Package ‘cat.dt’

March 31, 2021

Type Package

Title Computerized Adaptive Testing and Decision Trees

Version 0.3.1

Imports Rglpk, Matrix, ggplot2

Description Implements the Merged Tree-CAT method (Javier Rodriguez-Cuadrado et al., 2020, <doi:10.1016/j.eswa.2019.113066>) to generate Computerized Adaptive Tests (CATs) based on a decision tree. The tree growth is controlled by merging branches with similar trait distributions and estimations. This package has the necessary tools for creating CATs and estimate the subject's ability level.

URL https://github.com/jlaria/cat.dt

License GPL-3

Encoding UTF-8

LazyData true

RoxygenNote 7.1.1

NeedsCompilation no

Suggests knitr, rmarkdown

VignetteBuilder knitr

Author Javier Rodriguez-Cuadrado [aut, cre],
Juan C. Laria [aut],
David Delgado-Gomez [aut]

Maintainer Javier Rodriguez-Cuadrado <javierro@est-econ.uc3m.es>

Repository CRAN

Date/Publication 2021-03-31 12:20:06 UTC

R topics documented:

ability_density ... 2
allocate_sons ... 3
a_posteriori ... 3
cat.dt ... 4
ability_density

Vector of density values of ability level

Description
Computes the density function values of the evaluated ability levels

Usage
ability_density(dens, ...)

Arguments
dens density function (e.g. dnorm, dunif, etc.)
... parameters of the density function

Value
A vector of density values

Author(s)
Javier Rodriguez-Cuadrado
allocate_sons

Allocate sons in the CAT decision tree

Description
Fills the information of the sons of the previous level nodes

Usage
allocate_sons(nodes_prev, nodes, level)

Arguments
- nodes_prev: list of node lists of the nodes from the previous level
- nodes: list of node lists of the nodes from the current level
- level: level of the CAT decision tree

Value
A list of node lists updated with the information of the sons

Author(s)
Javier Rodríguez-Cuadrado

a_posteriori

Vector of a posteriori density values of ability level

Description
Computes the a posteriori density function values of the evaluated ability levels given the item response

Usage
a_posteriori(apriori, prob)

Arguments
- apriori: a vector of a priori density function values of the evaluated ability levels
- prob: a vector of probability response for every evaluated ability level given the item response

Value
A vector of a posteriori density values
The cat.dt package implements the Merged Tree-CAT method to generate Computerized Adaptive Tests (CATs) based on a decision tree. The tree growth is controlled by merging branches with similar trait distributions and estimations. This package has the necessary tools for creating CATs and estimate the subject’s ability level. The Merged Tree-CAT method is an extension of the Tree-CAT method (see Delgado-Gómez et al., 2019 <doi:10.1016/j.eswa.2018.09.052>).

Main interface function

CAT_DT

Author(s)

Javier Rodríguez-Cuadrado, David Delgado-Gómez, Juan C. Laria

See Also

CAT_DT

Description

Computes the test taker’s estimated ability level based on the CAT decision tree previously built and the test taker’s responses to every item at every tree level

Usage

CAT_ability_est(cat.dt, res)

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>cat.dt</td>
<td>A cat.dt object returned by CAT_DT.</td>
</tr>
<tr>
<td>res</td>
<td>Vector containing the test taker’s responses to every item</td>
</tr>
</tbody>
</table>
Value

A list containing the following elements:

$estimation Estimated ability level after each level of the tree.

$linf Lower limit of the final estimation at 95

$lsup Upper limit of the final estimation at 95

$items Administered item in each level.

$graphics Plot object of the evolution of the ability level estimation. It shows the ability level estimation after the individual has answered to every administered item.

Author(s)

Javier Rodríguez-Cuadrado

Examples

data("itemBank")
Build the cat.dt
nodes = CAT_DT(bank = itemBank, model = "GRM", crit = "MEPV",
 C = 0.3, stop = c(3,0.5), limit = 200, inters = 0.98,
 p = 0.9, dens = dnorm, 0, 1)

Estimate the ability level of a subject with responses res
estimation = CAT_ability_est(nodes, res = itemRes[1,])

#plot the estimations
plot(estimation$graphics)

Description

Computes the test takers’ estimated ability level based on the CAT decision tree previously built and the test takers’ responses to every item at every tree level

Usage

CAT_ability_est_group(cat.dt, res)

Arguments

cat.dt A cat.dt object returned by CAT_DT.
res Matrix containing the test takers’ responses to every item. Rows represent each individual and columns represent the responses given to each item.
Value

A list of lists containing the following elements for each individual:

- `$estimation` Estimated ability level after each level of the tree.
- `$linf` Lower limit of the final estimation at 95
- `$lsup` Upper limit of the final estimation at 95
- `$items` Administered item in each level.
- `$graphics` Plot object of the evolution of the ability level estimation. It shows the ability level estimation after the individual has answered to every administered item.

Author(s)

Javier Rodríguez-Cuadrado

Examples

```r
# data("itemBank")
# Build the cat.dt
# nodes = CAT_DT(bank = itemBank, model = "GRM", crit = "MEPV",
#                C = 0.3, stop = c(2, 0.5), limit = 100, inters = 0.8,
#                p = 0.8, dens = dnorm, 0, 1)

# Estimate the ability level of a subject with responses res
# CAT_ability_est_group(nodes, res = itemRes)
```

Description

Generates a `cat.dt` object containing the CAT decision tree. This object has all the necessary information to build the tree.

Usage

```r
CAT_DT(
    bank,
    model = "GRM",
    crit = "MEPV",
    C = 0.3,
    stop = c(6, 0),
    limit = 200,
    inters = 0.98,
    p = 0.9,
    dens, 
    ...
)
```
Arguments

bank data.frame or matrix of the item bank. Rows represent items, and columns represent parameters. If the model is "GRM", the first column represents the alpha parameters and the next columns represent the beta parameters. If the model is "NRM", odd columns represent the alpha parameters and even columns represent beta parameters.

type polytomous IRT model. Options: "GRM" for Graded Response Model and "NRM" for Nominal Response Model.

crit item selection criterion. Options: "MEPV" for Minimum Expected Posterior Variance and "MFI" for Maximum Fisher Information.

C vector of maximum item exposures. If it is an integer, this value is replicated for every item.

stop vector of two components that represent the decision tree stopping criterion. The first component represents the maximum level of the decision tree, and the second represents the minimum standard error of the ability level (if it is 0, this second criterion is not applied).

limit maximum number of level nodes.

inters minimum common area between density functions in the nodes of the evaluated pair in order to join them.

p a-priori probability that controls the tolerance to join similar nodes.

dens density function (e.g. dnorm, dunif, etc.).

Value

An object of class cat.dt

Author(s)

Javier Rodriguez-Cuadrado

Examples

data("itemBank")
Build the cat.dt
nodes = CAT_DT(bank = itemBank, model = "GRM", crit = "MEPV",
 C = 0.3, stop = c(3,0.05), limit = 100, inters = 0.9,
 p = 0.9, dens = dnorm, 0, 1)

Estimate the ability level of a subject with responses res
CAT_ability_est(nodes, res = itemRes[1,])
or
nodes$predict(res = itemRes[1,])
or
predict(nodes, itemRes[1,])
create_E_MEPV
MSE of every item for an specified node

Description
Computes a vector of the mean squared error of every item allocated to the specified level node in the CAT decision tree. Every MSE is computed using the ability level density function in the specified node and the ability level estimations given the item responses.

Usage
```
create_E_MEPV(bank, dens_vec, nres, prob_array, C)
```

Arguments
- `bank`: matrix of the item bank. Rows represent items, and columns represent parameters. If the model is "GRM", the first column represents the alpha parameters and the next columns represent the beta parameters. If the model is "NRM", odd columns represent the alpha parameters and even columns represent beta parameters.
- `dens_vec`: vector of the density function values in the specified node of the evaluated ability levels.
- `nres`: vector of number of possible responses for every item.
- `prob_array`: 3-D array of probability responses. Dim 1 represent items, dim 2 represent evaluated ability levels and dim 3 represent possible responses.
- `C`: vector of item capacities.

Value
A vector of all item MSE for the specified node.

Author(s)
Javier Rodriguez-Cuadrado

create_E_MFI
Fisher Information of every item for an specified node

Description
Computes a vector of the Fisher Information of every item allocated to the specified level node in the CAT decision tree. Every FI is computed using the estimated ability level in the specified node.

Usage
```
create_E_MFI(bank, dens_vec, nres, prob_array, C)
```

Arguments
- `bank`: matrix of the item bank. Rows represent items, and columns represent parameters. If the model is "GRM", the first column represents the alpha parameters and the next columns represent the beta parameters. If the model is "NRM", odd columns represent the alpha parameters and even columns represent beta parameters.
- `dens_vec`: vector of the density function values in the specified node of the evaluated ability levels.
- `nres`: vector of number of possible responses for every item.
- `prob_array`: 3-D array of probability responses. Dim 1 represent items, dim 2 represent evaluated ability levels and dim 3 represent possible responses.
- `C`: vector of item capacities.

Value
A vector of all item FI for the specified node.

Author(s)
Javier Rodriguez-Cuadrado
create_last_level

Usage

create_E_MFI(bank, theta_est, nres, C)

Arguments

bank matrix of the item bank. Rows represent items, and columns represent parameters. If the model is "GRM", the first column represents the alpha parameters and the next columns represent the beta parameters. If the model is "NRM", odd columns represent the alpha parameters and even columns represent beta parameters
theta_est estimated ability level
nres vector of number of possible responses for every item
C vector of item capacities

Value

A vector of all item Fisher Information for the specified node

Author(s)

Javier Rodríguez-Cuadrado

create_last_level CAT decision tree last level generator

Description

Generates a list of node lists for the last level of the CAT decision tree

Usage

create_last_level(nodes_prev, nres, level, prob_array, SE)

Arguments

nodes_prev list of node lists of the nodes from the previous level
nres vector of number of possible responses for every item
level last-level number (equals the length of the test plus one)
prob_array 3-D array of probability responses. Dim 1 represent items, dim 2 represent evaluated ability levels and dim 3 represent possible responses
SE minimum standard error of the ability level

Value

A list of lists. Each of these lists represent a node of the last level of the decision tree
Author(s)

Javier Rodríguez-Cuadrado

create_levels CAT decision tree level generator

Description

Generates a list of node lists for a specific level of the CAT decision tree

Usage

create_levels(
 nodes_prev,
 bank,
 crit,
 C,
 nres,
 level,
 prob_array,
 limit,
 tol,
 inters,
 SE
)

Arguments

- **nodes_prev**: list of node lists of the nodes from the previous level
- **bank**: matrix of the item bank. Rows represent items, and columns represent parameters. If the model is "GRM", the first column represents the alpha parameters and the next columns represent the beta parameters. If the model is "NRM", odd columns represent the alpha parameters and even columns represent beta parameters
- **crit**: item selection criterion. Options: "MEPV" for Minimum Expected Posterior Variance and "MFI" for Maximum Fisher Information
- **C**: vector of item capacities
- **nres**: vector of number of possible responses for every item
- **level**: level number
- **prob_array**: 3-D array of probability responses. Dim 1 represent items, dim 2 represent evaluated ability levels and dim 3 represent possible responses
- **limit**: maximum number of level nodes
- **tol**: maximum distance between estimated ability levels in the nodes of the evaluated pair in order to consider whether to join them
create_level_1

inters minimum common area between density functions in the nodes of the evaluated pair in order to join them
SE minimum standard error of the ability level

Value

A list of lists and a scalar. Each of the lists represent a node of the specified level of the decision tree, and the scalar represents if the created level is the last (1) or not (0) due to the SE stopping criterion

Author(s)

Javier Rodríguez-Cuadrado

create_level_1 Level 1 CAT decision tree generator

Description

Generates a list of nodes lists for the first level of the CAT decision tree

Usage

create_level_1(bank, crit, dens_vec, C, nres, prob_array)

Arguments

bank matrix of the item bank. Rows represent items, and columns represent parameters. If the model is "GRM", the first column represents the alpha parameters and the next columns represent the beta parameters. If the model is "NRM", odd columns represent the alpha parameters and even columns represent beta parameters
crit item selection criterion. Options: "MEPV" for Minimum Expected Posterior Variance and "MFI" for Maximum Fisher Information
dens_vec vector of the a priori density function values of the evaluated ability levels
C vector of item capacities
nres vector of number of possible responses for every item
prob_array 3-D array of probability responses. Dim 1 represent items, dim 2 represent evaluated ability levels and dim 3 represent possible responses

Value

A list of lists. Each of these lists represent a node of the first level of the decision tree

Author(s)

Javier Rodríguez-Cuadrado
create_node Node creator

Description

Generates a list that represents a specific node of the CAT decision tree

Usage

create_node(ID, dens_vec, item, item_prev, est, SE, ID_sons, D, as_val)

Arguments

- **ID**: integer that represents the specified node identification in the form of 10000*level+position.
- **dens_vec**: vector of the density function values in the specified node of the evaluated ability levels.
- **item**: integer that represents the item of the specified node.
- **item_prev**: vector of items of the previous nodes.
- **est**: estimated ability level in the specified node.
- **SE**: standard error of the estimated ability level.
- **ID_sons**: data frame containing the information of the sons of the specified node. Rows represent sons and columns represent the ID of the son, the response given to the item of the specified node that leaded to the son and the probability of reaching the son given that response (not equal to one if the son had previously splitted).
- **D**: confluency of the specified node.
- **as_val**: associated value of the specified node. It can be the MSE if the selection criterium is "MEPV" and the FI if the selection criterium is "MFI".

Value

A list that represents a node of the decision tree

Author(s)

Javier Rodríguez-Cuadrado
create_prob_array

Description
For every item (dim 1) in an item bank and every evaluated ability level (dim 2), computes the probability of picking every possible response (dim 3) given the ability level.

Usage

```
create_prob_array(model, bank, nres)
```

Arguments
- **model**: polytomous IRT model. Options: "GRM" for Graded Response Model and "NRM" for Nominal Response Model.
- **bank**: matrix of the item bank. Rows represent items, and columns represent parameters. If the model is "GRM", the first column represents the alpha parameters and the next columns represent the beta parameters. If the model is "NRM", odd columns represent the alpha parameters and even columns represent beta parameters.
- **nres**: vector of number of possible responses for every item.

Value
A 3-dimensional array of probability responses.

Author(s)
Javier Rodríguez-Cuadrado

estimate

Description
Computes the estimated ability level given the ability level density function values and its standard error.

Usage

```
estimate(dens_vec)
```

Arguments
- **dens_vec**: vector of density function values of the evaluated ability levels.
Fisher GRM

Value

A list containing the expected value of the ability level density function and the standard error of that expected value

Author(s)

Javier Rodríguez-Cuadrado

Fisher GRM
Fisher Information under GRM

Description

Computes the item Fisher Information given an ability level based on the GRM model

Usage

Fisher_GRM(theta_est, item_par, nres)

Arguments

- **theta_est**
 ability level
- **item_par**
 vector containing the item parameters. First component is the alpha parameter and the next are the beta parameters
- **nres**
 number of possible item responses

Value

An integer that represents the Fisher Information value of the specified item given the ability level

Author(s)

Javier Rodriguez-Cuadrado
Fisher_NRM

Fisher Information under NRM

Description
Computes the item Fisher Information given an ability level based on the NRM model.

Usage
Fisher_NRM(theta_est, item_par, nres)

Arguments
- **theta_est**: ability level
- **item_par**: vector containing the item parameters. Odd components are the alpha parameters and even are the beta parameters.
- **nres**: number of possible item responses

Value
An integer that represents the Fisher Information value of the specified item given the ability level.

Author(s)
Javier Rodriguez-Cuadrado

itemBank

Example item bank

Description
Item bank data generated using genPolyMatrix from catR package.

Usage
data(itemBank)

Format
An object of class data.frame.
itemRes

Example item responses

Description

Item responses data to test with `data(itemBank)`. There are 30 subjects and their responses to 100 items.

Usage

`data(itemRes)`

Format

An object of class `matrix`.

item_selector

Linear programming solver

Description

Computes the exposure rate of every item allocated to every level node. If more than one item is allocated to the same level node, the node splits.

Usage

`item_selector(E_mat, D, C, minmax)`

Arguments

- **E_mat**

 Matrix of the associated value of every item allocated to every level node. Rows represent items and columns represent level nodes. The "associated value" can be the MSE if the selection criterium is "MEPV", the FI if the selection criterium is "MFI" and ****

- **D**

 Vector of confluencies of every level node

- **C**

 Vector of item capacities

- **minmax**

 Optimisation direction. Options: TRUE to maximise and FALSE to minimise

Value

A matrix of exposure rates. Rows represent items and columns represent level nodes. Every item with a positive exposure rate for a level node is allocated to that node

Author(s)

Javier Rodríguez-Cuadrado
join_node

Node joiner

Description

Given all the nodes from one level, `join_node` evaluates all possible pairs one by one and decides whether or not to join them based on the similarity between the estimated ability levels and the density functions. If a pair of nodes is joined, the density function of the resulting node is the mean of the density functions of the joined nodes and the confluencies are summed.

Usage

```r
join_node(nodes, level, limit, tol, inters)
```

Arguments

- `nodes`: list of node lists. Every node list must contain the ID of the node, the vector of density function values of the evaluated ability levels, the vector of previous items, the estimated ability level and the node confluency
- `level`: level of the CAT decision tree
- `limit`: maximum number of level nodes
- `tol`: minimum distance between estimated ability levels to join two nodes
- `inters`: minimum common area between density functions in the nodes of the evaluated pair in order to join them

Value

A list of node lists. This list is the input list updated with the joined nodes

Author(s)

Javier Rodríguez-Cuadrado

plot_tree

CAT decision tree plot

Description

Generates a plot object to visualize the CAT decision tree

Usage

```r
plot_tree(object, levels = 3, tree = 1)
```
Arguments

object A cat.dt object
levels Number of levels to plot, starting from the first one.
tree Index of tree to plot. The total number of trees is given by length(nodes$nodes[[1]])

Value

A ggplot2 object

Author(s)

Javier Rodríguez-Cuadrado

predict.cat.dt Predict S3 method for cat.dt

Description

Predict S3 method for cat.dt

Usage

S3 method for class 'cat.dt'
predict(object, res, ...)

Arguments

object A cat.dt object returned by CAT_DT.
res Vector containing the test taker's responses to every item
... Not used

Value

A list containing the following elements:
$estimation Estimated ability level after each level of the tree.
$linf Lower limit of the final estimation at 95
$lsup Upper limit of the final estimation at 95
$items Administered item in each level.
$graphics Plot object of the evolution of the ability level estimation. It shows the ability level estimation after the individual has answered to every administered item.

Author(s)

Javier Rodríguez-Cuadrado
probab_GRM

Item response GRM probabilities

Description

Computes the probabilities of picking every possible response of an specified item from the item bank for all evaluated ability levels using the Graded Response Model.

Usage

```r
probab_GRM(item_par, nres)
```

Arguments

- `item_par` vector containing the item parameters. First component is the alpha parameter and the next are the beta parameters.
- `nres` number of possible item responses.

Value

A matrix of response probabilities. Rows represent evaluated ability levels and columns represent responses.

Author(s)

Javier Rodríguez-Cuadrado

probab_NRM

Item response NRM probabilities

Description

Computes the probabilities of picking every possible response of an specified item from the item bank for all evaluated ability levels using the Nominal Response Model.

Usage

```r
probab_NRM(item_par, nres)
```

Arguments

- `item_par` vector containing the item parameters. Odd components are the alpha parameters and even are the beta parameters.
- `nres` number of possible item responses.
Value
A matrix of response probabilities. Rows represent evaluated ability levels and columns represent responses

Author(s)
Javier Rodríguez-Cuadrado
Index

* datasets
 itemBank, 15
 itemRes, 16

a_posteriori, 3
ability_density, 2
allocate_sons, 3

cat.dt, 4
CAT_ability_est, 4
CAT_ability_est_group, 5
CAT_DT, 4, 5, 6, 18
create_E_MEPV, 8
create_E_MFI, 8
create_last_level, 9
create_level_1, 11
create_levels, 10
create_node, 12
create_prob_array, 13

estimate, 13

Fisher_GRM, 14
Fisher_NRM, 15

item_selector, 16
itemBank, 15
itemRes, 16

join_node, 17

plot_tree, 17
predict.cat.dt, 18
probab_GRM, 19
probab_NRM, 19

summary.cat.dt, 20