Package ‘cat.dt’

April 24, 2020

Type Package

Title Computerized Adaptive Testing and Decision Trees

Version 0.2.0

Imports Rglpk, Matrix, ggplot2

Description Implements the Merged Tree-CAT method (Javier Rodriguez-Cuadrado et al., 2020, <doi:10.1016/j.eswa.2019.113066>) to generate Computerized Adaptive Tests (CATs) based on a decision tree. The tree growth is controlled by merging branches with similar trait distributions and estimations. This package has the necessary tools for creating CATs and estimate the subject’s ability level.

URL https://github.com/jlaria/cat.dt

License GPL-3

Encoding UTF-8

LazyData true

RoxygenNote 7.1.0

NeedsCompilation no

Suggests knitr, rmarkdown

VignetteBuilder knitr

Author Javier Rodriguez-Cuadrado [aut, cre], Juan C. Laria [aut], David Delgado-Gomez [aut]

Maintainer Javier Rodriguez-Cuadrado <javierro@est-econ.uc3m.es>

Repository CRAN

Date/Publication 2020-04-23 22:00:10 UTC

R topics documented:

ability_density ... 2
allocate_sons .. 3
a_posteriori .. 3
cat.dt ... 4
ability_density

Computes the density function values of the evaluated ability levels

ability_density(dens, ...)

Arguments

dens density function (e.g. dnorm, dunif, etc.)
... parameters of the density function

Value

A vector of density values

Author(s)

Javier Rodríguez-Cuadrado
allocate_sons

 allocated_sons

Allocate sons in the CAT decision tree

Description

Fills the information of the sons of the previous level nodes

Usage

allocate_sons(nodes_prev, nodes, level)

Arguments

- **nodes_prev**: list of node lists of the nodes from the previous level
- **nodes**: list of node lists of the nodes from the current level
- **level**: level of the CAT decision tree

Value

A list of node lists updated with the information of the sons

Author(s)

Javier Rodríguez-Cuadrado

a_posteriori

Vector of a posteriori density values of ability level

Description

Computes the a posteriori density function values of the evaluated ability levels given the item response

Usage

a_posteriori(apriori, prob)

Arguments

- **apriori**: a vector of a priori density function values of the evaluated ability levels
- **prob**: a vector of probability response for every evaluated ability level given the item response

Value

A vector of a posteriori density values
The cat.dt package implements the Merged Tree-CAT method to generate Computerized Adaptive Tests (CATs) based on a decision tree. The tree growth is controlled by merging branches with similar trait distributions and estimations. This package has the necessary tools for creating CATs and estimate the subject’s ability level. The Merged Tree-CAT method is an extension of the Tree-CAT method (see Delgado-Gómez et al., 2019 <doi:10.1016/j.eswa.2018.09.052>).

Main interface function

CAT_DT

Author(s)

Javier Rodríguez-Cuadrado, David Delgado-Gómez, Juan C. Laria

See Also

CAT_DT

Description

Computes the test taker’s estimated ability level based on the CAT decision tree previously built and the test taker’s responses to every item at every tree level

Usage

CAT_ability_est(cat.dt, res)

Arguments

cat.dt A cat.dt object returned by CAT_DT.
res Vector containing the test taker’s responses to every item
CAT_ability_est_group

Value

A list containing the following elements:
$estimation Estimated ability level after each level of the tree.
$linf Lower limit of the final estimation at 95
$lsup Upper limit of the final estimation at 95
$items Administered item in each level.
$graphics Plot object of the evolution of the ability level estimation. It shows the ability level estimation after the individual has answered to every administered item.

Author(s)

Javier Rodríguez-Cuadrado

Examples

Not run:
data("itemBank")
Build the cat.dt
nodes = CAT_DT(bank = itemBank, model = "GRM", crit = "MEPV",
 C = 0.3, stop = 6, limit = 200, inters = 0.98,
 p = 0.9, dens = dnorm, 0, 1)

Estimate the ability level of a subject with responses res
estimation = CAT_ability_est(nodes, res = itemRes[1,])

#plot the estimations
plot(estimation$graphics)

End(Not run)

CAT_ability_est_group Ability level estimation for a group using a CAT decision tree

Description

Computes the test takers’ estimated ability level based on the CAT decision tree previously built and the test takers’ responses to every item at every tree level

Usage

CAT_ability_est_group(cat.dt, res)

Arguments

cat.dt A cat.dt object returned by CAT_DT.
res Matrix containing the test takers’ responses to every item. Rows represent each individual and columns represent the responses given to each item.
Value

A list of lists containing the following elements for each individual:

- $estimation$: Estimated ability level after each level of the tree.
- linf: Lower limit of the final estimation at 95
- lsup: Upper limit of the final estimation at 95
- items: Administered item in each level.
- graphics: Plot object of the evolution of the ability level estimation. It shows the ability level estimation after the individual has answered to every administered item.

Author(s)

Javier Rodríguez-Cuadrado

Examples

```r
## Not run:
data("itemBank")
# Build the cat_dt
nodes = CAT_DT(bank = itemBank, model = "GRM", crit = "MEPV",
               C = 0.3, stop = 6, limit = 200, inters = 0.98,
               p = 0.9, dens = dnorm, 0, 1)

# Estimate the ability level of a subject with responses res
CAT_ability_est_group(nodes, res = itemRes)
## End(Not run)
```

CAT_DT

CAT decision tree

Description

Generates a cat.dt object containing the CAT decision tree. This object has all the necessary information to build the tree.

Usage

```r
CAT_DT(
  bank,
  model = "GRM",
  crit = "MEPV",
  C = 0.3,
  stop = 6,
  limit = 200,
  inters = 0.98,
  p = 0.9,
```
Arguments

bank: data.frame or matrix of the item bank. Rows represent items, and columns represent parameters. If the model is "GRM", the first column represents the alpha parameters and the next columns represent the beta parameters. If the model is "NRM", odd columns represent the alpha parameters and even columns represent beta parameters.

crit: item selection criterion. Options: "MEPV" for Minimum Expected Posterior Variance and "MFI" for Maximum Fisher Information.

C: vector of maximum item exposures. If it is an integer, this value is replicated for every item.

stop: vector of two components that represent the decision tree stopping criterion. The first component represents the maximum level of the decision tree, and the second represents the minimum estimated ability level precision.

limit: maximum number of level nodes.

inters: minimum common area between density functions in the nodes of the evaluated pair in order to join them.

p: a-priori probability that controls the tolerance to join similar nodes.

dens: density function (e.g., dnorm, dunif, etc.).

Value

An object of class cat.dt.

Author(s)

Javier Rodríguez-Cuadrado.

Examples

```r
## Not run:
data("itemBank")
# Build the cat.dt
nodes = CAT_DT(bank = itemBank, model = "GRM", crit = "MEPV",
               C = 0.3, stop = 6, limit = 200, inters = 0.98,
               p = 0.9, dens = dnorm, 0, 1)

# Estimate the ability level of a subject with responses res
CAT_ability_est(nodes, res = itemRes[1,])
# or
```
create_E_MEPV

MSE of every item for an specified node

Description

Computes a vector of the mean squared error of every item allocated to the specified level node in the CAT decision tree. Every MSE is computed using the ability level density function in the specified node and the ability level estimations given the item responses.

Usage

```
create_E_MEPV(bank, dens_vec, nres, prob_array, C)
```

Arguments

- **bank**: matrix of the item bank. Rows represent items, and columns represent parameters. If the model is "GRM", the first column represents the alpha parameters and the next columns represent the beta parameters. If the model is "NRM", odd columns represent the alpha parameters and even columns represent beta parameters.
- **dens_vec**: vector of the density function values in the specified node of the evaluated ability levels.
- **nres**: vector of number of possible responses for every item.
- **prob_array**: 3-D array of probability responses. Dim 1 represent items, dim 2 represent evaluated ability levels and dim 3 represent possible responses.
- **C**: vector of item capacities.

Value

A vector of all item MSE for the specified node.

Author(s)

Javier Rodríguez-Cuadrado
create_E_MFI
Fisher Information of every item for an specified node

Description
Computes a vector of the Fisher Information of every item allocated to the specified level node in the CAT decision tree. Every FI is computed using the estimated ability level in the specified node.

Usage
```
create_E_MFI(bank, theta_est, nres, C)
```

Arguments
- `bank`: matrix of the item bank. Rows represent items, and columns represent parameters. If the model is "GRM", the first column represents the alpha parameters and the next columns represent the beta parameters. If the model is "NRM", odd columns represent the alpha parameters and even columns represent beta parameters.
- `theta_est`: estimated ability level.
- `nres`: vector of number of possible responses for every item.
- `C`: vector of item capacities.

Value
A vector of all item Fisher Information for the specified node.

Author(s)
Javier Rodríguez-Cuadrado

create_last_level
CAT decision tree last level generator

Description
Generates a list of node lists for the last level of the CAT decision tree.

Usage
```
create_last_level(nodes_prev, nres, level, prob_array)
```
Arguments

- `nodes_prev` : list of node lists of the nodes from the previous level
- `nres` : vector of number of possible responses for every item
- `level` : last-level number (equals the length of the test plus one)
- `prob_array` : 3-D array of probability responses. Dim 1 represent items, dim 2 represent evaluated ability levels and dim 3 represent possible responses

Value

A list of lists. Each of these lists represent a node of the last level of the decision tree

Author(s)

Javier Rodríguez-Cuadrado

create_levels *CAT decision tree level generator*

Description

Generates a list of node lists for a specific level of the CAT decision tree

Usage

```r
create_levels(
    nodes_prev,
    bank,
    crit,
    C,
    nres,
    level,
    prob_array,
    limit,
    tol,
    inters
)
```

Arguments

- `nodes_prev` : list of node lists of the nodes from the previous level
- `bank` : matrix of the item bank. Rows represent items, and columns represent parameters. If the model is "GRM", the first column represents the alpha parameters and the next columns represent the beta parameters. If the model is "NRM", odd columns represent the alpha parameters and even columns represent beta parameters
create_level_1

<table>
<thead>
<tr>
<th>Item</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>crit</td>
<td>item selection criterion. Options: "MEPV" for Minimum Expected Posterior Variance and "MFI" for Maximum Fisher Information</td>
</tr>
<tr>
<td>C</td>
<td>vector of item capacities</td>
</tr>
<tr>
<td>nres</td>
<td>vector of number of possible responses for every item</td>
</tr>
<tr>
<td>level</td>
<td>level number</td>
</tr>
<tr>
<td>prob_array</td>
<td>3-D array of probability responses. Dim 1 represent items, dim 2 represent evaluated ability levels and dim 3 represent possible responses</td>
</tr>
<tr>
<td>limit</td>
<td>maximum number of level nodes</td>
</tr>
<tr>
<td>tol</td>
<td>maximum distance between estimated ability levels in the nodes of the evaluated pair in order to consider whether to join them</td>
</tr>
<tr>
<td>inters</td>
<td>minimum common area between density functions in the nodes of the evaluated pair in order to join them</td>
</tr>
</tbody>
</table>

Value

A list of lists. Each of these lists represent a node of the specified level of the decision tree.

Author(s)

Javier Rodríguez-Cuadrado

create_level_1

Level 1 CAT decision tree generator

Description

Generates a list of nodes lists for the first level of the CAT decision tree.

Usage

create_level_1(bank, crit, dens_vec, C, nres, prob_array)

Arguments

- **bank**: matrix of the item bank. Rows represent items, and columns represent parameters. If the model is "GRM", the first column represents the alpha parameters and the next columns represent the beta parameters. If the model is "NRM", odd columns represent the alpha parameters and even columns represent beta parameters.
- **crit**: item selection criterion. Options: "MEPV" for Minimum Expected Posterior Variance and "MFI" for Maximum Fisher Information.
- **dens_vec**: vector of the a priori density function values of the evaluated ability levels.
- **C**: vector of item capacities.
- **nres**: vector of number of possible responses for every item.
- **prob_array**: 3-D array of probability responses. Dim 1 represent items, dim 2 represent evaluated ability levels and dim 3 represent possible responses.
create_node

Value

A list of lists. Each of these lists represent a node of the first level of the decision tree

Author(s)

Javier Rodríguez-Cuadrado

create_node Node creator

Description

Generates a list that represents a specific node of the CAT decision tree

Usage

create_node(ID, dens_vec, item, item_prev, est, ID_sons, D, as_val)

Arguments

- **ID**: integer that represents the specified node identification in the form of 10000*level+position.
- **dens_vec**: vector of the density function values in the specified node of the evaluated ability levels
- **item**: integer that represents the item of the specified node
- **item_prev**: vector of items of the previous nodes
- **est**: estimated ability level in the specified node
- **ID_sons**: data frame containing the information of the sons of the specified node. Rows represent sons and columns represent the ID of the son, the response given to the item of the specified node that leaded to the son and the probability of reaching the son given that response (not equal to one if the son had previously splitted)
- **D**: confluency of the specified node
- **as_val**: associated value of the specified node. It can be the MSE if the selection criterium is "MEPV", the FI if the selection criterium is "MFI" and ****

Value

A list that represents a node of the decision tree

Author(s)

Javier Rodríguez-Cuadrado
create_prob_array

Multidimensional array of response probabilities

Description
For every item (dim 1) in an item bank and every evaluated ability level (dim 2), computes the probability of picking every possible response (dim 3) given the ability level.

Usage
create_prob_array(model, bank, nres)

Arguments
- **model**: polytomous IRT model. Options: "GRM" for Graded Response Model and "NRM" for Nominal Response Model.
- **bank**: matrix of the item bank. Rows represent items, and columns represent parameters. If the model is "GRM", the first column represents the alpha parameters and the next columns represent the beta parameters. If the model is "NRM", odd columns represent the alpha parameters and even columns represent beta parameters.
- **nres**: vector of number of possible responses for every item.

Value
A 3-dimensional array of probability responses.

Author(s)
Javier Rodríguez-Cuadrado

estimate

Ability level estimation

Description
Computes the estimated ability level given the ability level density function values.

Usage
estimate(dens_vec)

Arguments
- **dens_vec**: vector of density function values of the evaluated ability levels.
Value
A number, the expected value of the ability level density function

Author(s)
Javier Rodríguez-Cuadrado

Fisher_NRM

Fisher Information under NRM

Description
Computes the item Fisher Information given an ability level based on the NRM model

Usage
Fisher_NRM(theta_est, item_par, nres)

Arguments
theta_est ability level
item_par vector containing the item parameters. First component is the alpha parameter and the next are the beta parameters
nres number of possible item responses

Value
An integer that represents the Fisher Information value of the specified item given the ability level

Author(s)
Javier Rodríguez-Cuadrado

Fisher_GRM

Fisher Information under GRM

Description
Computes the item Fisher Information given an ability level based on the GRM model

Usage
Fisher_GRM(theta_est, item_par, nres)
Arguments

- **theta_est**: ability level
- **item_par**: vector containing the item parameters. Odd components are the alpha parameters and even are the beta parameters
- **nres**: number of possible item responses

Value

An integer that represents the Fisher Information value of the specified item given the ability level

Author(s)

Javier Rodríguez-Cuadrado

itemBank

Example item bank

Description

Item bank data generated using `genPolyMatrix` from `catR` package.

Usage

```r
data(itemBank)
```

Format

An object of class `data.frame`.

itemRes

Example item responses

Description

Item responses data to test with `data(itemBank)`. There are 30 subjects and their responses to 100 items.

Usage

```r
data(itemRes)
```

Format

An object of class `matrix`.
item_selector

Linear programming solver

Description

Computes the exposure rate of every item allocated to every level node. If more than one item is allocated to the same level node, the node splits.

Usage

```
item_selector(E_mat, D, C, minmax)
```

Arguments

- **E_mat**: matrix of the associated value of every item allocated to every level node. Rows represent items and columns represent level nodes. The "associated value" can be the MSE if the selection criterion is "MEPV", the FI if the selection criterion is "MFI" and ****
- **D**: vector of confluencies of every level node
- **C**: vector of item capacities
- **minmax**: optimisation direction. Options: TRUE to maximise and FALSE to minimise

Value

A matrix of exposure rates. Rows represent items and columns represent level nodes. Every item with a positive exposure rate for a level node is allocated to that node

Author(s)

Javier Rodríguez-Cuadrado

join_node

Node joiner

Description

Given all the nodes from one level, **join_node** evaluates all possible pairs one by one and decides whether or not to join them based on the similarity between the estimated ability levels and the density functions. If a pair of nodes is joined, the density function of the resulting node is the mean of the density functions of the joined nodes and the confluencies are summed.

Usage

```
join_node(nodes, level, limit, tol, inters)
```
`plot_tree`

Arguments

- **nodes**
 - list of node lists. Every node list must contain the ID of the node, the vector of density function values of the evaluated ability levels, the vector of previous items, the estimated ability level and the node confluency.

- **level**
 - level of the CAT decision tree.

- **limit**
 - maximum number of level nodes.

- **tol**
 - minimum distance between estimated ability levels to join two nodes.

- **inters**
 - minimum common area between density functions in the nodes of the evaluated pair in order to join them.

Value

A list of node lists. This list is the input list updated with the joined nodes.

Author(s)

Javier Rodríguez-Cuadrado

`plot_tree`

Description

Generates a plot object to visualize the CAT decision tree.

Usage

```
plot_tree(object, levels = 3, tree = 1)
```

Arguments

- **object**
 - A `cat.dt` object.

- **levels**
 - Number of levels to plot, starting from the first one.

- **tree**
 - Index of tree to plot. The total number of trees is given by `length(nodes$nodes[[1]])`.

Value

A ggplot2 object.

Author(s)

Javier Rodríguez-Cuadrado
predict.cat.dt

Predict S3 method for cat.dt

Description

Predict S3 method for cat.dt

Usage

```r
## S3 method for class 'cat.dt'
predict(object, res, ...)
```

Arguments

- `object` A `cat.dt` object returned by `CAT_DT`.
- `res` Vector containing the test taker's responses to every item
- `...` Not used

Value

A list containing the following elements:
- `$estimation` Estimated ability level after each level of the tree.
- `$linf` Lower limit of the final estimation at 95
- `$lsup` Upper limit of the final estimation at 95
- `$items` Administered item in each level.
- `$graphics` Plot object of the evolution of the ability level estimation. It shows the ability level estimation after the individual has answered to every administered item.

Author(s)

Javier Rodríguez-Cuadrado

probab_GRM

Item response GRM probabilities

Description

Computes the probabilities of picking every possible response of an specified item from the item bank for all evaluated ability levels using the Graded Response Model

Usage

```r
probab_GRM(item_par, nres)
```
probab_NRM

Arguments

- **item_par**: vector containing the item parameters. First component is the alpha parameter and the next are the beta parameters
- **nres**: number of possible item responses

Value

A matrix of response probabilities. Rows represent evaluated ability levels and columns represent responses

Author(s)

Javier Rodríguez-Cuadrado

probab_NRM

Item response NRM probabilities

Description

Computes the probabilities of picking every possible response of an specified item from the item bank for all evaluated ability levels using the Nominal Response Model

Usage

```r
probab_NRM(item_par, nres)
```

Arguments

- **item_par**: vector containing the item parameters. Odd components are the alpha parameters and even are the beta parameters
- **nres**: number of possible item responses

Value

A matrix of response probabilities. Rows represent evaluated ability levels and columns represent responses

Author(s)

Javier Rodríguez-Cuadrado
Description
Summary of the cat.dt object generated

Usage
S3 method for class 'cat.dt'
summary(object, ...)

Arguments
object A cat.dt object
... not used

Value
A summary of the cat.dt object

Author(s)
Javier Rodríguez-Cuadrado
Index

*Topic datasets
 itemBank, 15
 itemRes, 15

a_posteriori, 3
ability_density, 2
allocate_sons, 3

cat.dt, 4
CAT_ability_est, 4
CAT_ability_est_group, 5
CAT_DT, 4, 5, 6, 18
create_E_MEPV, 8
create_E_MFI, 9
create_last_level, 9
create_level_1, 11
create_levels, 10
create_node, 12
create_prob_array, 13

estimate, 13

Fisher_GRM, 14
Fisher_NRM, 14

item_selector, 16
itemBank, 15
itemRes, 15

join_node, 16

plot_tree, 17
predict.cat.dt, 18
probab_GRM, 18
probab_NRM, 19

summary.cat.dt, 20