Package ‘catfun’

June 14, 2019

Type Package

Title Categorical Data Analysis

Version 0.1.4

Author Nick Williams

Maintainer Nick Williams <ntwilliams.personal@gmail.com>

Description Includes wrapper functions around existing functions for the analysis of categorical data and introduces functions for calculating risk differences and matched odds ratios. R currently supports a wide variety of tools for the analysis of categorical data. However, many functions are spread across a variety of packages with differing syntax and poor compatibility with each another. prop_test() combines the functions binom.test(), prop.test() and BinomCI() into one output. prop_power() allows for power and sample size calculations for both balanced and unbalanced designs. riskdiff() is used for calculating risk differences and matched_or() is used for calculating matched odds ratios. For further information on methods used that are not documented in other packages see Nathan Mantel and William Haenszel (1959) <doi:10.1093/jnci/22.4.719> and Alan Agresti (2002) <ISBN:0-471-36093-7>.

License MIT + file LICENSE

Encoding UTF-8

LazyData true

Imports epitools, DescTools, cli, magrittr, Hmisc, broom, rlang

RoxygenNote 6.1.1

Suggests testthat, dplyr, forcats

NeedsCompilation no

Repository CRAN

Date/Publication 2019-06-14 14:10:03 UTC

R topics documented:

 matched_or . 2
 matched_or.data.frame . 3
 matched_or.table . 4
matched_or

Description

Create odds ratio and confidence interval from matched pairs data.

Usage

matched_or(df, ...)

Arguments

df a dataframe with binary variables x and y or a 2 x 2 frequency table/matrix. If a
table or matrix, x and y must be NULL. Used to select method.

... further arguments passed to or from other methods.

Details

The matched pairs odds ratio and confidence interval is the equivalent of calculating a Cochran-
Mantel-Haenszel odds ratio where each pair is treated as a stratum.

Value

a list with class "matched_or" with the following components:

tab 2x2 table using for calculating risk difference

or dataframe with columns corresponding to matched-pairs OR, lower bound, and
upper bound of CI

conf.level specified confidence level
Examples

```r
set.seed(1)
gene <- data.frame(pair = seq(1:35),
                   ulcer = rbinom(35, 1, .7),
                   healthy = rbinom(35, 1, .4))

matched_or(gene, ulcer, healthy)
```

Description

Create odds ratio and confidence interval from matched pairs data.

Usage

```r
## S3 method for class 'data.frame'
matched_or(df, x, y, weight = NULL, alpha = 0.05,
            rev = c("neither", "rows", "columns", "both"), ...)
```

Arguments

- `df`: a dataframe with binary variables x and y.
- `x`: binary vector, used as rows for frequency table and calculations.
- `y`: binary vector, used as columns for frequency table and calculations.
- `weight`: an optional vector of count weights.
- `alpha`: level of significance for confidence interval.
- `rev`: reverse order of cells. Options are "row", "columns", "both", and "neither" (default).
- `...`: further arguments passed to or from other methods.

Value

a list with class "matched_or" with the following components:

- `tab`: 2x2 table using for calculating risk difference
- `or`: dataframe with columns corresponding to matched-pairs OR, lower bound, and upper bound of CI
- `conf.level`: specified confidence level
Examples

gene <- data.frame(pair = seq(1:35),
 ulcer = rbinom(35, 1, .7),
 healthy = rbinom(35, 1, .4))

matched_or(gene, ulcer, healthy)

matched_or.table Matched pairs odds ratio from a table

Description

Create odds ratio and confidence interval from matched pairs data.

Usage

S3 method for class 'table'
matched_or(df, alpha = 0.05, rev = c("neither", "rows",
 "columns", "both"), ...)

Arguments

df a dataframe with binary variables x and y or a 2 x 2 frequency table/matrix.
alpha level of significance for confidence interval.
rev reverse order of cells. Options are "row", "columns", "both", and "neither" (default).
... further arguments passed to or from other methods.

Value

a list with class "matched_or" with the following components:

tab 2x2 table using for calculating risk difference
or dataframe with columns corresponding to matched-pairs OR, lower bound, and upper bound of CI
conf.level specified confidence level

Examples

gene <- data.frame(pair = seq(1:35),
 ulcer = rbinom(35, 1, .7),
 healthy = rbinom(35, 1, .4))

gene_tab <- xtabs(~ ulcer + healthy, data = gene)

gene_tab %>% matched_or()}
prop_power

prop_power
Power and sample size for 2 proportions

Description

Calculate power and sample size for comparison of 2 proportions for both balanced and unbalanced designs.

Usage

```r
prop_power(n, n1, n2, p1, p2, fraction = 0.5, alpha = 0.05,  
    power = NULL, alternative = c("two.sided", "one.sided"), odds.ratio,  
    percent.reduction, ...)```

**Arguments**

- `n`: total sample size.
- `n1`: sample size in group 1.
- `n2`: sample size in group 2.
- `p1`: group 1 proportion.
- `p2`: group 2 proportion.
- `fraction`: fraction of total observations that are in group 1.
- `alpha`: significance level/type 1 error rate.
- `power`: desired power, between 0 and 1.
- `alternative`: alternative hypothesis, one- or two-sided test.
- `odds.ratio`: odds ratio comparing p2 to p1.
- `percent.reduction`: percent reduction of p1 to p2.
- `...`: further arguments passed to or from other methods.

**Details**

Power calculations are done using the methods described in `stats::power.prop.test`, `Hmisc::bsamsize`, and `Hmisc::bpower`.

**Value**

A list with class "prop_power" containing the following components:

- `n`: the total sample size
- `n1`: the sample size in group 1
- `n2`: the sample size in group 2
- `p1`: the proportion in group 1
- `p2`: the proportion in group 2
- `power`: calculated or desired power
- `sig.level`: level of significance
See Also

[stats::power.prop.test], [Hmisc::bsamsize], [Hmisc::bpower]

Examples

```r
prop_power(n = 220, p1 = 0.35, p2 = 0.2)
prop_power(p1 = 0.35, p2 = 0.2, fraction = 2/3, power = 0.85)
prop_power(p1 = 0.35, n = 220, percent.reduction = 42.857)
prop_power(p1 = 0.35, n = 220, odds.ratio = 0.4642857)
```

---

**prop_test**

Tests for equality of proportions

Description

Conduct 1-sample tests of proportions and tests for equality of k proportions.

Usage

```r
prop_test(x, ...)
```

Arguments

- `x`:
  - a vector of counts, a one-dimensional table with two entries, or a two-dimensional table with 2 columns. Used to select method.
- `...`:
  - further arguments passed to or from other methods.

Details

Calculations are done using the methods described in `stats::binom.test()` and `stats::prop.test()`

Value

A list with class "prop_test" containing the following components:

- `x`:
  - number of successes
- `n`:
  - number of trials
- `p`:
  - null proportion
- `statistic`:
  - the value of Pearson’s chi-squared test statistic
- `p_value`:
  - p-value corresponding to chi-squared test statistic
- `df`:
  - degrees of freedom
- `method`:
  - the method used to calculate the confidence interval
- `method_ci`:
  - confidence interval calculated using specified method
- `exact_ci`:
  - exact confidence interval
- `exact_p`:
  - p-value from exact test
See Also

[stats::binom.test()], [stats::prop.test()]

Examples

prop_test(7, 50, method = "wald", p = 0.2)
prop_test(7, 50, method = "wald", p = 0.2, exact = TRUE)
prop_test(c(23, 24), c(50, 55))

vietnam <- data.frame(
  service = c(rep("yes", 2), rep("no", 2)),
  sleep = c(rep(c("yes", "no"), 2)),
  count = c(173, 160, 599, 851)
)

sleep <- xtabs(count ~ service + sleep, data = vietnam)
prop_test(sleep)
prop_test(vietnam, service, sleep, count)

Description

Conduct 1-sample tests of proportions and tests for equality of k proportions.

Usage

## S3 method for class 'data.frame'
prop_test(x, pred, out, weight = NULL,
  rev = c("neither", "rows", "columns", "both"), method = c("wald",
  "wilson", "agresti-couli", "jeffreys", "modified wilson", "wilsoncc",
  "modified jeffreys", "clopper-pearson", "arcsine", "logit", "witting",
  "pratt"), alternative = c("two.sided", "less", "greater"),
  conf.level = 0.95, correct = FALSE, exact = FALSE, ...)

Arguments

x a dataframe with categorical variable pred and binary outcome out.
pred predictor/exposure, vector.
out outcome, vector.
weight an optional vector of count weights.
rev reverse order of cells. Options are "row", "columns", "both", and "neither" (default).
prop_test.data.frame

method: a character string indicating method for calculating confidence interval, default is "wald". Options include, wald, wilson, agresti-couli, jeffreys, modified wilson, wilsonce modified jeffreys, clopper-pearson, arcsine, logit, witting, and pratt.

alternative: character string specifying the alternative hypothesis. Possible options are "two.sided" (default), "greater", or "less".

conf.level: confidence level for confidence interval, default is 0.95.

correct: a logical indicating whether Yate’s continuity correction should be applied.

exact: a logical indicating whether to output exact p-value, ignored if k-sample test.

... further arguments passed to or from other methods.

Value

a list with class "prop_test" containing the following components:

x: number of successes

n: number of trials

p: null proportion

statistic: the value of Pearson’s chi-squared test statistic

p_value: p-value corresponding to chi-squared test statistic

df: degrees of freedom

method: the method used to calculate the confidence interval

method_ci: confidence interval calculated using specified method

exact_ci: exact confidence interval

exact_p: p-value from exact test

Examples

vietnam <- data.frame(  
  service = c(rep("yes", 2), rep("no", 2)),  
  sleep = c(rep("yes", "no"), 2)),  
  count = c(173, 160, 599, 851)  
)

prop_test(vietnam, service, sleep, count)
prop_test.matrix

Tests for equality of proportions

Description

Conduct 1-sample tests of proportions and tests for equality of k proportions.

Usage

## S3 method for class 'matrix'
prop_test(x, method = c("wald", "wilson",
  "agresti-couli", "jeffreys", "modified wilson", "wilsoncc",
  "modified jeffreys", "clopper-pearson", "arcsine", "logit", "witting",
  "pratt"), alternative = c("two.sided", "less", "greater"),
  conf.level = 0.95, correct = FALSE, exact = FALSE, ...)

Arguments

- x: a 2 x k matrix.
- method: a character string indicating method for calculating confidence interval, default is "wald". Options include, wald, wilson, agresti-couli, jeffreys, modified wilson, wilsoncc, modified jeffreys, clopper-pearson, arcsine, logit, witting, and pratt.
- alternative: character string specifying the alternative hypothesis. Possible options are "two.sided" (default), "greater", or "less".
- conf.level: confidence level for confidence interval, default is 0.95.
- correct: a logical indicating whether Yate's continuity correction should be applied.
- exact: a logical indicating whether to output exact p-value, ignored if k-sample test.
- ...: further arguments passed to or from other methods.

Value

a list with class "prop_test" containing the following components:

- x: number of successes
- n: number of trials
- p: null proportion
- statistic: the value of Pearson's chi-squared test statistic
- p_value: p-value corresponding to chi-squared test statistic
- df: degrees of freedom
- method: the method used to calculate the confidence interval
- method_ci: confidence interval calculated using specified method
- exact_ci: exact confidence interval
- exact_p: p-value from exact test
Examples
matrix(c(23, 48, 76, 88), nrow = 2, ncol = 2) %>% prop_test()

prop_test.numeric  Tests for equality of proportions

Description
Conduct 1-sample tests of proportions and tests for equality of k proportions.

Usage
## S3 method for class 'numeric'
prop_test(x, n, p = 0.5, method = c("wald", "wilson", "agresti-couli", "jeffreys", "modified wilson", "wilsoncc", "modified jeffreys", "clopper-pearson", "arcsine", "logit", "witting", "pratt"), alternative = c("two.sided", "less", "greater"), conf.level = 0.95, correct = FALSE, exact = FALSE, ...)

Arguments
x a vector of counts.
n a vector of counts of trials
p a probability for the null hypothesis when testing a single proportion; ignored if comparing multiple proportions.
method a character string indicating method for calculating confidence interval, default is "wald". Options include, wald, wilson, agresti-couli, jeffreys, modified wilson, wilsoncc modified jeffreys, clopper-pearson, arcsine, logit, witting, and pratt.
alternative character string specifying the alternative hypothesis. Possible options are "two.sided" (default), "greater", or "less".
conf.level confidence level for confidence interval, default is 0.95.
correct a logical indicating whether Yate’s continuity correction should be applied.
extact a logical indicating whether to output exact p-value, ignored if k-sample test.
... further arguments passed to or from other methods.

Value
a list with class "prop_test" containing the following components:
x number of successes
n number of trials
p null proportion
statistic the value of Pearson’s chi-squared test statistic
prop_test.table

p_value  p-value corresponding to chi-squared test statistic
df       degrees of freedom
method   the method used to calculate the confidence interval
method_ci confidence interval calculated using specified method
exact_ci exact confidence interval
exact_p  p-value from exact test

Examples

prop_test(7L, 50, method = "wald", p = 0.2)
prop_test(7L, 50, method = "wald", p = 0.2, exact = TRUE)

prop_test.table  Tests for equality of proportions

Description

Conduct 1-sample tests of proportions and tests for equality of k proportions.

Usage

## S3 method for class 'table'
prop_test(x, method = c("wald", "wilson",
    "agresti-couli", "jeffreys", "modified wilson", "wilsoncc",
    "modified jeffreys", "clopper-pearson", "arcsine", "logit", "witting",
    "pratt"), alternative = c("two.sided", "less", "greater"),
    conf.level = 0.95, correct = FALSE, exact = FALSE, ...)

Arguments

x                 a 2 x k table.
method            a character string indicating method for calculating confidence interval, default is "wald". Options include, wald, wilson, agresti-couli, jeffreys, modified wilson, wilsoncc modified jeffreys, clopper-pearson, arcsine, logit, witting, and pratt.
alternative       character string specifying the alternative hypothesis. Possible options are "two.sided" (default), "greater", or "less".
conf.level        confidence level for confidence interval, default is 0.95.
correct           a logical indicating whether Yate's continuity correction should be applied.
extact            a logical indicating whether to output exact p-value, ignored if k-sample test.
...               further arguments passed to or from other methods.
Value

A list with class "prop_test" containing the following components:

- **x**: number of successes
- **n**: number of trials
- **p**: null proportion
- **statistic**: the value of Pearson’s chi-squared test statistic
- **p_value**: p-value corresponding to chi-squared test statistic
- **df**: degrees of freedom
- **method**: the method used to calculate the confidence interval
- **method_ci**: confidence interval calculated using specified method
- **exact_ci**: exact confidence interval
- **exact_p**: p-value from exact test

Examples

```r
vietnam <- data.frame(
 service = c(rep("yes", 2), rep("no", 2), rep("maybe", 2)),
 sleep = rep(c("yes", "no"), 3),
 count = c(173, 160, 599, 851, 400, 212)
)

xtabs(count ~ service + sleep, data = vietnam) %>% prop_test()
```

---

**riskdiff**  
**Risk difference**

Description

Calculate risk difference and 95 percent confidence interval using Wald method.

Usage

```r
riskdiff(df, ...)
```

Arguments

- **df**: a dataframe with binary variables x and y or a 2 x 2 frequency table/matrix. If a table or matrix, x and y must be NULL. Used to select method.
- **...**: further arguments passed to or from other methods.
Value

a list with class "rdiff" containing the following components:

- **rd**: risk difference
- **conf.level**: specified confidence level
- **ci**: calculated confidence interval
- **p1**: proportion one
- **p2**: proportion two
- **tab**: 2x2 table using for calculating risk difference

Examples

```r
trial <- data.frame(
 disease = c(rep("yes", 2), rep("no", 2)),
 treatment = c(rep(c("estrogen", "placebo"), 2)),
 count = c(751, 623, 7755, 7479))

riskdiff(trial, treatment, disease, count, rev = "columns")
```

Description

Calculate risk difference and 95 percent confidence interval using Wald method.

Usage

```r
S3 method for class 'data.frame'
riskdiff(df, x = NULL, y = NULL, weight = NULL,
 conf.level = 0.95, rev = c("neither", "rows", "columns", "both"),
 ...)
```

Arguments

- **df**: a dataframe with binary variables x and y.
- **x**: binary predictor/exposure, vector.
- **y**: binary outcome, vector.
- **weight**: an optional vector of count weights.
- **conf.level**: confidence level for confidence interval, default is 0.95.
- **rev**: reverse order of cells. Options are "row", "columns", "both", and "neither" (default).
- **...**: further arguments passed to or from other methods.
Value

a list with class "rdiff" containing the following components:

- **rd**: risk difference
- **conf.level**: specified confidence level
- **ci**: calculated confidence interval
- **p1**: proportion one
- **p2**: proportion two
- **tab**: 2x2 table using for calculating risk difference

Examples

```r
trial <- data.frame(
 disease = c(rep("yes", 2), rep("no", 2)),
 treatment = c(rep(c("estrogen", "placebo"), 2)),
 count = c(751, 623, 7755, 7479))

riskdiff(trial, treatment, disease, count, rev = "columns")
```

---

### riskdiff.matrix

#### Description

Calculate risk difference and 95 percent confidence interval using Wald method.

#### Usage

```r
S3 method for class 'matrix'
riskdiff(df, conf.level = 0.95, dnn = NULL,
 rev = c("neither", "rows", "columns", "both"), ...)
```

#### Arguments

- **df**: a 2 x 2 frequency matrix.
- **conf.level**: confidence level for confidence interval, default is 0.95.
- **dnn**: optional character vector of dimension names.
- **rev**: reverse order of cells. Options are "row", "columns", "both", and "neither" (default).
- **...**: further arguments passed to or from other methods.
**Value**

a list with class "rdiff" containing the following components:

- `rd`: risk difference
- `conf.level`: specified confidence level
- `ci`: calculated confidence interval
- `p1`: proportion one
- `p2`: proportion two
- `tab`: 2x2 table using for calculating risk difference

**Examples**

```r
c(12, 45, 69, 15), nrow = 2, ncol = 2) %>%
riskdiff(dnn = c("New Drug", "Adverse Outcome"))
```

---

**Description**

Calculate risk difference and 95 percent confidence interval using Wald method.

**Usage**

```r
S3 method for class 'table'
riskdiff(df, conf.level = 0.95, rev = c("neither", "rows", "columns", "both"), ...)
```

**Arguments**

- `df`: a 2 x 2 frequency table.
- `conf.level`: confidence level for confidence interval, default is 0.95.
- `rev`: reverse order of cells. Options are "row", "columns", "both", and "neither" (default).
- `...`: further arguments passed to or from other methods.

**Value**

a list with class "rdiff" containing the following components:

- `rd`: risk difference
- `conf.level`: specified confidence level
- `ci`: calculated confidence interval
- `p1`: proportion one
- `p2`: proportion two
- `tab`: 2x2 table using for calculating risk difference
tavolo

Create 2 x k frequency tables

Description

Helper function for creating 2 x k frequency tables.

Usage

tavolo(df, ...)

Arguments

df

a dataframe with binary variable y and categorical variable x or a 2 x k frequency table/matrix. If a table or matrix, x and y must be NULL. Used to select method.

...

further arguments passed to or from other methods.

Value

tab

2 x k frequency table

Examples

```r
trial <- data.frame(
 disease = c(rep("yes", 2), rep("no", 2)),
 treatment = c(rep(c("estrogen", "placebo"), 2)),
 count = c(751, 623, 7755, 7479))

xtabs(count ~ treatment + disease, data = trial) %>% riskdiff()
```

```r
tavolo(trial, treatment, disease, count)
```
tavolo.data.frame  

Create 2 x k frequency tables

Description

Helper function for creating 2 x k frequency tables.

Usage

```r
S3 method for class 'data.frame'
tavolo(df, x, y, weight = NULL, rev = c("neither", "rows", "columns", "both"), ...)
```

Arguments

- **df**: a dataframe with binary variable y and categorical variable x.
- **x**: categorical predictor/exposure, vector.
- **y**: binary outcome, vector.
- **weight**: an optional vector of count weights.
- **rev**: character string indicating whether to switch row or column order, possible options are "neither", "rows", "columns", or "both". The default is "neither".
- **...**: further arguments passed to or from other methods.

Value

- **tab**: 2 x k frequency table

Examples

```r
trial <- data.frame(disease = c(rep("yes", 2), rep("no", 2)),
treatment = c(rep(c("estrogen", "placebo"), 2)),
count = c(751, 623, 7755, 7479))

Call the function

tavolo(trial, treatment, disease, count)
```

tavolo.matrix  

Create 2 x k frequency tables

Description

Helper function for creating 2 x k frequency tables.
### S3 method for class 'matrix'

tavolo(df, dnn = NULL, rev = c("neither", "rows", "columns", "both"), ...)

#### Arguments

- **df**
  - a 2 x k frequency matrix.

- **dnn**
  - optional character vector of dimension names.

- **rev**
  - character string indicating whether to switch row or column order, possible options are "neither", "rows", "columns", or "both". The default is "neither".

- **...**
  - further arguments passed to or from other methods.

#### Value

- **tab**
  - 2 x k frequency table

### Examples

tavolo(matrix(c(23, 45, 67, 12), nrow = 2, ncol = 2), rev = "both")

tavolo.table

Create 2 x k frequency tables

### Description

Helper function for creating 2 x k frequency tables.

### S3 method for class 'table'

tavolo(df, rev = c("neither", "rows", "columns", "both"), ...)

#### Arguments

- **df**
  - a 2 x k frequency table.

- **rev**
  - character string indicating whether to switch row or column order, possible options are "neither", "rows", "columns", or "both". The default is "neither".

- **...**
  - further arguments passed to or from other methods.

#### Value

- **tab**
  - 2 x k frequency table
Examples

trial <- data.frame(disease = c(rep("yes", 3), rep("no", 3)),
treatment = rep(c("estrogen", "placebo", "other"), 2),
count = c(751, 623, 7755, 7479, 9000, 456))

xtabs(count ~ treatment + disease, data = trial) %>% tavolo(rev = "columns")
Index

matched_or, 2
matched_or.data.frame, 3
matched_or.table, 4

prop_power, 5
prop_test, 6
prop_test.data.frame, 7
prop_test.matrix, 9
prop_test.numeric, 10
prop_test.table, 11

riskdiff, 12
riskdiff.data.frame, 13
riskdiff.matrix, 14
riskdiff.table, 15

tavolo, 16
tavolo.data.frame, 17
tavolo.matrix, 17
tavolo.table, 18