Package ‘catseyes’

Type Package

Title Create Catseye Plots Illustrating the Normal Distribution of the Means

Version 0.2.5

Description Provides the tools to produce catseye plots, principally by catseyesplot() function which calls R's standard plot() function internally, or alternatively by the catseyes() function to overlay the catseye plot onto an existing R plot window. Catseye plots illustrate the normal distribution of the mean (picture a normal bell curve reflected over its base and rotated 90 degrees), with a shaded confidence interval; they are an intuitive way of illustrating and comparing normally distributed estimates, and are arguably a superior alternative to standard confidence intervals, since they show the full distribution rather than fixed quantile bounds. The catseyesplot and catseyes functions require pre-calculated means and standard errors (or standard deviations), provided as numeric vectors; this allows the flexibility of obtaining this information from a variety of sources, such as direct calculation or prediction from a model. Catseye plots, as illustrations of the normal distribution of the means, are described in Cumming (2013 & 2014).

License GPL-3

Encoding UTF-8

LazyData true

RoxygenNote 7.1.0

Suggests emmeans

NeedsCompilation no

Author Clark Andersen [cre, aut]

Maintainer Clark Andersen <crandersen@mdanderson.org>

Repository CRAN

Date/Publication 2020-05-08 16:40:02 UTC

R topics documented:

 catseyes ... 2
 catseyesplot ... 3
Description

The catseyes() function is used to plot catseye interval(s) onto a an existing basic R plot background. Catseye plots illustrate the normal distribution of the mean (picture a normal bell curve reflected over its base and rotated 90 degrees), with a shaded confidence interval; they are an intuitive way of illustrating and comparing normally distributed estimates, and are arguably a superior alternative to standard confidence intervals, since they show the full distribution rather than fixed quantile bounds. The catseyes() function requires pre-calculated means and standard errors (or standard deviations), provided as numeric vectors; this allows the flexibility of obtaining this information from a variety of sources, such as direct calculation or prediction from a model – see examples below. NOTE: The drawn vertical range of the outline spans 99.8% of the distribution of the mean.

Usage

catseyes(
 x,
 ymean,
 yse,
 dx = 0.1,
 conf = 0.95,
 se.only = TRUE,
 col = "black",
 shade = rgb(0.05, 0.05, 0.05, 0.2),
 lwd = 1,
 plot.mean.line = FALSE,
 fTransform = NULL
)

Arguments

x numeric horizontal position(s); if factor, will be converted to integer in factor level order
ymean numeric mean(s)
yse numeric standard error(s); may use standard deviation(s) for population level plots
dx specifies the width (in x direction) of the catseye interval(s)
conf specifies the confidence of the confidence interval (conf=.95 for alpha=.05)
se.only boolean, if TRUE (default) will shade only +/- 1 standard error about the mean, overriding conf, otherwise if FALSE will shade the confidence interval (per conf) about the mean
col specifies the color of the outline of the catseye, as well as the interval point & line, if shown
The `catseyesplot()` function plots catseye intervals as a basic R plot() window in one step. Can be called with standard plot parameters to further customize the resulting figure. If xlim & ylim are not specified, these will be generated internally per the provided x, ymean, and yse. Catseye plots illustrate the normal distribution of the mean (picture a normal bell curve reflected over its base and rotated 90 degrees), with a shaded confidence interval; they are an intuitive way of illustrating and comparing normally distributed estimates, and are arguably a superior alternative to standard confidence intervals, since they show the full distribution rather than fixed quantile bounds. The catseyesplot() function requires pre-calculated means and standard errors (or standard deviations), provided as numeric vectors; this allows the flexibility of obtaining this information from a variety of sources, such as direct calculation or prediction from a model – see examples below. NOTE: The drawn vertical range of the outline spans 99.8% of the distribution of the mean.
Usage

catseyesplot(
 x,
 ymean,
 yse,
 dx = 0.1,
 conf = 0.95,
 se.only = TRUE,
 col = "black",
 shade = rgb(0.05, 0.05, 0.05, 0.2),
 lwd = 1,
 plot.mean.line = FALSE,
 fTransform = NULL,
 labels = FALSE,
 xlim = NULL,
 ylim = NULL,
 x_scatter = NULL,
 y_scatter = NULL,
 jitter_scatter = FALSE,
 dx_scatter = 0.05,
 pch_scatter = 1,
 col_scatter = 1,
 cex_scatter = 1,
 ...
)

Arguments

x numeric horizontal position(s); if factor, will be converted to integer in factor level order
ynmean numeric mean(s)
yse numeric standard error(s); may use standard deviation(s) for population level plots
dx specifies the width (in x direction) of the catseye interval(s)
conf specifies the confidence of the confidence interval (conf=.95 for alpha=.05)
se.only boolean, if TRUE (default) will shade only +/- 1 standard error about the mean, overriding conf, otherwise if FALSE will shade the confidence interval (per conf) about the mean
col specifies the color of the outline of the catseye, as well as the interval point & line, if shown
shade specifies the color of the shaded confidence region
lwd sets the line width of the interval and outline
plot.mean.line boolean, draws a horizontal line at the position of the mean if TRUE
fTransform Optional function to transform catseye plot from normal distribution (as with analyzing log-tranformed data, see example)
labels Optional, may be logical (if TRUE, uses x) or a character vector
xlim x limits of the plot, as with plot.default
ylim y limits of the plot, as with plot.default
x_scatter numeric x values of corresponding raw data for scatterplot; factors will convert
to integer sequence of levels
y_scatter numeric y values of corresponding raw data for scatterplot
jitter_scatter boolean, if TRUE x_scatter will be randomly jittered by jitter function, with
amount=jitter_scatter
dx_scatter numeric value specifying amount of jittering used if jitter_scatter is TRUE
pch_scatter pch characters of points in scatterplot; if non-null, must be single value or vector
corresponding to x, otherwise selected automatically
col_scatter color of points in scatterplot; if non-null, must be single value or vector corre-
sponding to x, otherwise selected automatically
cex_scatter numeric scaling factor of points in scatterplot
... standard arguments to be passed to the plot function

Value
Returns a list containing xlim and ylim used in the plot

Author(s)
Clark R. Andersen <cranderson@mdanderson.org>

References
theres-life-beyond-05.html

Examples
#Show catseye plots for 4 groups with means of c(-3,2,-1,6)
and standard errors of c(1,2,4,3)
catseyesplot(1:4,ymean=c(-3,2,-1,6),yse=c(1,2,4,3),xlab="",ylab="",main="4 Groups",xaxt="n")
axis(1,at=1:4,labels = c("Group1","Group2","Group3","Group4"))
#Optionally, add points and lines (usually lines only when joining time sequence)
lines(1:4,c(-3,2,-1,6),type="b")

#Using the labels option
catseyesplot(1:4,ymean=c(-3,2,-1,6),yse=c(1,2,4,3),xlab="",ylab="",labels =
c("Group A","Group B","Group C","Group D"))
catseyesplot(1:4,ymean=c(-3,2,-1,6),yse=c(1,2,4,3),xlab="",ylab="",labels = TRUE)

#Demonstration of inclusion of scatterplots
datTest=data.frame(x=c(rep(1,10),rep(2,10),rep(3,10)),y=rnorm(10,30))
```r
datTest$y[datTest$x==2]=datTest$y[datTest$x==2]+7
datTest$y[datTest$x==3]=datTest$y[datTest$x==3]+5
means=c(mean(datTest$y[datTest$x==1]),mean(datTest$y[datTest$x==2]), mean(datTest$y[datTest$x==3]))
SES=c(sd(datTest$y[datTest$x==1]),sd(datTest$y[datTest$x==2]), sd(datTest$y[datTest$x==3]))/sqrt(10)
catseyesplot(1:3,ymean=means,yse=ses,xlab="Group",ylab="",x_scatter = datTest$x, y_scatter = datTest$y)
catseyesplot(1:3,ymean=means,yse=ses,xlab="Group",ylab="",x_scatter = datTest$x, y_scatter = datTest$y, jitter_scatter = TRUE,x_scatter = datTest$x)
axis(1,at=1:3,labels = c("Group1","Group2","Group3"))

#Demonstration of plotting of factor estimates by direct prediction from lm model
datTest$x=factor(datTest$x)
lm1=lm(y~x,data=datTest)
newdata=data.frame(x=c("1","2","3"))
pred_lm=predict(lm1, se.fit = TRUE,newdata=newdata,type="response")
catseyesplot(1:3,ymean=pred_lm$fit,yse=pred_lm$se.fit,xlab="Group",ylab="", plot.mean.line = TRUE,labels=TRUE, x_scatter = datTest$x,y_scatter = datTest$y, jitter_scatter = TRUE,xaxt="n")

#Demonstration of plotting of factor estimates from emmeans package
require(emmeans)
emmeans1=emmeans(lm1,~x)
#Assess differences between levels of x
pairs(emmeans1,adjust="tukey")
preds=confint(emmeans1)
catseyesplot(1:3,ymean=preds$emmean,yse=preds$SE,xlab="Group",ylab="", plot.mean.line = TRUE,labels=TRUE, x_scatter = datTest$x,y_scatter = datTest$y, jitter_scatter = TRUE,xaxt="n")

#Demonstrate use of transformation function fTransform
#Create skewed y
set.seed(3142)
datTest=data.frame(x=c(rep(1,10),rep(2,10),rep(3,10)),y=rnorm(30,mean=0))
datTest$y[datTest$x==2]=datTest$y[datTest$x==2]+1
datTest$y[datTest$x==3]=datTest$y[datTest$x==3]+.5
datTest$y=exp(datTest$y)#Create skewed y
datTest$log_y=log(datTest$y+1)#Transform skewed y to normal distribution for analysis
qqnorm(datTest$y)
qqnorm(datTest$log_y)
plot(datTest$x,datTest$y)
plot(datTest$x,datTest$log_y)
means=c(mean(datTest$log_y[datTest$x==1]),mean(datTest$log_y[datTest$x==2]), mean(datTest$log_y[datTest$x==3]))
SES=c(sd(datTest$log_y[datTest$x==1]),sd(datTest$log_y[datTest$x==2]), sd(datTest$log_y[datTest$x==3]))/sqrt(10)
#Plot on log scale
```

catseyesplot(1:3, ymean=means, yse=ses, xlab="Group", ylab="", x_scatter = datTest$x, y_scatter = datTest$y, jitter_scatter = TRUE, xaxt="n", yaxt="n")
axis(1, at=1:3, labels = c("Group1", "Group2", "Group3"))
axis(2, at=log(c(0,1,2,4,8,16)+1), labels = c(0,1,2,4,8,16))
Show catseye plot on original (skewed) scale
Define function to invert data from log_y scale to y scale
fInvertLog<-function(y_vals) {exp(y_vals)-1}
catseyesplot(1:3, ymean=means, yse=ses, xlab="Group", ylab="", x_scatter = datTest$x, y_scatter = datTest$y, jitter_scatter = TRUE, xaxt="n", fTransform=fInvertLog)
axis(1, at=1:3, labels = c("Group1", "Group2", "Group3"))

Logistic regression example (2 groups)
set.seed(3333)
datBin=data.frame(Group=factor(c(rep("A",15), rep("B",15))),
 Y=c(rbinom(15,1,.8), rbinom(15,1,.5)))
sum(datBin$Y[datBin$Group=="A"])/sum(datBin$Group=="A")
sum(datBin$Y[datBin$Group=="B"])/sum(datBin$Group=="B")
glm1=glm(Y~Group-1, family = binomial, data=datBin)
summary(glm1)
(smr=coefficients(summary(glm1)))
Plot Results on logit=log(odds) Scale
catseyesplot(1:2, smr[,1], smr[,2], xaxt="n", ylab="log(odds)", xlab="Group")
axis(1, at=c(1,2), labels = c("A", "B"))
Plot Results on Probability Scale
fInvLogit<-function(yy) {exp(yy)/(1+exp(yy))}
catseyesplot(1:2, smr[,1], smr[,2], xaxt="n", ylab="Probability", xlab="Group",
 fTransform = fInvLogit, ylim=c(0,1))
axis(1, at=c(1,2), labels = c("A", "B"))
Index

catseyes, 2

catseyesplot, 3