to estimate transformations using `powerTransform` are plotted in the transformed scale.

Value

None. Produces a graph as a side-effect.

Author(s)

Sanford Weisberg, <sandy@umn.edu>

References

See Also

`powerTransform`

Examples

```r
summary(a3 <- powerTransform(cbind(len, adt, trks, shld, sigs1) ~ 1, Highway1))
with(Highway1, plot(a3, z=rate, col=as.numeric(htype)))
```
The data give the chemical composition of ancient pottery found at four sites in Great Britain. They appear in Hand, et al. (1994), and are used to illustrate MANOVA in the SAS Manual. (Suggested by Michael Friendly.)

A data frame with 26 observations on the following 6 variables.

Site a factor with levels AshleyRails Caldicot IsleThorns Llanedryn
Al Aluminum
Fe Iron
Mg Magnesium
Ca Calcium
Na Sodium

powerTransform uses the maximum likelihood-like approach of Box and Cox (1964) to select a transformation of a univariate or multivariate response for normality, linearity and/or constant variance. Available families of transformations are the default Box-Cox power family and two additional families that are modifications of the Box-Cox family that allow for (a few) negative responses. The summary method automatically computes two or three likelihood ratio type tests concerning the transformation powers.
Usage

```r
powerTransform(object, ...)  
## Default S3 method:
powerTransform(object, family="bcPower", ...)

## S3 method for class 'lm'
powerTransform(object, family="bcPower", ...)

## S3 method for class 'formula'
powerTransform(object, family="bcPower", ...)
```

Arguments

- `object` This can either be an object of class `lm` or `lmerMod`, a formula, or a matrix or vector; see below.
- `family` The quoted name of a family of transformations. The available options are "bcPower" for the default for the Box-Cox power family; "bcnpower" for a two-parameter modification of the Box-Cox family that allows negative responses (Hawkins and Weisberg (2017)), and the "yjPower" family (Yeo and Johnson(2000)), another modification of the Box-Cox family that allows a few negative values. All three families are documented at `bcpower`.
- `data` A data frame or environment, as in `lm`.
- `subset` Case indices to be used, as in `lm`.
- `weights` Weights as in `lm`.
- `na.action` Missing value action, as in `lm`.
- `...` Additional arguments that used in the interative algorithm; defaults are generally adequate.

Details

This function implements the Box and Cox (1964) method of selecting a power transformation of a variable toward normality, and its generalization by Velilla (1993) to a multivariate response. Cook and Weisberg (1999) and Weisberg (2014) suggest the usefulness of transforming a set of predictors z_1, z_2, z_3 for multivariate normality. It also includes two additional families that allow for negative values.

If the ‘object’ argument is of class ‘lm’ or ‘lmerMod’, the Box-Cox procedure is applied to the conditional distribution of the response given the predictors. For ‘lm’ objects, the response may be multivariate, and each column will have its own transformation. With ‘lmerMod’ the response must be univariate.

The ‘object’ argument may also be a formula. For example, $z \sim x_1 + x_2 + x_3$ will estimate a transformation for the response z from a family after fitting a linear model with the given
Three families of power transformations are available. The default Box-Cox power family (family="bcPower") of power transformations effectively replaces a vector by that vector raised to a power, generally in the range from -3 to 3. For powers close to zero, the log-transformation is suggested. In practical situations, after estimating a power using the \code{powerTransform} function, a variable would be replaced by a simple power transformation of it, for example, if $\lambda \approx 0.5$, then the corresponding variable would be replaced by its square root; if λ is close enough to zero, the the variable would be replaced by its natural logarithm. The Box-Cox family requires the responses to be strictly positive.

The family="bcnPower", or Box-Cox with negatives, family proposed by Hawkins and Weisberg (2017) allows for (a few) non-positive values, while allowing for the transformed data to be interpreted similarly to the interpretation of Box-Cox transformed values. This family is the Box-Cox transformation of $z = 0.5 \times (y + (y^2 + \gamma^2)^{1/2})$ that depends on a location parameter γ. The quantity z is positive for all values of y. If $\gamma = 0$ and y is strictly positive, then the Box-Cox and the bcnPower transformations are identical. When fitting the Box-Cox with negatives family, lambda is restricted to the range [-3, 3], and gamma is restricted to the range from .01 to the largest positive value of the variable, since values outside these ranges are unreasonable in practice.

The final family family="yjPower" uses the Yeo-Johnson transformation, which is the Box-Cox transformation of $U + 1$ for nonnegative values, and of $|U| + 1$ with parameter $2 - \lambda$ for U negative and thus it provides a family for fitting when (a few) observations are negative. Because of the unusual constraints on the powers for positive and negative data, this transformation is not used very often, as results are difficult to interpret. In practical problems, a variable would be replaced by its Yeo-Johnson transformation computed using the \code{yjPower} function.

The function \code{testTransform} is used to obtain likelihood ratio tests for any specified value for the transformation parameter(s).

Computations maximize the likelihood-like functions described by Box and Cox (1964) and by Velilla (2000). For univariate responses, the computations are very stable and problems are unlikely, although for ‘lmer’ models computations may be very slow because the model is refit many times. For multivariate responses with the bcnPower family, the computing algorithm may fail. In this case we recommend adding the argument itmax = 1 to the call to \code{powerTransform}. This will return the starting value estimates of the transformation parameters, fitting a d-dimensional response as if all the d responses were independent.

\section*{Value}

An object of class \code{powerTransform} or class \code{bcnPowerTransform} if family="bcnPower" that inherits from \code{powerTransform} is returned, including the components listed below.

A summary method presents estimated values for the transformation power ‘lambda’ and for the ‘bcnPower’ family the location parameter ‘gamma’ as well. Standard errors and Wald 95% confidence intervals based on the standard errors are computed from the inverse of the sample Hessian matrix evaluated at the estimates. The interval estimates for the ‘gamma’ parameters will generally be very wide, reflecting little information available about the location parameter. Likelihood ratio type tests are also provided. For the ‘bcnPower’ family these are based on the profile loglikelihood for ‘lambda’ alone; that is, we treat ‘gamma’ as a nuisance parameter and average over it.
The components of the returned object includes

- **lambda**: Estimated transformation parameter
- **roundlam**: Convenient rounded values for the estimates. These rounded values will usually be the desired transformations.
- **gamma**: Estimated location parameters for bcnPower, NULL otherwise
- **invHess**: Estimated covariance matrix of the estimated parameters
- **llik**: Value of the log-likelihood at the estimates

The summary method for `powerTransform` returns an array with columns labeled "Est Power" for the value of lambda that maximizes the likelihood; "Rounded Pwr" for roundlam, and columns "Wald Lwr Bnd" and "Wald Ur Bnd" for a 95 percent Wald normal theory confidence interval for lambda computed as the estimate plus or minus 1.96 times the standard error.

Author(s)

Sanford Weisberg, <sandy@umn.edu>

References

See Also

testTransform, bcPower, bcnPower, transform, optim, boxCox.

Examples

```r
# Box Cox Method, univariate
summary(p1 <- powerTransform(cycles ~ len + amp + load, Wool))
# fit linear model with transformed response:
coef(p1, round=TRUE)
summary(m1 <- lm(bcPower(cycles, p1$roundlam) ~ len + amp + load, Wool))

# Multivariate Box Cox uses Highway1 data
summary(powerTransform(cbind(len, adt, trks, sigh) ~ 1, Highway1))
```
Prestige of Canadian Occupations

Description

The Prestige data frame has 102 rows and 6 columns. The observations are occupations.

Usage

Prestige

Format

This data frame contains the following columns:

education Average education of occupational incumbents, years, in 1971.
income Average income of incumbents, dollars, in 1971.

women Percentage of incumbents who are women.

prestige Pineo-Porter prestige score for occupation, from a social survey conducted in the mid-1960s.

census Canadian Census occupational code.

type Type of occupation. A factor with levels (note: out of order): bc, Blue Collar; prof, Professional, Managerial, and Technical; wc, White Collar.

Source

Personal communication from B. Blishen, W. Carroll, and C. Moore, Departments of Sociology, York University and University of Victoria.

References

qqPlot

Quantile-Comparison Plots

Description

Plots empirical quantiles of a variable, or of studentized residuals from a linear model, against theoretical quantiles of a comparison distribution.

Usage

qqPlot(x, ...)

qqp(...)

```r
## Default S3 method:
qqPlot(x, distribution="norm", ..., 
ylab=deparse(substitute(x)), xlab=paste(distribution, "quantiles"),
main=NULL, las=par("las"),
envelope=.95,
col=palette()[1], col.lines=palette()[2], lwd=2, pch=1, cex=par("cex"),
line=c("quartiles", "robust", "none"),
labels = if(is.null(names(x))) names(x) else seq(along=x),
id.method = "y",
id.n =if(id.method[1]=="identify") Inf else 0,
id.cex=1, id.col=palette()[1], id.location="lr", grid=TRUE)
```
S3 method for class 'lm'

qqPlot(x, xlab=paste(distribution, "Quantiles"),
ylab=paste("Studentized Residuals", deparse(substitute(x)), ""),
sep="", main=NULL,
distribution=c("t", "norm"), line=c("robust", "quartiles", "none"),
las=par("las"), simulate=TRUE, envelope=.95,
reps=100, col=palette()[1], col.lines=palette()[2], lwd=2,
pch=1, cex=par("cex"),
labels, id.method = "y",
id.n = if(id.method[1]=="identify") Inf else 0,
id.cex=1, id.col=palette()[1], id.location="lr", grid=TRUE, ...)

Arguments

- **x**: vector of numeric values or lm object.
- **distribution**: root name of comparison distribution – e.g., "norm" for the normal distribution; t for the t-distribution.
- **ylab**: label for vertical (empirical quantiles) axis.
- **xlab**: label for horizontal (comparison quantiles) axis.
- **main**: label for plot.
- **envelope**: confidence level for point-wise confidence envelope, or FALSE for no envelope.
- **las**: if 0, ticks labels are drawn parallel to the axis; set to 1 for horizontal labels (see par).
- **col**: color for points; the default is the first entry in the current color palette (see palette and par).
- **col.lines**: color for lines; the default is the second entry in the current color palette.
- **pch**: plotting character for points; default is 1 (a circle, see par).
- **cex**: factor for expanding the size of plotted symbols; the default is 1.
- **labels**: vector of text strings to be used to identify points, defaults to names(x) or observation numbers if names(x) is NULL.
- **id.method**: point identification method. The default id.method="y" will identify the id.n points with the largest value of abs(y-mean(y)). See showLabels for other options.
- **id.n**: number of points labeled. If id.n=0, the default, no point identification.
- **id.cex**: set size of the text for point labels; the default is cex (which is typically 1).
- **id.col**: color for the point labels.
- **id.location**: The default "lr" identifies to the left or right of the point; the alternative "ab" identifies above or below the point.
- **lwd**: line width; default is 2 (see par).
- **line**: "quartiles" to pass a line through the quartile-pairs, or "robust" for a robust-regression line; the latter uses the rlm function in the MASS package. Specifying line = "none" suppresses the line.
simulate if TRUE calculate confidence envelope by parametric bootstrap; for lm object only. The method is due to Atkinson (1985).

reps integer; number of bootstrap replications for confidence envelope.

... arguments such as df to be passed to the appropriate quantile function.

grid If TRUE, the default, a light-gray background grid is put on the graph

Details

Draws theoretical quantile-comparison plots for variables and for studentized residuals from a linear model. A comparison line is drawn on the plot either through the quartiles of the two distributions, or by robust regression.

Any distribution for which quantile and density functions exist in R (with prefixes q and d, respectively) may be used. When plotting a vector, the confidence envelope is based on the SEs of the order statistics of an independent random sample from the comparison distribution (see Fox, 2008). Studentized residuals from linear models are plotted against the appropriate t-distribution with a point-wise confidence envelope computed by default by a parametric bootstrap, as described by Atkinson (1985). The function qqp is an abbreviation for qqPlot.

Value

These functions return the labels of identified points.

Author(s)

John Fox <jfox@mcmaster.ca>

References

See Also

qqplot, qqnorm, qqline, showLabels

Examples

x<-rchisq(100, df=2)
qqPlot(x)
qqPlot(x, dist="chisq", df=2)

qqPlot(lm(prestige ~ income + education + type, data=Duncan),
 envelope=.99)
Quartet

Four Regression Datasets

Description

The Quartet data frame has 11 rows and 5 columns. These are contrived data.

Usage

Quartet

Format

This data frame contains the following columns:

- **x** X-values for datasets 1–3.
- **y1** Y-values for dataset 1.
- **y2** Y-values for dataset 2.
- **y3** Y-values for dataset 3.
- **x4** X-values for dataset 4.
- **y4** Y-values for dataset 4.

Source

recode

Recode a Variable

Description

Recodes a numeric vector, character vector, or factor according to simple recode specifications. recode is an alias for recode that avoids name clashes with packages, such as Hmisc, that have a recode function.

Usage

recode(var, recodes, as.factor.result, as.numeric.result=TRUE, levels)

Recode(...)
Arguments

- **var**: numeric vector, character vector, or factor.
- **recodes**: character string of recode specifications: see below.
- **as.factor.result**: return a factor; default is TRUE if var is a factor, FALSE otherwise.
- **as.numeric.result**: if TRUE (the default), and as.factor.result is FALSE, then the result will be coerced to numeric if all values in the result are numerals—i.e., represent numbers.
- **levels**: an optional argument specifying the order of the levels in the returned factor; the default is to use the sort order of the level names.
- **...**: arguments to be passed to recode.

Details

Recode specifications appear in a character string, separated by semicolons (see the examples below), of the form input=output. If an input value satisfies more than one specification, then the first (from left to right) applies. If no specification is satisfied, then the input value is carried over to the result. NA is allowed on input and output. Several recode specifications are supported:

- **single value**: For example, 0=NA.
- **vector of values**: For example, c(7, 8, 9)=’high’.
- **range of values**: For example, 7:9=’C’. The special values lo and hi may appear in a range. For example, 10:10=1. *Note*: : is not the R sequence operator. In addition you may not use : with the collect operator, so for example c(1, 3, 5:7) will cause an error.

else everything that does not fit a previous specification. For example, else=NA. Note that else matches all otherwise unspecified values on input, including NA.

If all of the output values are numeric, and if as.factor.result is FALSE, then a numeric result is returned; if var is a factor, then by default so is the result.

Value

a recoded vector of the same length as var.

Author(s)

John Fox <jfox@mcmaster.ca>

References

See Also

cut, factor
Examples

```r
x <- rep(1:3, 3)

x
## [1] 1 2 3 1 2 3 1 2 3
recode(x, "c(1,2)='A'; else='B'")
## [1] "A" "A" "B" "A" "A" "B" "A" "A" "B"
Recode(x, "1:2='A'; 3='B'")
## [1] "A" "A" "B" "A" "A" "B" "A" "A" "B"
```

Description

Plots a regression line on a scatterplot; the line is plotted between the minimum and maximum x-values.

Usage

```r
regLine(mod, col=palette() [2], lwd=2, lty=1, ...)
```

Arguments

- `mod` a model, such as produced by `lm`, that responds to the `coef` function by returning a 2-element vector, whose elements are interpreted respectively as the intercept and slope of a regression line.
- `col` color for points and lines; the default is the second entry in the current color palette (see `palette` and `par`).
- `lwd` line width; default is 2 (see `par`).
- `lty` line type; default is 1, a solid line (see `par`).
- `...` optional arguments to be passed to the `lines` plotting function.

Details

In contrast to `abline`, this function plots only over the range of the observed x-values. The x-values are extracted from `mod` as the second column of the model matrix.

Value

`NULL`. This function is used for its side effect: adding a line to the plot.

Author(s)

John Fox <jfox@mcmaster.ca>
residualPlots

See Also

abline, lines

Examples

plot(repwt ~ weight, pch=c(1,2)[sex], data=Davis)
regLine(lm(repwt~weight, subset=sex=="M", data=Davis))
regLine(lm(repwt~weight, subset=sex=="F", data=Davis), lty=2)

residualPlots Residual Plots and Curvature Tests for Linear Model Fits

Description

Plots the residuals versus each term in a mean function and versus fitted values. Also computes a
curvature test for each of the plots by adding a quadratic term and testing the quadratic to be zero.
This is Tukey’s test for nonadditivity when plotting against fitted values.

Usage

This is a generic function with only one required argument:

residualPlots (model, ...)

Default S3 method:
residualPlots(model, terms = ~., layout = NULL, ask,
 main = ",", fitted = TRUE, AsIs=TRUE, plot = TRUE,
 tests = TRUE, groups, ...)

S3 method for class 'lm'
residualPlots(model, ...)

S3 method for class 'glm'
residualPlots(model, ...)

residualPlots calls residualPlot, so these arguments can be
used with either function

residualPlot(model, ...)

Default S3 method:
residualPlot(model, variable = "fitted", type = "pearson",
 groups,
 plot = TRUE,
 linear = TRUE,
 quadratic = if(missing(groups)) TRUE else FALSE,
 smoother=NULL, smoother.args=list(),
 ...)
col.smooth=palette()[3],
labels,
id.method = "r",
id.n = if(id.method[1]=="identify") Inf else 0,
id.cex=1, id.col=palette()[1], id.location="lr",
col = palette()[1], col.quad = palette()[2],
pch=1,
xlab, ylab, lwd = 1, lty = 1,
grid=TRUE, key=!missing(groups), ...)

S3 method for class 'lm'
residualPlot(model, ...)

S3 method for class 'glm'
residualPlot(model, variable = "fitted", type = "pearson",
plot = TRUE, quadratic = FALSE,
smoother = loessLine, smoother.args=list(k=3), ...)

Arguments

model
A regression object.

terms
A one-sided formula that specifies a subset of the predictors. One residual plot is drawn for each specified. The default ~ . is to plot against all predictors. For example, the specification terms = ~ . ~ X3 would plot against all predictors except for X3. To get a plot against fitted values only, use the arguments terms = ~ 1, Interactions are skipped. For polynomial terms, the plot is against the first-order variable (which may be centered and scaled depending on how the poly function is used). Plots against factors are boxplots. Plots against other matrix terms, like splines, use the result of predict(model), type="terms")[, variable]) as the horizontal axis; if the predict method doesn’t permit this type, then matrix terms are skipped.

A grouping variable can also be specified in the terms, so, for example terms= ~ . |type would use the factor type to set a different color and symbol for each level of type. Any fits in the plots will also be done separately for each level of group.

layout
If set to a value like c(1, 1) or c(4, 3), the layout of the graph will have this many rows and columns. If not set, the program will select an appropriate layout. If the number of graphs exceed nine, you must select the layout yourself, or you will get a maximum of nine per page. If layout=NA, the function does not set the layout and the user can use the par function to control the layout, for example to have plots from two models in the same graphics window.

ask
If TRUE, ask the user before drawing the next plot; if FALSE, don’t ask.

main
Main title for the graphs. The default is main="" for no title.

fitted
If TRUE, the default, include the plot against fitted values.

AsIs
If FALSE, terms that use the “as-is” function I are skipped; if TRUE, the default, they are included.

plot
If TRUE, draw the plot(s).
residualPlots

tests
If TRUE, display the curvature tests. With glm’s, the argument start is ignored in computing the curvature tests.

... Additional arguments passed to residualPlot and then to plot.

variable Quoted variable name for the horizontal axis, or “fitted” to plot versus fitted values.

type Type of residuals to be used. Pearson residuals are appropriate for lm objects since these are equivalent to ordinary residuals with ols and correctly weighted residuals with wls. Any quoted string that is an appropriate value of the type argument to residuals.lm or "rstudent" or "rstandard" for Studentized or standardized residuals.

groups A list of group indicators. Points in different groups will be plotted with different colors and symbols. If missing, no grouping. In residualPlots, the grouping variable can also be set in the terms argument, as described above. The default is no grouping.

linear If TRUE, adds a horizontal line at zero if no groups. With groups, display the within level of groups ols regression of the residuals as response and the horizontal axis as the regressor.

quadratic if TRUE, fits the quadratic regression of the vertical axis on the horizontal axis and displays a lack of fit test. Default is TRUE for lm and FALSE for glm or if groups not missing.

smoother the name of the smoother to use, selected from the choices described at ScatterplotSmoothers. For lm objects the default is NULL. For glm object the default is loessLine.

smoother.args arguments passed to the smoother. See ScatterplotSmoothers. For generalized linear models the number of elements in the spline basis is set to k=3; this is done to allow fitting for predictors with just a few support points. If you have many support points you may wish to set k to a higher number, or k=-1 for the default used by gam.

col.smooth color for the smoother if groups missing, and ignored if groups is set.

id.method,labels,id.n,id.cex,id.col,id.location
Arguments for the labelling of points. The default is id.n=0 for labeling no points. See showLabels for details of these arguments.

col default color for points. If groups is set, col can be a list at least as long as the number of levels for groups giving the colors for each groups.

col.quad default color for quadratic fit if groups is missing. Ignored if groups are used.

pch plotting character. The default is pch=1. If groups are used, pch can be set to a vector at least as long as the number of groups.

xlab X-axis label. If not specified, a useful label is constructed by the function.

ylab Y-axis label. If not specified, a useful label is constructed by the function.

lwd line width for lines.

lty line type for quadratic.

grid If TRUE, the default, a light-gray background grid is put on the graph

key Should a key be added to the plot? Default is !is.null(groups).
Details

residualPlots draws one or more residuals plots depending on the value of the terms and fitted arguments. If terms = ~ , the default, then a plot is produced of residuals versus each first-order term in the formula used to create the model. Interaction terms, spline terms, and polynomial terms of more than one predictor are skipped. In addition terms that use the "as-is" function, e.g., I(X^2), will also be skipped unless you set the argument AsIs=TRUE. A plot of residuals versus fitted values is also included unless fitted=FALSE.

In addition to plots, a table of curvature tests is displayed. For plots against a term in the model formula, say X, the test displayed is the t-test for for I(X^2) in the fit of update, model, ~ + I(X^2)). Econometricians call this a specification test. For factors, the displayed plot is a boxplot, no curvature test is computed, and grouping is ignored. For fitted values, the test is Tukey's one-degree-of-freedom test for nonadditivity. You can suppress the tests with the argument tests=FALSE. If grouping is used curvature tests are not displayed.

residualPlot, which is called by residualPlots, should be viewed as an internal function, and is included here to display its arguments, which can be used with residualPlots as well. The residualPlot function returns the curvature test as an invisible result.

residCurvTest computes the curvature test only. For any factors a boxplot will be drawn. For any polynomials, plots are against the linear term. Other non-standard predictors like B-splines are skipped.

Value

For lm objects, returns a data frame with one row for each plot drawn, one column for the curvature test statistic, and a second column for the corresponding p-value. This function is used primarily for its side effect of drawing residual plots.

Author(s)

Sanford Weisberg, <sandy@umn.edu>

References

See Also

See Also lm, identify, showLabels

Examples

m1 <- lm(prestige ~ income, data=Prestige)
residualPlots(m1)
residualPlots(m1, terms= ~ 1 | type) # plot vs. yhat grouping by type
Robey

Fertility and Contraception

Description

The Robey data frame has 50 rows and 3 columns. The observations are developing nations around 1990.

Usage

Robey

Format

This data frame contains the following columns:

- **region** A factor with levels: Africa; Asia, Asia and Pacific; Latin.Amer, Latin America and Caribbean; Near.East, Near East and North Africa.
- **tfr** Total fertility rate (children per woman).
- **contraceptors** Percent of contraceptors among married women of childbearing age.

Source

References

Sahlins

Agricultural Production in Mazulu Village

Description

The Sahlins data frame has 20 rows and 2 columns. The observations are households in a Central African village.

Usage

Sahlins
Salaries

Format
This data frame contains the following columns:

- **consumers**: Consumers/Gardener, ratio of consumers to productive individuals.
- **acres**: Acres/Gardener, amount of land cultivated per gardener.

Source
Sahlins, M. (1972) *Stone Age Economics*. Aldine [Table 3.1].

References

Salaries for Professors

<table>
<thead>
<tr>
<th>Salaries</th>
<th>Salaries for Professors</th>
</tr>
</thead>
</table>

Description
The 2008-09 nine-month academic salary for Assistant Professors, Associate Professors and Professors in a college in the U.S. The data were collected as part of the on-going effort of the college’s administration to monitor salary differences between male and female faculty members.

Usage
Salaries

Format
A data frame with 397 observations on the following 6 variables.

- **rank**: a factor with levels AssocProf AsstProf Prof
- **discipline**: a factor with levels A (“theoretical” departments) or B (“applied” departments).
- **yrs.since.phd**: years since PhD.
- **yrs.service**: years of service.
- **sex**: a factor with levels Female Male
- **salary**: nine-month salary, in dollars.

References
The `scatter3d` function uses the `rgl` package to draw 3D scatterplots with various regression surfaces. The function `identify3d` allows you to label points interactively with the mouse: Press the right mouse button (on a two-button mouse) or the centre button (on a three-button mouse), drag a rectangle around the points to be identified, and release the button. Repeat this procedure for each point or set of “nearby” points to be identified. To exit from point-identification mode, click the right (or centre) button in an empty region of the plot.

Usage

```r
class_list $ scatter3d(formula, data, subset, radius, xlab, ylab, zlab, labels, ...)
## Default S3 method:
class_list $ scatter3d(x, y, z,
  xlab=deparse(substitute(x)), ylab=deparse(substitute(y)),
  zlab=deparse(substitute(z)), axis.scales=TRUE, axis.ticks=FALSE,
  revolutions=0, bg.col=c("white", "black"),
  axis.col=if (bg.col == "white") c("darkmagenta", "black", "darkcyan")
    else c("darkmagenta", "white", "darkcyan"),
  surface.col=c("blue", "green", "orange", "magenta", "cyan", "red",
    "yellow", "gray"), surface.alpha=0.5,
  neg.res.col=red, pos.res.col="green",
  square.col=if (bg.col == "white") "black" else "gray",
  point.col=if (bg.col == "white") "yellow",
  text.col=axis.col, grid.col=if (bg.col == "white") "black" else "gray",
  fogtype=c("exp2", "linear", "exp", "none"),
  residuals=(length(fit) == 1), surface=TRUE, fill=TRUE, grid=TRUE,
  grid.lines=26, df.smooth=NULL, df.additive=NULL,
  sphere.size=1, radius=1, threshold=0.01, speed=1, fov=60,
  fit="linear", groups=NULL, parallel=TRUE,
  ellipsoid=FALSE, level=0.5, ellipsoid.alpha=0.1,
  id.method=c("mahal", "xz", "y", "xyz", "identify", "none"),
  id.n=if (id.method == "identify") Inf else 0,
  labels=as.character(seq(along=x)), offset = ((100/length(x))^(1/3)) * 0.02,
  model.summary=FALSE, ...)
```

`identify3d(x, y, z, axis.scales=TRUE, groups = NULL, labels = 1:length(x),
 col = c("blue", "green", "orange", "magenta", "cyan", "red", "yellow", "gray"),
 offset = ((100/length(x))^(1/3)) * 0.02)`
Arguments

- **formula**
 - "model" formula, of the form \(y \sim x + z \) or (to plot by groups) \(y \sim x + z \mid g \), where \(g \) evaluates to a factor or other variable dividing the data into groups.

- **data**
 - data frame within which to evaluate the formula.

- **subset**
 - expression defining a subset of observations.

- **x**
 - variable for horizontal axis.

- **y**
 - variable for vertical axis (response).

- **z**
 - variable for out-of-screen axis.

- **xlab**, **ylab**, **zlab**
 - axis labels.

- **axis.scales**
 - if TRUE, label the values of the ends of the axes. Note: For Identify3d to work properly, the value of this argument must be the same as in scatter3d.

- **axis.ticks**
 - if TRUE, print interior axis-"tick" labels; the default is FALSE. (The code for this option was provided by David Winsemius.)

- **revolutions**
 - number of full revolutions of the display.

- **bg.col**
 - background colour; one of "white", "black".

- **axis.col**
 - colours for axes; if **axis.scales** is FALSE, then the second colour is used for all three axes.

- **surface.col**
 - vector of colours for regression planes, used in the order specified by **fit**; for multi-group plots, the colours are used for the regression surfaces and points in the several groups.

- **surface.alpha**
 - transparency of regression surfaces, from 0.0 (fully transparent) to 1.0 (opaque); default is 0.5.

- **neg.res.col**, **pos.res.col**
 - colours for lines representing negative and positive residuals.

- **square.col**
 - colour to use to plot squared residuals.

- **point.col**
 - colour of points.

- **text.col**
 - colour of axis labels.

- **grid.col**
 - colour of grid lines on the regression surface(s).

- **fogtype**
 - type of fog effect; one of "exp2", "linear", "exp", "none".

- **residuals**
 - plot residuals if TRUE; if **residuals**="squares", then the squared residuals are shown as squares (using code adapted from Richard Heiberger). Residuals are available only when there is one surface plotted.

- **surface**
 - plot surface(s) (TRUE or FALSE).

- **fill**
 - fill the plotted surface(s) with colour (TRUE or FALSE).

- **grid**
 - plot grid lines on the regression surface(s) (TRUE or FALSE).

- **grid.lines**
 - number of lines (default, 26) forming the grid, in each of the x and z directions.

- **df.smooth**
 - degrees of freedom for the two-dimensional smooth regression surface; if NULL (the default), the **gam** function will select the degrees of freedom for a smoothing spline by generalized cross-validation; if a positive number, a fixed regression spline will be fit with the specified degrees of freedom.
df.additive

degrees of freedom for each explanatory variable in an additive regression; if
NULL (the default), the gam function will select degrees of freedom for the smoothening
splines by generalized cross-validation; if a positive number or a vector of
two positive numbers, fixed regression splines will be fit with the specified de-
gresses of freedom for each term.

sphere.size

general size of spheres representing points; the actual size is dependent on the
number of observations.

radius

relative radii of the spheres representing the points. This is normally a vector
of the same length as the variables giving the coordinates of the points, and for
the formula method, that must be the case or the argument may be omitted, in
which case spheres are the same size; for the default method, the default for
the argument, 1, produces spheres all of the same size. The radii are scaled so
that their median is 1.

threshold

if the actual size of the spheres is less than the threshold, points are plotted
instead.

speed

relative speed of revolution of the plot.

fov

field of view (in degrees); controls degree of perspective.

fit

one or more of "linear", "quadratic", "smooth", "additive"; to display
fitted surface(s); partial matching is supported – e.g., c("lin", "quad").

groups

if NULL (the default), no groups are defined; if a factor, a different surface or
set of surfaces is plotted for each level of the factor; in this event, the colours
in surface.col are used successively for the points, surfaces, and residuals
corresponding to each level of the factor.

parallel

when plotting surfaces by groups, should the surfaces be constrained to be par-
allel? A logical value, with default TRUE.

ellipsoid

plot concentration ellipsoid(s) (TRUE or FALSE).

level

expected proportion of bivariate-normal observations included in the concentra-
tion ellipsoid(s); default is 0.5.

ellipsoid.alpha

transparency of ellipsoids, from 0.0 (fully transparent) to 1.0 (opaque); default
is 0.1.

id.method

if "mahal" (the default), relatively extreme points are identified automatically
according to their Mahalanobis distances from the centroid (point of means); if
"identify", points are identified interactively by right-clicking and dragging
a box around them; right-click in an empty area to exit from interactive-point-
identification mode; if "xz", identify extreme points in the predictor plane; if
"y", identify unusual values of the response; if "xyz" identify unusual values
of an variable; if "none", no point identification. See showLabels for more
information.

id.n

Number of relatively extreme points to identify automatically (default, 0 unless
id.method="identify").

model.summary

print summary or summaries of the model(s) fit (TRUE or FALSE). scatter3d
rescales the three variables internally to fit in the unit cube; this rescaling will
affect regression coefficients.
labels text labels for the points, one for each point; in the default method defaults to the observation indices, in the formula method to the row names of the data.

col colours for the point labels, given by group. There must be at least as many colours as groups; if there are no groups, the first colour is used. Normally, the colours would correspond to the surface.col argument to `scatter3d`.

offset vertical displacement for point labels (to avoid overplotting the points).

... arguments to be passed down.

Value

`scatter3d` does not return a useful value; it is used for its side-effect of creating a 3D scatterplot. ` Identify3d` returns the labels of the identified points.

Note

You have to install the `rgl` package to produce 3D plots.

Author(s)

John Fox <jfox@mcmaster.ca>

References

See Also

`rgl-package`, `gam`

Examples

```r
if(interactive() && require(rgl) && require(mgcv)){
  scatter3d(prexige ~ income + education, data=Duncan)
  Sys.sleep(5) # wait 5 seconds
  scatter3d(prexige ~ income + education | type, data=Duncan)
  Sys.sleep(5)
  scatter3d(prexige ~ income + education | type, surface=FALSE,
            ellipsoid=TRUE, revolutions=3, data=Duncan)
  scatter3d(prexige ~ income + education, fit=c("linear", "additive"),
            data=Prestige)
  Sys.sleep(5)
  scatter3d(prexige ~ income + education | type,
            radius=(1 + women)^{(1/3)}, data=Prestige)
}
```

Not run:

drag right mouse button to identify points, click right button in open area to exit
scatter3d(prexige ~ income + education, data=Duncan, id.method="identify")
scatter3d(prexige ~ income + education | type, data=Duncan, id.method="identify")

End(Not run)
scatterplot

Scatterplots with Boxplots

Description

Makes enhanced scatterplots, with boxplots in the margins, a nonparametric regression smooth, smoothed conditional spread, outlier identification, and a regression line; sp is an abbreviation for scatterplot.

Usage

scatterplot(x, ...)

S3 method for class 'formula'
scatterplot(formula, data, subset, xlab, ylab, legend.title, legend.coords, labels, ...)

Default S3 method:
scatterplot(x, y,
 smoother=loessLine, smoother.args=list(), smooth, span,
 spread=!by.groups, reg.line=lm,
 boxplots=if (by.groups) "" else "xy",
 xlab=deparse(substitute(x)), ylab=deparse(substitute(y)), las=par("las"),
 lwd=1, lty=1,
 labels, id.method = "mahal",
 id.n = if(id.method[1]=="identify") length(x) else 0,
 id.cex = 1, id.col = palette()[1], id.location="lr",
 log="", jitter=list(), xlim=NULL, ylim=NULL,
 cex=par("cex"), cex.axis=par("cex.axis"), cex.lab=par("cex.lab"),
 cex.main=par("cex.main"), cex.sub=par("cex.sub"),
 groups, by.groups=!missing(groups),
 legend.title=deparse(substitute(groups)), legend.coords, legend.columns,
 ellipse=FALSE, levels=c(.5, .95), robust=TRUE,
 col=if (n.groups == 1) palette()[3:1] else rep(palette(), length=n.groups),
 pch=1:n.groups,
 legend.plot=!missing(groups), reset.par=TRUE, grid=TRUE, ...)

sp(x, ...)

Arguments

x
vector of horizontal coordinates (or first argument of generic function).
y
vector of vertical coordinates.

formula
a "model" formula, of the form y ~ x or (to plot by groups) y ~ x | z, where z evaluates to a factor or other variable dividing the data into groups. If x is a factor, then parallel boxplots are produced using the Boxplot function.
scatterplot

Data frame within which to evaluate the formula.

expression defining a subset of observations.

a function to draw a nonparametric-regression smooth; the default is `loessLine`, which does loess smoothing. The function `gamLine` fits a generalized additive model and allows including a link and error function. See ScatterplotSmoothers. Setting this argument to something other than a function, e.g., `FALSE` suppresses the smoother.

a list of named values to be passed to the smoother function; the specified elements of the list depend upon the smoother (see ScatterplotSmoothers).

these arguments are included for backwards compatibility: if `smooth=TRUE` then smoother is set to `loessLine`, and if `span` is specified, it is added to smoother.args.

if `TRUE`, estimate the (square root) of the variance function. For `loessLine` and for `gamLine`, this is done by separately smoothing the squares of the postive and negative residuals from the mean fit, and then adding the square root of the fitted values to the mean fit. For `quantregLine`, fit the .25 and .75 quantiles with a quantile regression additive model. The default is `TRUE` if `byNgroups=FALSE` and `FALSE` is `byNgroups=TRUE`.

function to draw a regression line on the plot or `FALSE` not to plot a regression line.

if "x" a boxplot for x is drawn below the plot; if "y" a boxplot for y is drawn to the left of the plot; if "xy" both boxplots are drawn; set to "" or `FALSE` to suppress both boxplots.

label for horizontal axis.

label for vertical axis.

if 0, ticks labels are drawn parallel to the axis; set to 1 for horizontal labels (see `par`).

width of linear-regression lines (default 1).

type of linear-regression lines (default 1, solid line).

Arguments for the labelling of points. The default is `id.n=0` for labeling no points. See `showLabels` for details of these arguments. If the plot uses different colors for groups, then the `id.col` argument is ignored and label colors are determined by the `col` argument.

a vector of point labels; if absent, the function tries to determine reasonable labels, and, failing that, will use observation numbers.

same as the `log` argument to `plot`, to produce log axes.

a list with elements `x` or `y` or both, specifying jitter factors for the horizontal and vertical coordinates of the points in the scatterplot. The `jitter` function is used to randomly perturb the points; specifying a factor of 1 produces the default jitter. Fitted lines are unaffected by the jitter.

the x limits (min, max) of the plot; if `NULL`, determined from the data.

the y limits (min, max) of the plot; if `NULL`, determined from the data.
scatterplot

groups

by.groups

legend.title

legend.coords

legend.cOLUMNS

everse

levels

robust

col

pch

cex, cex.axis, cex.lab, cex.main, cex.sub

legend.plot

reset.par

... grid

Value

If points are identified, their labels are returned; otherwise NULL is returned invisibly.

Author(s)

John Fox <jfox@mcmaster.ca>

See Also

boxplot, jitter, legend, scatterplotMatrix, dataEllipse, Boxplot, cov.trob, showLabels, ScatterplotSmoothers.
Examples

scatterplot(prestige ~ income, data=Prestige, ellipse=TRUE)

if (interactive()){
 scatterplot(prestige ~ income, data=Prestige, smoother=quantregLine)
}

scatterplot(prestige ~ income|type, data=Prestige, smoother=loessLine,
 smoother.args=list(span=1))

scatterplot(prestige ~ income|type, data=Prestige, legend.coords="topleft")

scatterplot(vocabulary ~ education, jitter=list(x=1, y=1),
 data=Vocab, id.n=0, smoother=FALSE)

scatterplot(infant.mortality ~ gdp, log="xy", data=UN, id.n=5)

scatterplot(income ~ type, data=Prestige)

Not run:
scatterplot(infant.mortality ~ gdp, id.method="identify", data=UN)

scatterplot(infant.mortality ~ gdp, id.method="identify", smoother=loessLine, data=UN)

End(Not run)

scatterplotMatrix Scatterplot Matrices

Description

Enhanced scatterplot matrices with univariate displays down the diagonal; spm is an abbreviation for scatterplotMatrix. This function just sets up a call to pairs with custom panel functions.

Usage

scatterplotMatrix(x, ...)

S3 method for class 'formula'
scatterplotMatrix(formula, data=NULL, subset, labels, ...)

Default S3 method:
scatterplotMatrix(x, var.labels=colnames(x),
 diagonal=c("density", "boxplot", "histogram", "oned", "qqplot", "none"),
 adjust=1, nclass,
 plot.points=TRUE, smoother=loessLine, smoother.args=list(), smooth, span,
 spread = !by.groups, reg.line=lm,
scatterplotMatrix

transform=FALSE, family=c("bcPower", "yjPower"),
ellipse=FALSE, levels=c(.5, .95), robust=TRUE,
groups=NULL, by.groups=FALSE,
use=c("complete.obs", "pairwise.complete.obs"),
labels, id.method="mahal", id.n=0, id.cex=1, id.col=palette()[1], id.location="lr",
col=if (n.groups == 1) palette()[3:1] else rep(palette(), length=n.groups),
pch=1:n.groups, lwd=1, lty=1,
cex=par("cex"), cex.axis=par("cex.axis"), cex.labels=NULL,
cex.main=par("cex.main"),
legend.plot=length(levels(groups)) > 1, legend.pos=0, rowAttop=TRUE, ...

spm(x, ...)

Arguments

x a data matrix, numeric data frame.
formula a one-sided “model” formula, of the form ~ x1 + x2 + ... + xk or
~ x1 + x2 + ... + xk | z where z evaluates to a factor or other variable to
divide the data into groups.
data for scatterplotMatrix.formula, a data frame within which to evaluate the
formula.
subset expression defining a subset of observations.
labels, id.method, id.n, id.cex, id.col, id.location
Arguments for the labelling of points. The default is id.n=0 for labeling no
points. See showLabels for details of these arguments. If the plot uses different
colors for groups, then the id.col argument is ignored and label colors are
determined by the col argument.
var.labels variable labels (for the diagonal of the plot).
diagonal contents of the diagonal panels of the plot. If plotting by groups, a different
univariate display (with the exception of “histogram”) will be drawn for each
group.
adjust relative bandwidth for density estimate, passed to density function.
nclass number of bins for histogram, passed to hist function.
plot.points if TRUE the points are plotted in each off-diagonal panel.
smoother a function to draw a nonparametric-regression smooth; the default is gamLine,
which uses the gam function in the mgcv package. For this and other smoothers,
see ScatterplotSmoothers. Setting this argument to something other than a
function, e.g., FALSE suppresses the smoother.
smoother.args a list of named values to be passed to the smoother function; the specified ele-
ments of the list depend upon the smoother (see ScatterplotSmoothers).
smooth, span these arguments are included for backwards compatibility: if smooth=TRUE then
smoother is set to loessLine, and if span is specified, it is added to smoother.args.
spread if TRUE, estimate the (square root) of the variance function. For loessLine and
for gamLine, this is done by separately smoothing the squares of the positive and
negative residuals from the mean fit, and then adding the square root of the fitted
values to the mean fit. For `quantregLine`, fit the .25 and .75 quantiles with a quantile regression additive model. The default is `TRUE` if `by.groups=FALSE` and `FALSE` is by default.

- `regLine`: if not `FALSE` a line is plotted using the function given by this argument; e.g., using `rlm` in package MASS plots a robust-regression line.

- `transform`: if `TRUE`, multivariate normalizing power transformations are computed with `powerTransform`, rounding the estimated powers to 'nice' values for plotting; if a vector of powers, one for each variable, these are applied prior to plotting. If there are groups and `by.groups` is `TRUE`, then the transformations are estimated conditional on the groups factor.

- `family`: family of transformations to estimate: "bcPower" for the Box-Cox family or "yjPower" for the Yeo-Johnson family (see `powerTransform`).

- `ellipse`: if `TRUE` data-concentration ellipses are plotted in the off-diagonal panels.

- `levels`: levels or levels at which concentration ellipses are plotted; the default is `c(0,1)`.

- `robust`: if `TRUE` use the `cov.trob` function in the MASS package to calculate the center and covariance matrix for the data ellipses.

- `groups`: a factor or other variable dividing the data into groups; groups are plotted with different colors and plotting characters.

- `by.groups`: if `TRUE`, regression lines are fit by groups.

- `use`: if "complete.obs" (the default), cases with missing data are omitted; if "pairwise.complete.obs", all valid cases are used in each panel of the plot.

- `pch`: plotting characters for points; default is the plotting characters in order (see `par`).

- `col`: colors for lines and points; the default is taken from the color palette, with `palette()[3]` for linear regression lines, `palette()[2]` for nonparametric regression lines, and `palette()[1]` for points if there are no groups, and successive colors for the groups if there are groups.

- `lwd`: width of linear-regression lines (default 1).

- `lty`: type of linear-regression lines (default 1, solid line).

- `cex, cex.axis, cex.labels, cex.main`: set sizes of various graphical elements (see `par`).

- `legend.plot`: if `TRUE` then a legend for the groups is plotted in the first diagonal cell.

- `legend.pos`: position for the legend, specified as one of the keywords accepted by `legend`. If NULL, the default, the position will vary by the diagonal argument — e.g., "topright" for diagonal="density".

- `rowlattop`: If `TRUE` (the default) the first row is at the top, as in a matrix, as opposed to at the bottom, as in graph (argument suggested by Richard Heiberger).

- `...`: arguments to pass down.

Value

`NULL`. This function is used for its side effect: producing a plot.

Author(s)

John Fox <jfox@mcmaster.ca>
ScatterplotSmoothers

References

See Also

`pairs, scatterplot, dataEllipse, powerTransform, bcPower, yjPower, cov.trob, showLabels, ScatterplotSmoothers`.

Examples

```r
scatterplotMatrix(~ income + education + prestige | type, data=Duncan)
scatterplotMatrix(~ income + education + prestige,
               transform=TRUE, data=Duncan, smoother=loessLine)
scatterplotMatrix(~ income + education + prestige | type, smoother=FALSE,
               by.group=TRUE, transform=TRUE, data=Duncan)
```

ScatterplotSmoothers Smoothers to Draw Lines on Scatterplots

Description

These smoothers are used to draw nonparametric-regression lines on scatterplots produced by the `scatterplot, scatterplotMatrix` and several other `car` functions. The functions are not meant to be called directly by the user, although the user can supply options via the `smoother.args` argument, the contents of which vary by the smoother (see Details below). The `gamLine` smoother uses the `gam` function in the `mgcv` package, the `loessLine` smoother uses the `loess` function in the `stats` package, and the `quantregLine` smoother uses the `rqss` function in the `quantreg` package.

Usage

```r
gamLine(x, y, col, log.x, log.y, spread=FALSE, smoother.args, draw=TRUE, offset=0)
loessLine(x, y, col, log.x, log.y, spread=FALSE, smoother.args, draw=TRUE, offset=0)
quantregLine(x, y, col, log.x, log.y, spread=FALSE, smoother.args, draw=TRUE, offset=0)
```

Arguments

- `x`
 x coordinates of points.
- `y`
 y coordinates of points.
- `col`
 line color.
- `log.x`
 TRUE if the x-axis is logged.
- `log.y`
 TRUE if the y-axis is logged.
- `spread`
 the default is to plot only an estimated mean or median function. If this argument is TRUE, then a measure of spread is also plotted.
smoother.args additional options accepted by the smoother, in the form of a list of named values
(see Details below).

draw if TRUE, the default, draw the smoother on the currently active graph. If FALSE, return a list with coordinates x and y for the points that make up the smooth and if requested x.pos, y.pos, x.neg, y.neg for the spread smooths.

offset For use when spread=TRUE, the vertical axis is sqrt(offset^2 + variance smooth).

Details

The function loessLine is a re-implementation of the loess smoother that was used in car prior to September 2012. The main enhancement is the ability to set more arguments through the smoother.args argument.

The functiongamLine is more general than the loess fitting because it allows fitting a generalized additive model using splines. You can specify an error distribution and link function.

The function quantregLine fits an additive model using splines with estimation based on L1 regression for the median and quantile regression if you ask for the spread. It is likely to be more robust than the other smoothers.

The argument smoother.args is a list of named elements used to pass additional arguments to the smoother. As of November, 2016, the smoother is evaluated at an equally spaced grid of 50 points in the range of the horizontal variable. With any of the smoothers you can change to say 100 evaluation points by using the argument smoother.args=list(evaluation=100).

For loessLine the default value is smoother.args=list(lty=1, lwd=2, lty.spread=2, lwd.spread=1, span=2/3 (proportion of data)). The arguments lty and lwd are the type and width respectively of the mean or median smooth, smooth.lty and smooth.lwd are the type and color of the spread smooths if requested. The arguments span, degree and family are passed to the loess function, iterations=4 robustness iterations.

For gamLine the default is smoother.args=list(lty=1, lwd=2, lty.spread=2, lwd.spread=1, k=-1, bs="tp", family). The first four arguments are as for loessLine. The next two arguments are passed to the gam function to control the smoothing: k=-1 allows gam to choose the number of splines in the basis function; bs="tp" provides the type of spline basis to be used with "tp" for the default thin-plate splines. The last three arguments allow providing a family, link and weights as in generalized linear models. See examples below. The spread argument is ignored unless family="gaussian" and link=NULL.

For quantregLine the default is smoother.args=list(lty=1, lwd=2, lty.spread=2, lwd.spread=1, lambda=IQR(x)). The first four arguments are as for loessLine. The last argument is passed to the qss function in quantreg. It is a smoothing parameter, here a robust estimate of the scale of the horizontal axis variable. This is an arbitrary choice, and may not work well in all circumstances.

Author(s)

John Fox <jfox@mcmaster.ca> and Sanford Weisberg <sandy@umn.edu>.

See Also

scatterplot, scatterplotMatrix, gam, loess, and rqss.
showLabels

Utility Functions to Identify and Mark Extreme Points in a 2D Plot.

Description

This function is called by several graphical functions in the car package to mark extreme points in a 2D plot. Although the user is unlikely to call this function directly, the documentation below applies to all these other functions.

Usage

showLabels(x, y, labels=NULL, id.method="identify",
 id.n = length(x), id.cex=1, id.col=palette()[1], id.location="lr", ...)

Examples

scatterplot(prestige ~ income, data=Prestige)
scatterplot(prestige ~ income, data=Prestige, smoother=gamLine)
scatterplot(prestige ~ income, data=Prestige, smoother=quantregLine)

scatterplot(prestige ~ income | type, data=Prestige)
scatterplot(prestige ~ income | type, data=Prestige, smoother=gamLine)
scatterplot(prestige ~ income | type, data=Prestige, smoother=quantregLine)
scatterplot(prestige ~ income | type, data=Prestige, smoother=NULL)
scatterplot(prestige ~ income | type, data=Prestige, spread=TRUE)
scatterplot(prestige ~ income | type, data=Prestige, smoother=gamLine, spread=TRUE)
scatterplot(prestige ~ income | type, data=Prestige, smoother=quantregLine, spread=TRUE)

scatterplot(weight ~ repwt | sex, spread=TRUE, data=Davis, smoother=loessLine)
scatterplot(weight ~ repwt | sex, spread=TRUE, data=Davis, smoother=gamLine) # messes up
scatterplot(weight ~ repwt | sex, spread=TRUE, data=Davis, smoother=quantregLine) # robust
set.seed(12345)
w <- 1 + rpois(100, 5)
x <- rnorm(100)
p <- 1/(1 + exp(-(x + 0.5*x^2)))
y <- rbinom(100, w, p)
scatterplot(y/w ~ x, smoother=gamLine,
 smoother.args=list(family="binomial", weights=w))
scatterplot(y/w ~ x, smoother=gamLine,
 smoother.args=list(family=binomial, link="probit", weights=w))
scatterplot(y/w ~ x, smoother=gamLine,
 smoother.args=list(family=binomial, link="probit", weights=w))
scatterplot(y/w ~ x, smoother=loessLine, reg=FALSE)

y <- rbinom(100, 1, p)
scatterplot(y ~ x, smoother=gamLine, smoother.args=list(family=binomial))
Arguments

- **x**: Plotted horizontal coordinates.
- **y**: Plotted vertical coordinates.
- **labels**: Plotting labels. If `NULL`, case numbers will be used. If labels are long, the `substr` or `abbreviate` function can be used to shorten them.
- **id.method**: How points are to be identified. See Details below.
- **id.n**: Number of points to be identified. If set to zero, no points are identified.
- **id.cex**: Controls the size of the plotted labels. The default is 1.
- **id.col**: Controls the color of the plotted labels.
- **id.location**: Where should the label be drawn? The default is "lr" to draw the label to the left of the point for points in the right-half of the graph and to the right for points in the left-half. The other option is "ab" for above the point for points below the middle of the graph and above the point below the middle.
- **...**: additional arguments passed to `identify` or to `text`.

Details

The argument **id.method** determine how the points to be identified are selected. For the default value of **id.method**="identify", the `identify` function is used to identify points interactively using the mouse. Up to **id.n** points can be identified, so if **id.n**=0, which is the default in many functions in the car package, then no point identification is done.

Automatic point identification can be done depending on the value of the argument **id.method**.

- **id.method** = "x" select points according to their value of `abs(x - mean(x))`
- **id.method** = "y" select points according to their value of `abs(y - mean(y))`
- **id.method** = "r" select points according to their value of `abs(y)`, as may be appropriate in residual plots, or others with a meaningful origin at 0
- **id.method** = "mahal" Treat `(x, y)` as if it were a bivariate sample, and select cases according to their Mahalanobis distance from `(mean(x), mean(y))`
- **id.method** can be a vector of the same length as `x` consisting of values to determine the points to be labeled. For example, for a linear model `m`, setting **id.method**=`cooks.distance(m)`, **id.n**=4 will label the points corresponding to the four largest values of Cook's distance, or **id.method** = which(abs(residuals) would label all observations with Pearson residuals greater than 2 in absolute value. Warning: If missing data are present, points may be incorrectly labelled.

id.method can be a vector of case numbers or case-labels, in which case those cases will be labeled. Warning: If missing data are present, a list of case numbers may identify the wrong points. A list of case labels, however, will work correctly with missing values.

With **showLabels**, the **id.method** argument can be a list, so, for example **id.method**=`list("x", "y")` would label according to the horizontal and vertical axes variables.

Finally, if the axes in the graph are logged, the function uses logged-variables where appropriate.
Value

A utility function primarily used for its side-effect of drawing labels on a plot. Returns invisibly the labels of the selected points, or NULL if no points are selected. Although intended for use with other functions in the car package, this function can be used directly.

Author(s)

John Fox <jfox@mcmaster.ca>, Sanford Weisberg <sandy@umn.edu>

References

See Also

avPlots, residualPlots, crPlots, leveragePlots

Examples

plot(income ~ education, Prestige)
with(Prestige, showLabels(education, income,
 labels = rownames(Prestige), id.method=list("x", "y"), id.n=3))
m <- lm(income ~ education, Prestige)
plot(income ~ education, Prestige)
abline(m)
with(Prestige, showLabels(education, income,
 labels=rownames(Prestige), id.method=abs(residuals(m)), id.n=4))
Value

A nonnegative number

Author(s)

Sanford Weisberg, <sandy@umn.edu>

Examples

```r
m1 <- lm(prestige ~ income + education, data=Duncan)
sigmaHat(m1)
```

SLID

Survey of Labour and Income Dynamics

Description

The SLID data frame has 7425 rows and 5 columns. The data are from the 1994 wave of the Canadian Survey of Labour and Income Dynamics, for the province of Ontario. There are missing data, particularly for wages.

Usage

SLID

Format

This data frame contains the following columns:

- **wages**: Composite hourly wage rate from all jobs.
- **education**: Number of years of schooling.
- **age**: in years.
- **sex**: A factor with levels: Female, Male.
- **language**: A factor with levels: English, French, Other.

Source

The data are taken from the public-use dataset made available by Statistics Canada, and prepared by the Institute for Social Research, York University.

References

Soils

Soil Compositions of Physical and Chemical Characteristics

Description

Soil characteristics were measured on samples from three types of contours (Top, Slope, and Depression) and at four depths (0-10cm, 10-30cm, 30-60cm, and 60-90cm). The area was divided into 4 blocks, in a randomized block design. (Suggested by Michael Friendly.)

Usage

Soils

Format

A data frame with 48 observations on the following 14 variables. There are 3 factors and 9 response variables.

Group a factor with 12 levels, corresponding to the combinations of Contour and Depth
Contour a factor with 3 levels: Depression Slope Top
Depth a factor with 4 levels: 0-10 10-30 30-60 60-90
Gp a factor with 12 levels, giving abbreviations for the groups: D0 D1 D3 D6 S0 S1 S3 S6 T0 T1 T3 T6
Block a factor with levels 1 2 3 4
PH soil pH
N total nitrogen in %
Dens bulk density in gm/cm3
P total phosphorous in ppm
Ca calcium in me/100 gm.
Mg magnesium in me/100 gm.
K phosphorous in me/100 gm.
Na sodium in me/100 gm.
Conduc conductivity

Details

These data provide good examples of MANOVA and canonical discriminant analysis in a somewhat complex multivariate setting. They may be treated as a one-way design (ignoring Block), by using either Group or Gp as the factor, or a two-way randomized block design using Block, Contour and Depth (quantitative, so orthogonal polynomial contrasts are useful).
Source

References

some

Sample a Few Elements of an Object

Description

Randomly select a few elements of an object, typically a data frame, matrix, vector, or list. If the object is a data frame or a matrix, then rows are sampled.

Usage

```r
some(x, ...)  # some(x, n=10, ...)  
```

S3 method for class 'data.frame'
```r
some(x, n=10, ...)  
```

S3 method for class 'matrix'
```r
some(x, n=10, ...)  
```

Default S3 method:
```r
some(x, n=10, ...)  
```

Arguments

- `x` the object to be sampled.
- `n` number of elements to sample.
- `...` arguments passed down.

Value

Sampled elements or rows.
Note

These functions are adapted from head and tail in the utils package.

Author(s)

John Fox <jfox@mcmaster.ca>

References

See Also

head, tail.

Examples

some(Duncan)

spreadLevelPlot

Spread-Level Plots

Description

Creates plots for examining the possible dependence of spread on level, or an extension of these
plots to the studentized residuals from linear models.

Usage

spreadLevelPlot(x, ...)

slp(...)

S3 method for class 'formula'
spreadLevelPlot(x, data=NULL, subset, na.action,
 main=paste("Spread-Level Plot for", varnames[response],
 "by", varnames[-response]), ...)

Default S3 method:
spreadLevelPlot(x, by, robust.line=TRUE,
 start=0, xlab="Median", ylab="Hinge-Spread", point.labels=TRUE, las=par("las"),
 main=paste("Spread-Level Plot for", deparse(substitute(x)),
 "by", deparse(substitute(by))), col=palette()[1], col.lines=palette()[2],
 pch=1, lwd=2, grid=TRUE, ...)

S3 method for class 'lm'
spreadLevelPlot(x, robust.line=TRUE,
spreadLevelPlot

spreadLevelPlot

smoother=loessLine, smoother.args=list(),
xlab="Fitted Values",
ylab="Absolute Studentized Residuals", las=par("las"),
main=paste("Spread-Level Plot for\n", deparse(substitute(x))),
pch=1, col=palette()[1], col.lines=palette()[2], col.smother=palette()[3],
lwd=2, grid=TRUE, labels,
id.method = "mahal",
id.n = if(id.method[1]=="identify") Inf else 0,
ID.cex=1, ID.col=palette()[1], ID.location="lr", ...

S3 method for class 'spreadLevelPlot'
print(x, ...)

Arguments

x a formula of the form y ~ x, where y is a numeric vector and x is a factor, or an
lm object to be plotted; alternatively a numeric vector.
data an optional data frame containing the variables to be plotted. By default the vari-
bables are taken from the environment from which spreadLevelPlot is called.
subset an optional vector specifying a subset of observations to be used.
na.action a function that indicates what should happen when the data contain NAs. The
default is set by the na.action setting of options.
by a factor, numeric vector, or character vector defining groups.
robust.line if TRUE a robust line is fit using the rlm function in the MASS package; if FALSE
a line is fit using lm.
smooth a function to draw a nonparametric-regression smooth; the default is loessLine,
which does loess smoothing. The function gamLine fits a generalized additive
model and allows including a link and error function. See ScatterplotSmothers.
Setting this argument to something other than a function, e.g., FALSE suppresses
the smoother.
smooth.args a list of named values to be passed to the smoother function; the specified ele-
ments of the list depend upon the smoother (see ScatterplotSmothers).
start add the constant start to each data value.
main title for the plot.
xlab label for horizontal axis.
ylab label for vertical axis.
point.labels if TRUE label the points in the plot with group names.
las if 0, ticks labels are drawn parallel to the axis; set to 1 for horizontal labels (see
par).
col color for points; the default is the first entry in the current color palette (see
palette and par).
col.lines color for lines; default is the second entry in the current palette

col.smother color for smooth line; default is third entry in the current palette.
pch plotting character for points; default is 1 (a circle, see par).
spreadLevelPlot

`lwd` line width; default is 2 (see `par`).

`grid` If TRUE, the default, a light-gray background grid is put on the graph.

`id.method, labels, id.n, id.cex, id.col, id.location`

Arguments for the labelling of points. The default is `id.n=0` for labeling no points with the `lm` method. See `showLabels` for details of these arguments.

... arguments passed to plotting functions.

Details

Except for linear models, computes the statistics for, and plots, a Tukey spread-level plot of log(hinge-spread) vs. log(median) for the groups; fits a line to the plot; and calculates a spread-stabilizing transformation from the slope of the line.

For linear models, plots log(abs(studentized residuals) vs. log(fitted values). Point labeling was added in November, 2016.

The function `slp` is an abbreviation for `spreadLevelPlot`.

Value

An object of class `spreadLevelPlot` containing:

Statistics a matrix with the lower-hinge, median, upper-hinge, and hinge-spread for each group. (Not for an `lm` object.)

PowerTransformation spread-stabilizing power transformation, calculated as $1 - \text{slope}$ of the line fit to the plot.

Author(s)

John Fox <jfox@mcmaster.ca>

References

See Also

`hccm, ncvTest`

Examples

`spreadLevelPlot(interlocks + 1 ~ nation, data=Ornstein)`

`slp(lm(interlocks + 1 ~ assets + sector + nation, data=Ornstein))`
The States data frame has 51 rows and 8 columns. The observations are the U. S. states and Washington, D. C.

This data frame contains the following columns:

- **region**: U. S. Census regions. A factor with levels: ENC, East North Central; ESC, East South Central; MA, Mid-Atlantic; MTN, Mountain; NE, New England; PAC, Pacific; SA, South Atlantic; WNC, West North Central; WSC, West South Central.
- **pop**: Population: in 1,000s.
- **SATV**: Average score of graduating high-school students in the state on the **verbal** component of the Scholastic Aptitude Test (a standard university admission exam).
- **SATM**: Average score of graduating high-school students in the state on the **math** component of the Scholastic Aptitude Test.
- **percent**: Percentage of graduating high-school students in the state who took the SAT exam.
- **dollars**: State spending on public education, in \$1000s per student.
- **pay**: Average teacher’s salary in the state, in \$1000s.

The `regsubsets` function in the `leaps` package finds optimal subsets of predictors. This function plots a measure of fit (see the statistic argument below) against subset size.

Usage

```r
subsets(object, ...)## S3 method for class 'regsubsets'
subsets(object,
    names=abbreviate(object$xnames, minlength = abbrev),
    abbrev=1, min.size=1, max.size=length(names),
    legend="interactive",
    statistic=c("bic", "cp", "adjr2", "rsq", "rss"),
    las=par('las'), cex.subsets=1, ...)
```

Arguments

- **object**: a regsubsets object produced by the `regsubsets` function in the `leaps` package.
- **names**: a vector of (short) names for the predictors, excluding the regression intercept, if one is present; if missing, these are derived from the predictor names in `object`.
- **abbrev**: minimum number of characters to use in abbreviating predictor names.
- **min.size**: minimum size subset to plot; default is 1.
- **max.size**: maximum size subset to plot; default is number of predictors.
- **legend**: If not FALSE, in which case the legend is suppressed, the coordinates at which to place a legend of the abbreviated predictor names on the plot, in a form recognized by the `legend` function. If "interactive", the legend is placed on the plot interactively with the mouse. By expanding the left or right plot margin, you can place the legend in the margin, if you wish (see `par`).
- **statistic**: statistic to plot for each predictor subset; one of: "bic", Bayes Information Criterion; "cp", Mallows's C_p; "adjr2", R^2 adjusted for degrees of freedom; "rsq", unadjusted R^2; "rss", residual sum of squares.
- **las**: if 0, ticks labels are drawn parallel to the axis; set to 1 for horizontal labels (see `par`).
- **cex.subsets**: can be used to change the relative size of the characters used to plot the regression subsets; default is 1.
- **...**: arguments to be passed down to `subsets.regsubsets` and `plot`.
Value

NULL if the `legend` is TRUE; otherwise a data frame with the legend.

Author(s)

John Fox

References

See Also

`regsubsets`

Examples

```r
if (require(leaps)){
  subsets(regsubsets(undercount ~ ., data=Ericksen),
          legend=c(3.5, -3.7))
}
```

symbox
Boxplots for transformations to symmetry

Description

`symbox` first transforms `x` to each of a series of selected powers, with each transformation standardized to mean 0 and standard deviation 1. The results are then displayed side-by-side in boxplots, permitting a visual assessment of which power makes the distribution reasonably symmetric.

Usage

```r
symbox(x, ..., 
  ## S3 method for class 'formula'
  symbox(formula, data=NULL, subset, na.action=NULL, ylab, ...)
  ## Default S3 method:
  symbox(x, powers = c(-1, -0.5, 0, 0.5, 1), start=0, 
         trans=bcPower, xlab="Powers", ylab, ...)
```
testTransform

Arguments

- **x**: a numeric vector.
- **formula**: a one-sided formula specifying a single numeric variable.
- **data, subset, na.action**: as for statistical modeling functions (see, e.g., `lm`).
- **xlab, ylab**: axis labels; if `ylab` is missing, a label will be supplied.
- **powers**: a vector of selected powers to which `x` is to be raised. For meaningful comparison of powers, 1 should be included in the vector of powers.
- **start**: a constant to be added to `x`.
- **trans**: a transformation function whose first argument is a numeric vector and whose second argument is a transformation parameter, given by the `powers` argument; the default is `bcPower`, and another possibility is `yjPower`.
- **...**: arguments to be passed down.

Value

as returned by `boxplot`.

Author(s)

Gregor Gorjanc, John Fox <jfox@mcmaster.ca>, and Sanford Weisberg.

References

See Also

`boxplot, boxcox, bcPower, yjPower`

Examples

```r
symbox(~ income, data=Prestige)
```

testTransform

Likelihood-Ratio Tests for Univariate or Multivariate Power Transformations to Normality

Description

`testTransform` computes likelihood ratio tests for particular values of the power parameter based on `powerTransform` objects.
Usage

```r
testTransform(object, lambda)

## S3 method for class 'powerTransform'
testTransform(object, lambda=rep(1, dim(object$y)[2]))

## S3 method for class 'lmerModPowerTransform'
testTransform(object, lambda=1)

## S3 method for class 'bcnPowerTransformlmer'
testTransform(object, lambda=1)
```

Arguments

- **object**: An object created by a call to `powerTransform`.
- **lambda**: A vector of powers of length equal to the number of variables transformed.

Details

The function `powerTransform` is used to estimate a power transformation for a univariate or multivariate sample or multiple linear regression problem, using the method of Box and Cox (1964). It is usual to round the estimates to nearby convenient values, and this function is used to compute a likelihood ratio test for values of the transformation parameter other than the ml-type estimate.

For one-parameter families of transformations, namely the Box-Cox power family `bcPower` and the Yeo-Johnson power family `yjPower`, this function computes a test based on twice the difference in the log-likelihood between the maximum likelihood-like estimate and the log-likelihood evaluated at the value of `lambda` specified.

For the `bcnPower` Box-Cox power with negatives allowed, the test is based on the profile loglikelihood maximizing over the location (or `gamma`) parameter(s). Thus, `gamma` is treated as a nuisance parameter.

Value

A data frame with one row giving the value of the test statistic, its degrees of freedom, and a p-value. The test is the likelihood ratio test, comparing the value of the log-likelihood at the hypothesized value to the value of the log-likelihood at the maximum likelihood estimate.

Author(s)

Sanford Weisberg, `<sandy@umn.edu>`

References

See Also

`powerTransform` and `bcnpower` for examples of the use of this function and other tests that might be of interest in some circumstances.

Examples

```r
summary(a3 <- powerTransform(cbind(len, adt, trks, sigs) ~ htype, Highway))
# test lambda = (0 0 0 -1)
testTransform(a3, c(0, 0, 0, -1))
summary(q1 <- powerTransform(lm(cbind(LoBD$I1L2, LoBD$I1L1) ~ pool, LoBD, family="bcnpower"))
testTransform(q1, c(.3, .8))
```

Description

Data on transaction times in branch offices of a large Australian bank.

Usage

`Transact`

Format

This data frame contains the following columns:

- **t1** number of type 1 transactions
- **t2** number of type 2 transactions
- **time** total transaction time, minutes

Source

References

TransformationAxes Axes for Transformed Variables

Description

These functions produce axes for the original scale of transformed variables. Typically these would appear as additional axes to the right or at the top of the plot, but if the plot is produced with `axes=FALSE`, then these functions could be used for axes below or to the left of the plot as well.

Usage

- `basicPowerAxis(power, base=exp(1),
 side=c("right", "above", "left", "below"),
 at, start=0, lead.digits=1, n.ticks, grid=FALSE, grid.col=gray(0.50),
 grid.lty=2,
 axis.title="Untransformed Data", cex=1, las=par("las"))`

- `bcPowerAxis(power, side=c("right", "above", "left", "below"),
 at, start=0, lead.digits=1, n.ticks, grid=FALSE, grid.col=gray(0.50),
 grid.lty=2,
 axis.title="Untransformed Data", cex=1, las=par("las"))`

- `yjPowerAxis(power, side=c("right", "above", "left", "below"),
 at, lead.digits=1, n.ticks, grid=FALSE, grid.col=gray(0.50),
 grid.lty=2,
 axis.title="Untransformed Data", cex=1, las=par("las"))`

- `probabilityAxis(scale=c("logit", "probit"),
 side=c("right", "above", "left", "below"),
 at, lead.digits=1, grid=FALSE, grid.lty=2, grid.col=gray(0.50),
 axis.title = "Probability", interval = 0.1, cex = 1, las=par("las"))`

Arguments

- `power` power for Box-Cox, Yeo-Johnson, or simple power transformation.
- `scale` transformation used for probabilities, "logit" (the default) or "probit".
- `side` side at which the axis is to be drawn; numeric codes are also permitted: side = 1 for the bottom of the plot, side=2 for the left side, side = 3 for the top, side = 4 for the right side.
- `at` numeric vector giving location of tick marks on original scale; if missing, the function will try to pick nice locations for the ticks.
- `start` if a `start` was added to a variable (e.g., to make all data values positive), it can now be subtracted from the tick labels.
- `lead.digits` number of leading digits for determining ‘nice’ numbers for tick labels (default is 1).
Transformation Axes

n.ticks
grid
grid.col
grid.lty
axis.title
cex
las
base
interval

Details

The transformations corresponding to the three functions are as follows:

basicPowerAxis: Simple power transformation, \(x' = x^p \) for \(p \neq 0 \) and \(x' = \log x \) for \(p = 0 \).

bcPowerAxis: Box-Cox power transformation, \(x' = (x^\lambda - 1)/\lambda \) for \(\lambda \neq 0 \) and \(x' = \log x \) for \(\lambda = 0 \).

yjPowerAxis: Yeo-Johnson power transformation, for non-negative \(x \), the Box-Cox transformation of \(x + 1 \); for negative \(x \), the Box-Cox transformation of \(|x| + 1 \) with power \(2 - p \).

probabilityAxis: logit or probit transformation, \(\text{logit} = \log[p/(1-p)] \), or \(\text{probit} = \Phi^{-1}(p) \), where \(\Phi^{-1} \) is the standard-normal quantile function.

These functions will try to place tick marks at reasonable locations, but producing a good-looking graph sometimes requires some fiddling with the at argument.

Value

These functions are used for their side effects: to draw axes.

Author(s)

John Fox <jfox@mcmaster.ca>

References

See Also

basicPower, bcPower, yjPower, logit.
Examples

UN <- na.omit(UN)
par(mar=c(5, 4, 4, 4) + 0.1) # leave space on right

with(UN, plot(log(gdp, 10), log(infant.mortality, 10)))
basicPowerAxis(0, base=10, side="above",
at=c(50, 200, 500, 2000, 5000, 20000), grid=TRUE,
axis.title="GDP per capita")
basicPowerAxis(0, base=10, side="right",
at=c(5, 10, 20, 50, 100), grid=TRUE,
axis.title="infant mortality rate per 1000")

with(UN, plot(bcPower(gdp, 0), bcPower(infant.mortality, 0)))
bcPowerAxis(0, side="above",
grid=TRUE, axis.title="GDP per capita")
bcPowerAxis(0, side="right",
grid=TRUE, axis.title="infant mortality rate per 1000")

with(UN, qqPlot(logit(infant.mortality/1000)))
probabilityAxis()

with(UN, qqPlot(qnorm(infant.mortality/1000)))
probabilityAxis(at=c(.005, .01, .02, .04, .08, .16), scale="probit")

UN

GDP and Infant Mortality

Description

The UN data frame has 207 rows and 2 columns. The data are for 1998 and are from the United Nations; the observations are nations of the world. There are some missing data.

Usage

UN

Format

This data frame contains the following columns:

- **infant.mortality** Infant mortality rate, infant deaths per 1000 live births.
- **gdp** GDP per capita, in U.S.-dollars.

Source

References

USPop

Population of the United States

Description

The USPop data frame has 22 rows and 1 columns. This is a decennial time-series, from 1790 to 2000.

Usage

USPop

Format

This data frame contains the following columns:

- **year** census year.
- **population** Population in millions.

Source

References

vif

Variance Inflation Factors

Description

Calculates variance-inflation and generalized variance-inflation factors for linear and generalized linear models.

Usage

vif(mod, ...)

Default S3 method:

vif(mod, ...)

#
Arguments

mod an object that responds to coef, vcov, and model.matrix, such as an lm or glm object.

Details

If all terms in an unweighted linear model have 1 df, then the usual variance-inflation factors are calculated.

If any terms in an unweighted linear model have more than 1 df, then generalized variance-inflation factors (Fox and Monette, 1992) are calculated. These are interpretable as the inflation in size of the confidence ellipse or ellipsoid for the coefficients of the term in comparison with what would be obtained for orthogonal data.

The generalized vifs are invariant with respect to the coding of the terms in the model (as long as the subspace of the columns of the model matrix pertaining to each term is invariant). To adjust for the dimension of the confidence ellipsoid, the function also prints $GVIF^{1/(2\times df)}$ where df is the degrees of freedom associated with the term.

Through a further generalization, the implementation here is applicable as well to other sorts of models, in particular weighted linear models and generalized linear models.

Value

A vector of vifs, or a matrix containing one row for each term in the model, and columns for the GVIF, df, and $GVIF^{1/(2\times df)}$.

Author(s)

Henric Nilsson and John Fox <jfox@mcmaster.ca>

References

Examples

vif(lm(prestige ~ income + education, data=Duncan))
vif(lm(prestige ~ income + education + type, data=Duncan))
Description

The `Vocab` data frame has 21,638 rows and 5 columns. The observations are respondents to U.S. General Social Surveys, 1972-2004.

Usage

Vocab

Format

This data frame contains the following columns:

- **year**: Year of the survey.
- **sex**: Sex of the respondent, Female or Male.
- **education**: Education, in years.
- **vocabulary**: Vocabulary test score: number correct on a 10-word test.

Source

References

wcrossprod

Weighted Matrix Crossproduct

Description

Given matrices x and y as arguments and an optional matrix or vector of weights, w, return a weighted matrix cross-product, t(x) w y. If no weights are supplied, or the weights are constant, the function uses `crossprod` for speed.

Usage

`wcrossprod(x, y, w)`
Arguments

\(x, y\)
\(x, y\) numeric matrices; \texttt{missing(y)} is taken to be the same matrix as \(x\). Vectors are promoted to single-column or single-row matrices, depending on the context.

\(w\)
A numeric vector or matrix of weights, conformable with \(x\) and \(y\).

Value

A numeric matrix, with appropriate dimnames taken from \(x\) and \(y\).

Author(s)

Michael Friendly, John Fox \(<\text{jfox@mcmaster.ca}>\)

See Also

\texttt{crossprod}

Examples

```r
set.seed(12345)
n <- 24
drop <- 4
sex <- sample(c("M", "F"), n, replace=TRUE)
x1 <- 1:n
x2 <- sample(1:n)
extra <- c( rep(0, n - drop), floor(15 + 10 * rnorm(drop)) )
y1 <- x1 + 3*x2 + 6*(sex="M") + floor(10 * rnorm(n)) + extra
y2 <- x1 - 2*x2 - 8*(sex="M") + floor(10 * rnorm(n)) + extra
# assign non-zero weights to 'dropped' obs
wt <- c(rep(1, n-drop), rep(.2,drop))

X <- cbind(x1, x2)
Y <- cbind(y1, y2)
wcrossprod(X)
wcrossprod(X, w=wt)
wcrossprod(X, Y)
wcrossprod(X, Y, w=wt)
wcrossprod(x1, y1)
wcrossprod(x1, y1, w=wt)
```

WeightLoss

Weight Loss Data
Description

Contrived data on weight loss and self esteem over three months, for three groups of individuals: Control, Diet and Diet + Exercise. The data constitute a double-multivariate design.

Usage

WeightLoss

Format

A data frame with 34 observations on the following 7 variables.

- group: a factor with levels Control Diet DietEx.
- wl1: Weight loss at 1 month
- wl2: Weight loss at 2 months
- wl3: Weight loss at 3 months
- se1: Self esteem at 1 month
- se2: Self esteem at 2 months
- se3: Self esteem at 3 months

Details

Helmert contrasts are assigned to group, comparing Control vs. (Diet DietEx) and Diet vs. DietEx.

Source

<table>
<thead>
<tr>
<th>which.names</th>
<th>Position of Row Names</th>
</tr>
</thead>
</table>

Description

These functions return the indices of row names in a data frame or a vector of names. whichNames is just an alias for which.names.

Usage

which.names(names, object)
whichNames(...)
Arguments

names a name or character vector of names.
object a data frame or character vector of (row) names.
... arguments to be passed to which.names.

Value

Returns the index or indices of names within object.

Author(s)

John Fox <jfox@mcmaster.ca>

References

Examples

which.names(c('minister', 'conductor'), Duncan)
[1] 6 16

Women1f

Canadian Women's Labour-Force Participation

Description

The Women1f data frame has 263 rows and 4 columns. The data are from a 1977 survey of the Canadian population.

Usage

Women1f

Format

This data frame contains the following columns:

- **partic** Labour-Force Participation. A factor with levels (note: out of order): fulltime, Working full-time; not.work, Not working outside the home; parttime, Working part-time.
- **hincome** Husband's income, $1000s.
- **children** Presence of children in the household. A factor with levels: absent, present.
- **region** A factor with levels: Atlantic, Atlantic Canada; BC, British Columbia; Ontario; Prairie, Prairie provinces; Quebec.
Wong

Source

Social Change in Canada Project. York Institute for Social Research.

References

Post-Coma Recovery of IQ

Description

The Wong data frame has 331 row and 7 columns. The observations are longitudinal data on recovery of IQ after comas of varying duration for 200 subjects.

Usage

Wong

Format

This data frame contains the following columns:

- **id**: patient ID number.
- **days**: number of days post coma at which IQs were measured.
- **duration**: duration of the coma in days.
- **sex**: a factor with levels Female and Male.
- **age**: in years at the time of injury.
- **piq**: performance (i.e., mathematical) IQ.
- **viq**: verbal IQ.

Details

The data are from Wong, Monette, and Weiner (2001) and are for 200 patients who sustained traumatic brain injuries resulting in comas of varying duration. After awakening from their comas, patients were periodically administered a standard IQ test, but the average number of measurements per patient is small (331/200 = 1.7).

Source

References

Examples

```r
summary(Wong)
```

Wool

Wool data

Description

This is a three-factor experiment with each factor at three levels, for a total of 27 runs. Samples of worsted yarn were with different levels of the three factors were given a cyclic load until the sample failed. The goal is to understand how cycles to failure depends on the factors.

Usage

```r
Wool
```

Format

This data frame contains the following columns:

- **len** length of specimen (250, 300, 350 mm)
- **amp** amplitude of loading cycle (8, 9, 10 min)
- **load** load (40, 45, 50g)
- **cycles** number of cycles until failure

Source

References

Index

*Topic algebra
 wcrossprod, 159
*Topic aplot
 Ellipses, 57
 panel.car, 107
 regLine, 120
 TransformationAxes, 154
*Topic array
 wcrossprod, 159
*Topic datasets
 Adler, 5
 AMSSurvey, 6
 Angell, 7
 Anscombe, 14
 Baumann, 17
 Bfox, 20
 Blackmore, 21
 Burt, 31
 CanPop, 32
 Chile, 37
 Chirot, 38
 Cowles, 42
 Davis, 45
 DavisThin, 46
 Depredations, 53
 Duncan, 55
 Ericksen, 61
 Florida, 62
 Freedman, 63
 Friendly, 63
 Ginzberg, 64
 Greene, 65
 Guyer, 66
 Hartnagel, 66
 Highway1, 69
 KosteckiDillon, 79
 Leinhardt, 80
 LoBD, 90
 Mandel, 93
 Migration, 96
 Moore, 101
 Mroz, 102
 O’BrienKaiser, 104
 Ornstein, 105
 Pottery, 110
 Prestige, 114
 Quartet, 118
 Robey, 125
 Sahlins, 125
 Salaries, 126
 SLID, 142
 Soils, 143
 States, 148
 Transact, 153
 UN, 156
 USPop, 157
 Vocab, 159
 WeightLoss, 160
 Womenlf, 162
 Wong, 163
 Wool, 164
*Topic distribution
 qqPlot, 115
*Topic hplot
 avPlots, 15
 Boxplot, 28
 ceresPlots, 35
 crPlots, 43
 densityPlot, 50
 dfbetaPlots, 54
 Ellipses, 57
 infIndexPlot, 72
 invResPlot, 75
 invTranPlot, 76
 leveragePlots, 82
 mcPlots, 94
 mmps, 97
 plot.powerTransform, 108
residualplots, 121
scatter3d, 127
scatterplot, 131
scatterplotMatrix, 134
ScatterplotSmoothers, 137
spreadLevelPlot, 145
subsets, 149
symbox, 150

*Topic htest
Anova, 7
leveneTest, 81
linearHypothesis, 84
ncvTest, 103
outlierTest, 106

*Topic interface
carWeb, 34

*Topic manip
boxCoxVariable, 27
logit, 92
recode, 118

*Topic misc
car-internal.Rd, 34

*Topic models
Anova, 7
Contrasts, 40
deltaMethod, 47
linearHypothesis, 84

*Topic package
car-package, 4

*Topic print
compareCoefs, 39

*Topic regression
Anova, 7
avPlots, 15
bcPower, 18
Boot, 22
boxCox, 24
boxCoxVariable, 27
boxTidwell, 29
ceresPlots, 35
Contrasts, 40
crPlots, 43
deltaMethod, 47
dfBetaPlots, 54
durbinWatsonTest, 56
hccm, 67
hist.boot, 70
inflIndexPlot, 72
influencePlot, 74
invResPlot, 75
invTranPlot, 76
leveragePlots, 82
linearHypothesis, 84
mcPlots, 94
mmps, 97
ncvTest, 103
outlierTest, 106
plot.powerTransform, 108
powerTransform, 110
qqPlot, 115
residualPlots, 121
sigmaHat, 141
spreadLevelPlot, 145
subsets, 149
testTransform, 151
vif, 157

*Topic ts
durbinWatsonTest, 56

*Topic univar
qqPlot, 115

*Topic utilities
showLabels, 139
some, 144
which.names, 161

.carEnv (car-internal.Rd), 34
abbreviate, 140
abline, 121
adaptiveKernel (densityPlot), 50
Adler, 5
AMSSurvey, 6
Angell, 7
Anova, 7, 88, 89
anova, 12, 89
anova.coxph, 12
anova.glm, 12
anova.lm, 12
anova.mlm, 12
Anscombe, 14
as.data.frame.univaov (Anova), 7
av.plot (car-deprecated), 32
av.plots (car-deprecated), 32
avp (avPlots), 15
avPlot, 33
avPlot (avPlots), 15
avPlots, 15, 33, 37, 43, 84, 96, 141
<table>
<thead>
<tr>
<th>term</th>
<th>page(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>basicPower, basicPower (bcPower),</td>
<td>155, 18</td>
</tr>
<tr>
<td>basicPowerAxis (TransformationAxes),</td>
<td>154</td>
</tr>
<tr>
<td>Baumann,</td>
<td>17</td>
</tr>
<tr>
<td>bc (car-deprecated),</td>
<td>32</td>
</tr>
<tr>
<td>bcnPower,</td>
<td>25, 26, 91, 113, 152, 153</td>
</tr>
<tr>
<td>bcnPower (bcPower),</td>
<td>18</td>
</tr>
<tr>
<td>bcpower,</td>
<td>18, 26, 27, 33, 111, 113, 137, 151, 152, 155</td>
</tr>
<tr>
<td>bcpoweraxis (transformationaxes),</td>
<td>154</td>
</tr>
<tr>
<td>bfox,</td>
<td>20</td>
</tr>
<tr>
<td>Blackmore,</td>
<td>21</td>
</tr>
<tr>
<td>Boot,</td>
<td>22, 72</td>
</tr>
<tr>
<td>boot,</td>
<td>23, 70, 72</td>
</tr>
<tr>
<td>boot.array,</td>
<td>24</td>
</tr>
<tr>
<td>boot.ci,</td>
<td>24</td>
</tr>
<tr>
<td>box.cox (car-deprecated),</td>
<td>32</td>
</tr>
<tr>
<td>box.tidwell (car-deprecated),</td>
<td>32</td>
</tr>
<tr>
<td>boxCox,</td>
<td>24, 113</td>
</tr>
<tr>
<td>boxcox,</td>
<td>26, 27, 151</td>
</tr>
<tr>
<td>boxcox2d (boxCox),</td>
<td>24</td>
</tr>
<tr>
<td>boxcoxVariable,</td>
<td>27, 33</td>
</tr>
<tr>
<td>Boxplot,</td>
<td>28, 131, 133</td>
</tr>
<tr>
<td>boxplot,</td>
<td>28, 29, 133, 151</td>
</tr>
<tr>
<td>boxTidwell,</td>
<td>29, 33</td>
</tr>
<tr>
<td>Burt,</td>
<td>31</td>
</tr>
<tr>
<td>bw.nrd0,</td>
<td>51</td>
</tr>
<tr>
<td>bw.SJ,</td>
<td>51, 52</td>
</tr>
<tr>
<td>CanPop,</td>
<td>32</td>
</tr>
<tr>
<td>car (car-package),</td>
<td>4</td>
</tr>
<tr>
<td>car-deprecated,</td>
<td>32</td>
</tr>
<tr>
<td>car-internal.Rd,</td>
<td>34</td>
</tr>
<tr>
<td>car-package,</td>
<td>4</td>
</tr>
<tr>
<td>carWeb,</td>
<td>34</td>
</tr>
<tr>
<td>ceres.plot (car-deprecated),</td>
<td>32</td>
</tr>
<tr>
<td>ceres.plots (car-deprecated),</td>
<td>32</td>
</tr>
<tr>
<td>ceresPlot,</td>
<td>33</td>
</tr>
<tr>
<td>ceresPlot (ceresPlots),</td>
<td>35</td>
</tr>
<tr>
<td>ceresPlots,</td>
<td>17, 33, 35, 45, 96</td>
</tr>
<tr>
<td>Chile,</td>
<td>37</td>
</tr>
<tr>
<td>Chirot,</td>
<td>38</td>
</tr>
<tr>
<td>coef,</td>
<td>48, 89, 158</td>
</tr>
<tr>
<td>compareCoefs,</td>
<td>39</td>
</tr>
<tr>
<td>confidence.ellipse (car-deprecated),</td>
<td>32</td>
</tr>
<tr>
<td>confidenceEllipses,</td>
<td>33</td>
</tr>
<tr>
<td>confidenceEllipses (Ellipses),</td>
<td>57</td>
</tr>
<tr>
<td>confint.boot,</td>
<td>23, 24</td>
</tr>
<tr>
<td>confint.boot (hist.boot),</td>
<td>70</td>
</tr>
<tr>
<td>contour,</td>
<td>26</td>
</tr>
<tr>
<td>contr.Helmert (Contrasts),</td>
<td>40</td>
</tr>
<tr>
<td>contr.helmert,</td>
<td>41</td>
</tr>
<tr>
<td>contr.poly,</td>
<td>41</td>
</tr>
<tr>
<td>contr.Sum (Contrasts),</td>
<td>40</td>
</tr>
<tr>
<td>contr.sum,</td>
<td>41</td>
</tr>
<tr>
<td>contr.Treatment (Contrasts),</td>
<td>40</td>
</tr>
<tr>
<td>contr.treatment,</td>
<td>41</td>
</tr>
<tr>
<td>Contrasts,</td>
<td>40</td>
</tr>
<tr>
<td>cookd (car-deprecated),</td>
<td>32</td>
</tr>
<tr>
<td>cooks.distance,</td>
<td>33, 74, 75</td>
</tr>
<tr>
<td>coplot,</td>
<td>108</td>
</tr>
<tr>
<td>cov.trob,</td>
<td>59, 60, 133, 137</td>
</tr>
<tr>
<td>cov.wt,</td>
<td>59, 60</td>
</tr>
<tr>
<td>Cowles,</td>
<td>42</td>
</tr>
<tr>
<td>cr.plot (car-deprecated),</td>
<td>32</td>
</tr>
<tr>
<td>cr.plots (car-deprecated),</td>
<td>32</td>
</tr>
<tr>
<td>crossprod,</td>
<td>159, 160</td>
</tr>
<tr>
<td>crp (crPlots),</td>
<td>43</td>
</tr>
<tr>
<td>crPlot,</td>
<td>33</td>
</tr>
<tr>
<td>crPlot (crPlots),</td>
<td>43</td>
</tr>
<tr>
<td>crPlots,</td>
<td>17, 33, 37, 43, 96, 141</td>
</tr>
<tr>
<td>cut,</td>
<td>119</td>
</tr>
<tr>
<td>D,</td>
<td>49</td>
</tr>
<tr>
<td>data.ellipse (car-deprecated),</td>
<td>32</td>
</tr>
<tr>
<td>dataEllipse,</td>
<td>33, 95, 96, 133, 137</td>
</tr>
<tr>
<td>dataEllipse (Ellipses),</td>
<td>57</td>
</tr>
<tr>
<td>Davis,</td>
<td>45</td>
</tr>
<tr>
<td>DavisThin,</td>
<td>46</td>
</tr>
<tr>
<td>deltaMethod,</td>
<td>47</td>
</tr>
<tr>
<td>density,</td>
<td>50–52, 72</td>
</tr>
<tr>
<td>densityPlot,</td>
<td>50</td>
</tr>
<tr>
<td>Depredations,</td>
<td>53</td>
</tr>
<tr>
<td>dfbeta,</td>
<td>55</td>
</tr>
<tr>
<td>dfbetaPlots,</td>
<td>54</td>
</tr>
<tr>
<td>dfbetas,</td>
<td>55</td>
</tr>
<tr>
<td>dfbetasPlots (dfbetaPlots),</td>
<td>54</td>
</tr>
<tr>
<td>Duncan,</td>
<td>55</td>
</tr>
<tr>
<td>durbin.watson (car-deprecated),</td>
<td>32</td>
</tr>
<tr>
<td>durbinWatsonTest,</td>
<td>33, 56</td>
</tr>
<tr>
<td>dwt (durbinWatsonTest),</td>
<td>56</td>
</tr>
<tr>
<td>ellipse (Ellipses),</td>
<td>57</td>
</tr>
<tr>
<td>Ellipses,</td>
<td>57</td>
</tr>
<tr>
<td>empinf,</td>
<td>24</td>
</tr>
<tr>
<td>Ericksen,</td>
<td>61</td>
</tr>
<tr>
<td>factor,</td>
<td>119</td>
</tr>
</tbody>
</table>
Florida, 62
Freedman, 63
Friendly, 63

gam, 100, 123, 128, 130, 135, 137, 138
gamLine, 132, 135, 146
gamLine (ScatterplotSmoothers), 137
Ginzberg, 64
Greene, 65
Guyer, 66

Hartnagel, 66
hatvalues, 74, 75
hccm, 10, 67, 87, 89, 104, 147
head, 145
Highway1, 69
hist, 72
hist.boot, 23, 24, 70
identify, 124, 140
Identify3d (scatter3d), 127
inflIndexPlot, 72
influence.plot (influencePlot), 74
influenceIndexPlot (inflIndexPlot), 72
influencePlot, 74
inverseResponsePlot, 78
inverseResponsePlot (invResPlot), 75
invResPlot, 75
invTranEstimate (invTranPlot), 76
invTranPlot, 75, 76, 76

jitter, 132, 133

Kosteckidillon, 79

legend, 52, 133, 136, 149
Leinhardt, 80
levene.test (car-deprecated), 32
leveneTest, 33, 81
leverage.plot (car-deprecated), 32
leverage.plots (car-deprecated), 32
leveragePlot, 34
leveragePlot (leveragePlots), 82
leveragePlots, 34, 82, 141
lht (linearHypothesis), 84
linear.hypothesis (car-deprecated), 32
linearHypothesis, 12, 34, 60, 84
lines, 121
lm, 29, 111, 124, 151
LoBD, 90

loess, 137, 138
loessLine, 132, 146
loessLine (ScatterplotSmoothers), 137
logit, 92, 155
makeHypothesis (linearHypothesis), 84
Mandel, 93
Manova (Anova), 7
marginalModelPlot (mmps), 97
marginalModelPlots (mmps), 97
matchCoefs (linearHypothesis), 84
mcPlot (mcPlots), 94
mcPlots, 94
Migration, 96
mmp (mmps), 97
mmps, 97
model.matrix, 158
Moore, 101
Mroz, 102

na.omit, 51
ncv.test (car-deprecated), 32
ncvTest, 34, 103, 147

OBrienKaiser, 104
optim, 113
optimize, 78
Ornstein, 105
outlier.test (car-deprecated), 32
outlierTest, 34, 74, 106

p.adjust, 11
pairs, 137
palette, 16, 36, 44, 52, 55, 59, 77, 116, 120, 146
panel.car, 107
par, 16, 36, 44, 59, 60, 83, 95, 116, 120, 132, 133, 136, 146, 147, 149, 155
plot, 55, 100, 132
plot.boot, 24
plot.density, 52
plot.powerTransform, 108
points, 55
Pottery, 110
powerTransform, 20, 25–27, 33, 76, 109, 110, 136, 137, 152, 153
Prestige, 114
print.Anova.mlm (Anova), 7
print.boxTidwell (boxTidwell), 29
print.durbinWatsonTest
 (durbinWatsonTest), 56
 print.linearHypothesis.ml{}m
 (linearHypothesis), 84
 print.outlierTest (outlierTest), 106
 print.spreadLevelPlot
 (spreadLevelPlot), 145
 print.summary.Anova.ml{}m (Anova), 7
 print.univaov (Anova), 7
 printCoeffMat, 39
 printHypothesis (linearHypothesis), 84
 probabilityAxis, 92
 probabilityAxis (TransformationAxes), 154

qq.plot (car-deprecated), 32
qline, 117
qnorm, 117
qq (qqPlot), 115
qqPlot, 34, 115
qqplot, 117
qss, 138
quantregLine (ScatterplotSmoothers), 137

Quartet, 118

Recode (recode), 118
recode, 118
regLine, 108, 120
regSubsets, 149, 150
regular expression, 87
residCurvTest (residualPlots), 121
residualPlot (residualPlots), 121
residualPlots, 17, 96, 121, 141
residuals.lm, 123
Robey, 125
qss, 137, 138
rstudent, 74, 75

Sahlins, 125
Salaries, 126
scatter3d, 127
scatterplot, 131, 137, 138
scatterplot.mat{}rix (car-deprecated), 32
scatterplotMatrix, 34, 133, 134, 137, 138
ScatterplotSmoothers, 36, 44, 99, 100, 123, 132, 133, 135, 137, 137, 146
showLabels, 16, 36, 37, 44, 55, 60, 73, 75, 76, 78, 83, 95, 99, 116, 117, 123, 124, 129, 132, 133, 135, 137, 139, 147

SigmaHat, 141
SLID, 142
slp (spreadLevelPlot), 145
Soils, 143
some, 144
sp (scatterplot), 131
spm (scatterplotMatrix), 134
spread.level.plot (car-deprecated), 32
spreadLevelPlot, 34, 104, 145
States, 148
subsets, 149
substr, 140
summary, 23
summary.Anova.ml{}m (Anova), 7
summary.boot, 24
summary.boot (hist.boot), 70
symbox, 150

tail, 145
testTransform, 20, 112, 113, 151
Transact, 153
transform, 113
TransformationAxes, 154
tukeyNonaddTest (residualPlots), 121

UN, 156
USPop, 157

vcov, 48, 89, 158
vcov.boot, 23
vcov.boot (hist.boot), 70
vcovHAC, 89
vcovHC, 89
vif, 157
Vocab, 159

waldtest, 89
wncrossprod, 159
WeightLoss, 160
which.names, 161
whichNames (which.names), 161
Women1f, 162
Wong, 163
Wool, 164

yjPower, 26, 112, 137, 151, 152, 155
yjPower (bcPower), 18
yjPowerAxis (TransformationAxes), 154