Package ‘causal.decomp’

March 3, 2023

Title Causal Decomposition Analysis
Version 0.1.0
Date 2023-3-2
Depends R (>= 2.10)
Imports stats, parallel, MASS, nnet, SuppDists, CBPS, PSweight, spelling, utils
Suggests knitr, rmarkdown
VignetteBuilder knitr
Description We implement causal decomposition analysis using the methods proposed by Park, Lee, and Qin (2020) and Park, Kang, and Lee (2021+) <arXiv:2109.06940>. This package allows researchers to use the multiple-mediator-imputation, single-mediator-imputation, and product-of-coefficients regression methods to estimate the initial disparity, disparity reduction, and disparity remaining. It also allows to make the inference conditional on baseline covariates. We also implement sensitivity analysis for the causal decomposition analysis using R-squared values as sensitivity parameters (Park, Kang, Lee, and Ma, 2023).
License GPL-2
Encoding UTF-8
RoxygenNote 7.2.3
LazyData true
NeedsCompilation no
Author Suyeon Kang [aut, cre], Soojin Park [aut]
Maintainer Suyeon Kang <skang062@ucr.edu>
Repository CRAN
Date/Publication 2023-03-03 22:50:12 UTC

R topics documented:

causal.decomp .. 2
mmi .. 2
The causal.decomp package provides four important functions: mmi, smi, pocr, and sensitivity.

mmi

Multiple-Mediator-Imputation Estimation Method

Description

'mmi' is used to estimate the initial disparity, disparity reduction, and disparity remaining for causal decomposition analysis, using the multiple-mediator-imputation estimation method proposed by Park et al. (2020).

Usage

```r
mmi(fit.r = NULL, fit.x, fit.y, treat, covariates, sims = 100, conf.level = .95, conditional = TRUE, cluster = NULL, long = TRUE, mc.cores = 1L, seed = NULL)
```

Arguments

- **fit.r**: a fitted model object for treatment. Can be of class 'CBPS' or 'SumStat'. Default is 'NULL'. Only necessary if 'conditional' is 'FALSE'.
- **fit.x**: a fitted model object for intermediate confounder(s). Each intermediate model can be of class 'lm', 'glm', 'multinom', or 'polr'. When multiple confounders are considered, can be of class 'list' containing multiple models.
- **fit.y**: a fitted model object for outcome. Can be of class 'lm' or 'glm'.
- **treat**: a character string indicating the name of the treatment variable used in the models. The treatment can be categorical with two or more categories (two- or multi-valued factor).
- **covariates**: a vector containing the name of the covariate variable(s) used in the models. Each covariate can be categorical with two or more categories (two- or multi-valued factor) or continuous (numeric).
- **sims**: number of Monte Carlo draws for nonparametric bootstrap.
conf.level: level of the returned two-sided confidence intervals, which are estimated by the nonparametric percentile bootstrap method. Default is .95, which returns the 2.5 and 97.5 percentiles of the simulated quantities.

conditional: a logical value. If 'TRUE', the function will return the estimates conditional on those covariate values, and all covariates in mediator and outcome models need to be centered prior to fitting. Default is 'TRUE'. If 'FALSE', 'fit.r' needs to be specified.

cluster: a vector of cluster indicators for the bootstrap. If provided, the cluster bootstrap is used. Default is 'NULL'.

long: a logical value. If 'TRUE', the output will contain the entire sets of estimates for all bootstrap samples. Default is 'TRUE'.

mc.cores: The number of cores to use. Must be exactly 1 on Windows.

seed: seed number for the reproducibility of results. Default is 'NULL'.

Details

This function returns the point estimates of the initial disparity, disparity reduction, and disparity remaining for a categorical treatment and a variety of types of outcome and mediator(s) in causal decomposition analysis. It also returns nonparametric percentile bootstrap confidence intervals for each estimate.

The initial disparity represents the expected difference in an outcome between a comparison group $R = j$ and a reference group $R = i$ where $i \neq j$. That is,

$$\tau(i, j) = E\{Y|R = j\} - E\{Y|R = i\},$$

where R and Y are the group indicator and the outcome variable, respectively. The disparity reduction represents the expected change in an outcome for the group $R = j$ after adjusting the level of mediator(s) to the level of the reference group. That is,

$$\delta(j) = E\{Y|R = j\} - E\{Y(G_M(i))|R = j\},$$

where $G_M(i)$ is a random draw from the mediator distribution of the reference group. The disparity remaining represents the remaining disparity for the group $R = j$ even after adjusting the level of mediators to the reference group. Formally,

$$\zeta(i) = E\{Y(G_M(i))|R = j\} - E\{Y|R = i\}.$$

The disparity reduction and remaining can be estimated using the multiple-mediator-imputation method suggested by Park et al. (2020). See the references for more details.

If one wants to make the inference conditional on baseline covariates, set 'conditional = TRUE' and center the data before fitting the models.

As of version 0.1.0, the intermediate confounder model ('fit.x') can be of class 'lm', 'glm', 'multinom', or 'polr', corresponding respectively to the linear regression models and generalized linear models, multinomial log-linear models, and ordered response models. The outcome model ('fit.y') can be of class 'lm' or 'glm'. Also, the treatment model ('fit.r') can be of class 'CBPS' or 'Sum-Stat', both of which use the propensity score weighting. It is only necessary when 'conditional = FALSE'.

The initial disparity is represented by $\tau(i, j)$, which is the expected difference in an outcome between two groups i and j. The disparity reduction $\delta(j)$ is the expected change in an outcome for group j adjusted for mediators. The disparity remaining $\zeta(i)$ represents the remaining disparity after adjustment. These estimates can be computed using various methods, including the use of cluster bootstrap and the multiple-mediator-imputation method.
Value

result a matrix containing the point estimates of the initial disparity, disparity remaining, and disparity reduction, and the percentile bootstrap confidence intervals for each estimate.

all.result a matrix containing the point estimates of the initial disparity, disparity remaining, and disparity reduction for all bootstrap samples. Returned if 'long' is 'TRUE'.

Author(s)

Suyeon Kang, University of California, Riverside, <skang062@ucr.edu>; Soojin Park, University of California, Riverside, <soojinp@ucr.edu>.

References

See Also

smi

Examples

data(sdata)

Example 1-a: Continuous Outcome
#---#
Example 1-a: Continuous Outcome
#---#
fit.m1 <- lm(M.num ~ R + C.num + C.bin, data = sdata)
fit.m2 <- glm(M.bin ~ R + C.num + C.bin, data = sdata,
family = binomial(link = "logit"))
require(MASS)
fit.m3 <- polr(M.cat ~ R + C.num + C.bin, data = sdata)
fit.x1 <- lm(X ~ R + C.num + C.bin, data = sdata)
require(nnet)
fit.m4 <- multinom(M.cat ~ R + C.num + C.bin, data = sdata)
fit.y1 <- lm(Y.num ~ R + M.num + M.bin + M.cat + X + C.num + C.bin,
data = sdata)
require(PSweight)
fit.r1 <- SumStat(R ~ C.num + C.bin, data = sdata, weight = "IPW")
require(CBPS)
fit.r2 <- CBPS(R ~ C.num + C.bin, data = sdata, method = "exact",
standardize = "TRUE")

res.1a <- mmi(fit.r = fit.r1, fit.x = fit.x1,
fit.y = fit.y1, sims = 40, conditional = FALSE,
covariates = c("C.num", "C.bin"), treat = "R", seed = 111)

res.1a

Example 1-b: Binary Outcome
Example 1-b: Binary Outcome
fit.y2 <- glm(Y.bin ~ R + M.num + M.bin + M.cat + X + C.num + C.bin,
data = sdata, family = binomial(link = "logit"))

res.1b <- mmi(fit.r = fit.r1, fit.x = fit.x1,
fit.y = fit.y2, sims = 40, conditional = FALSE,
covariates = c("C.num", "C.bin"), treat = "R", seed = 111)

res.1b

Example 2-a: Continuous Outcome, Conditional on Covariates
For conditional = TRUE, need to create data with centered covariates
copy data
sdata.c <- sdata
center quantitative covariate(s)
sdata.c$C.num <- scale(sdata.c$C.num, center = TRUE, scale = FALSE)
center binary (or categorical) covariates(s)
only necessary if the desired baseline level is NOT the default baseline level.
sdata.c$C.bin <- relevel(sdata.c$C.bin, ref = "1")

fit mediator and outcome models
fit.m1 <- lm(M.num ~ R + C.num + C.bin, data = sdata.c)
fit.m2 <- glm(M.bin ~ R + C.num + C.bin, data = sdata.c,
family = binomial(link = "logit"))
fit.m3 <- polr(M.cat ~ R + C.num + C.bin, data = sdata.c)
fit.x2 <- lm(X ~ R + C.num + C.bin, data = sdata.c)
fit.y1 <- lm(Y.num ~ R + M.num + M.bin + M.cat + X + C.num + C.bin,
data = sdata.c)

res.2a <- mmi(fit.x = fit.x2,
fit.y = fit.y1, sims = 40, conditional = TRUE,
covariates = c("C.num", "C.bin"), treat = "R", seed = 111)

res.2a

Example 2-b: Binary Outcome, Conditional on Covariates
fit.y2 <- glm(Y.bin ~ R + M.num + M.bin + M.cat + X + C.num + C.bin,
data = sdata.c, family = binomial(link = "logit"))

res.2b <- mmi(fit.x = fit.x2,
fit.y = fit.y2, sims = 40, conditional = TRUE,
covariates = c("C.num", "C.bin"), treat = "R", seed = 111)

res.2b
plot *Visualize sensitivity Objects*

Description

S3 methods visualizing results for some objects generated by `sensitivity`.

Usage

```r
## S3 method for class 'sensitivity'
plot(x, xlim = c(0, 0.3), ylim = c(0, 0.3), ...)
```

Arguments

- `x` an object of class `sensitivity`.
- `xlim` limits of the x-axis of contour plots.
- `ylim` limits of the y-axis of contour plots.
- `...` Other arguments for future usage.

pocr *Product-of-Coefficients-Regression Estimation Method*

Description

'pocr' is used to estimate the initial disparity, disparity reduction, and disparity remaining for causal decomposition analysis, using the product-of-coefficients-regression estimation method proposed by Park et al. (2021+).

Usage

```r
pocr(fit.x = NULL, fit.m, fit.y, treat, covariates, sims = 100, conf.level = .95, cluster = NULL, long = TRUE, mc.cores = 1L, seed = NULL)
```

Arguments

- `fit.x` a fitted model object for intermediate confounder. Can be of class 'lm'. Only necessary if the mediator is categorical. Default is 'NULL'.
- `fit.m` a fitted model object for mediator. Can be of class 'lm', 'glm', 'multinom', or 'polr'.
- `fit.y` a fitted model object for outcome. Can be of class 'lm'.
- `treat` a character string indicating the name of the treatment variable used in the models. The treatment can be categorical with two or more categories (two- or multi-valued factor).
covariates a vector containing the name of the covariate variable(s) used in the models. Each covariate can be categorical with two or more categories (two- or multi-valued factor) or continuous (numeric).

sims number of Monte Carlo draws for nonparametric bootstrap.

conf.level level of the returned two-sided confidence intervals, which are estimated by the nonparametric percentile bootstrap method. Default is to return the 2.5 and 97.5 percentiles of the simulated quantities.

cluster a vector of cluster indicators for the bootstrap. If provided, the cluster bootstrap is used. Default is 'NULL'.

long a logical value. If 'TRUE', the output will contain the entire sets of estimates for all bootstrap samples. Default is 'TRUE'.

mc.cores The number of cores to use. Must be exactly 1 on Windows.

seed seed number for the reproducibility of results. Default is 'NULL'.

Details

This function returns the point estimates of the initial disparity, disparity reduction, and disparity remaining for a categorical treatment and a variety of types of outcome and mediator(s) in causal decomposition analysis. It also returns nonparametric percentile bootstrap confidence intervals for each estimate.

The definition of the initial disparity, disparity reduction, and disparity remaining can be found in help('mmi'). As opposed to the 'mmi' and 'smi' function, this function uses the product-of-coefficients-regression method suggested by Park et al. (2021+). It always make the inference conditional on baseline covariates. Therefore, users need to center the data before fitting the models. See the reference for more details.

As of version 0.1.0, the mediator model ('fit.m') can be of class 'lm', 'glm', 'multinom', or 'polr', corresponding respectively to the linear regression models and generalized linear models, multinomial log-linear models, and ordered response models. The outcome model ('fit.y') can be of class 'lm'. The intermediate confounder model ('fit.x') can also be of class 'lm' and only necessary when the mediator is categorical.

Value

result a matrix containing the point estimates of the initial disparity, disparity remaining, and disparity reduction, and the percentile bootstrap confidence intervals for each estimate.

all.result a matrix containing the point estimates of the initial disparity, disparity remaining, and disparity reduction for all bootstrap samples. Returned if 'long' is 'TRUE'.

Author(s)

Suyeon Kang, University of California, Riverside, <skang062@ucr.edu>; Soojin Park, University of California, Riverside, <soojinp@ucr.edu>.
References

See Also

mmi, smi

Examples

data(sdata)

To be conditional on covariates, first create data with centered covariates
copy data
sdata.c <- sdata
center quantitative covariate(s)
sdata.c$C.num <- scale(sdata.c$C.num, center = TRUE, scale = FALSE)
center binary (or categorical) covariates(s)
only neccessary if the desired baseline level is NOT the default baseline level.
sdata.c$C.bin <- relevel(sdata.c$C.bin, ref = "1")

#---#
Example 1: Continuous Mediator
#---#
fit.m1 <- lm(M.num ~ R + C.num + C.bin, data = sdata.c)
fit.y1 <- lm(Y.num ~ R + M.num + M.num:R + X + C.num + C.bin, data = sdata.c)
res1 <- pocr(fit.m = fit.m1, fit.y = fit.y1, sims = 40,
covariates = c("C.num", "C.bin"), treat = "R", seed = 111)
res1

#---#
Example 2: Binary Mediator
#---#
fit.x1 <- lm(X ~ R + C.num + C.bin, data = sdata.c)
fit.m2 <- glm(M.bin ~ R + C.num + C.bin, data = sdata.c,
family = binomial(link = "logit"))
fit.y2 <- lm(Y.num ~ R + M.bin + M.bin:R + X + C.num + C.bin, data = sdata.c)
res2 <- pocr(fit.x = fit.x1, fit.m = fit.m2, fit.y = fit.y2,
sims = 40, covariates = c("C.num", "C.bin"), treat = "R", seed = 111)
res2

#---#
Example 3: Ordinal Mediator
#---#
require(MASS)
fit.m3 <- polr(M.cat ~ R + C.num + C.bin, data = sdata.c)
fit.y3 <- lm(Y.num ~ R + M.cat + M.cat:R + X + C.num + C.bin, data = sdata.c)
res3 <- pocr(fit.x = fit.x1, fit.m = fit.m3, fit.y = fit.y3,
sdata
sims = 40, covariates = c("C.num", "C.bin"), treat = "R", seed = 111)
res3
#---
Example 4: Nominal Mediator
#---
require(nnet)
fit.m4 <- multinom(M.cat ~ R + C.num + C.bin, data = sdata.c)
res4 <- pocr(fit.x = fit.x1, fit.m = fit.m4, fit.y = fit.y3,
 sims = 40, covariates = c("C.num", "C.bin"), treat = "R", seed = 111)
res4

sdata

Synthetic Data for Illustration

Description
A randomly generated dataset containing 1000 rows and 9 columns with no missing values.

Usage
sdata

Format
A data frame containing the following variables. The data are provided only for explanatory purposes. The mediators are assumed to be independent of each other.

C.num: A quantitative covariate.
C.bin: A binary covariate with a value of 0 or 1.
R: A group indicator with four levels.
X: A quantitative intermediate confounder between a mediator and the outcome.
M.num: A quantitative mediator.
M.bin: A binary mediator with a value of 0 or 1.
M.cat: A categorical mediator with three levels.
Y.num: A quantitative outcome.
Y.bin: A binary outcome with a value of 0 or 1.

Details
Note that all the variables are randomly generated using the dataset used in Park et al. (2021+).

References
Description

The function ‘sensitivity’ is used to implement sensitivity analysis for the causal decomposition analysis, using R-squared values as sensitivity parameters.

Usage

sensitivity(boot.res, fit.y, fit.m = NULL, mediator = NULL, covariates, treat, sel.lev.treat, conf.level = 0.95, max.rsq = 0.3)

Arguments

- boot.res: bootstrap results from an object fitted by the ‘smi’ function.
- fit.y: outcome model used in fitting the ‘smi’ function. Can be of class ‘lm’ or ‘glm’.
- fit.m: mediator model used in fitting the ‘smi’ function. Can be of class ‘lm’, ‘glm’, or ‘polr’.
- mediator: a vector containing the name of mediator used in the models.
- covariates: a vector containing the name of the covariate variable(s) used in the models. Each covariate can be categorical with two or more categories (two- or multi-valued factor) or continuous (numeric).
- treat: a character string indicating the name of the treatment variable used in the models. The treatment can be categorical with two or more categories (two- or multi-valued factor).
- sel.lev.treat: a level of categorical treatment variable which is to be compared with the reference level.
- conf.level: level of the returned two-sided confidence intervals, which are estimated by the nonparametric percentile bootstrap method. Default is .95, which returns the 2.5 and 97.5 percentiles of the simulated quantities.
- max.rsq: upper limit of the two sensitivity parameters (R-squared values). Once it is set, the R-squared values between 0 and this upper limit are explored to draw the sensitivity contour plots. Default is 0.3.

Details

This function is used to implement sensitivity analysis for the causal decomposition analysis, using two sensitivity parameters: (i) the R-squared value between the outcome and unobserved confounder given the treatment, intermediate confounder, mediator, and covariates; and (ii) the R-squared value between the mediator and unobserved confounder given the treatment, intermediate confounder, and covariates (Park et al., 2023).

As of version 0.1.0, ‘boot.res’ must be fitted by the ‘smi’ function with a single mediator, which can be of class ‘lm’, ‘glm’, or ‘polr’.
Value

- **call** original function call.
- **disparity.reduction** a matrix containing the estimated disparity reduction value along with lower and upper limits of the confidence interval, for each combination of the two sensitivity parameters, assuming those two are equal.
- **disparity.remaining** a matrix containing the estimated disparity remaining value along with lower and upper limits of the confidence interval, for each combination of the two sensitivity parameters, assuming those two are equal.
- **rm** R-squared values between the mediator and unobserved confounder (first sensitivity parameter), which are explored for the sensitivity analysis.
- **ry** R-squared values between the outcome and unobserved confounder, (second sensitivity parameter), which are explored for the sensitivity analysis.
- **red** a matrix containing the estimated disparity reduction values given each combination of the two sensitivity parameters.
- **lower_red** a matrix containing the lower limit of disparity reduction given each combination of the two sensitivity parameters.
- **rem** a matrix containing the estimated disparity remaining values given each combination of the two sensitivity parameters.
- **lower_rem** a matrix containing the lower limit of disparity remaining given each combination of the two sensitivity parameters.
- **RV_red** robustness value for disparity reduction, which represents the strength of association that will explain away the estimated disparity reduction.
- **RV_red_alpha** robustness value for disparity reduction, which represents the strength of association that will change the significance of the estimated disparity reduction at the given significance level, assuming an equal association to the mediator and the outcome.
- **RV_rem** robustness value for disparity remaining, which represents the strength of association that will explain away the estimated disparity remaining.
- **RV_rem_alpha** robustness value for disparity remaining, which represents the strength of association that will change the significance of the estimated disparity remaining at the given significance level, assuming an equal association to the mediator and the outcome.

Author(s)

Suyeon Kang, University of California, Riverside, <skang062@ucr.edu>; Soojin Park, University of California, Riverside, <soojinp@ucr.edu>.

References

See Also

smi

Examples

data(sMIDUS)

Center covariates
sMIDUS$age <- scale(sMIDUS$age, center = TRUE, scale = FALSE)
sMIDUS$stroke <- scale(sMIDUS$stroke, center = TRUE, scale = FALSE)
sMIDUS$T2DM <- scale(sMIDUS$T2DM, center = TRUE, scale = FALSE)
sMIDUS$heart <- scale(sMIDUS$heart, center = TRUE, scale = FALSE)

fit.m <- lm(edu ~ racesex + age + stroke + T2DM + heart, data = sMIDUS)
fit.y <- lm(health ~ racesex + lowchildSES + abuse + edu + racesex:edu +
 age + stroke + T2DM + heart, data = sMIDUS)
smiRes <- smi(fit.m = fit.m, fit.y = fit.y, sims = 40, conf.level = .95,
covariates = c("age", "stroke", "T2DM", "heart"), treat = "racesex", seed = 227)
sensRes <- sensitivity(boot.res = smiRes, fit.m = fit.m, fit.y = fit.y, mediator = "edu",
covariates = c("age", "stroke", "T2DM", "heart"), treat = "racesex",
 sel.lev.treat = "4", max.rsq = 0.3)

sensRes
names(sensRes)
Create sensitivity contour plots
plot(sensRes)

smi

Single-Mediator-Imputation Estimation Method

Description

'smi' is used to estimate the initial disparity, disparity reduction, and disparity remaining for causal
decomposition analysis, using the single-mediator-imputation estimation method proposed by Park
et al. (2021+).

Usage

smi(fit.r = NULL, fit.m, fit.y, treat, covariates, sims = 100, conf.level = .95,
conditional = TRUE, cluster = NULL, long = TRUE, mc.cores = 1L, seed = NULL)

Arguments

fit.r a fitted model object for treatment. Can be of class 'CBPS' or 'SumStat'. De-
default is 'NULL'. Only necessary if 'conditional' is 'FALSE'.
fit.m a fitted model object for mediator. Can be of class 'lm', 'glm', 'multinom', or
 'polr'.
fit.y a fitted model object for outcome. Can be of class 'lm' or 'glm'.

treat a character string indicating the name of the treatment variable used in the models. The treatment can be categorical with two or more categories (two- or multi-valued factor).

covariates a vector containing the name of the covariate variable(s) used in the models. Each covariate can be categorical with two or more categories (two- or multi-valued factor) or continuous (numeric).

sims number of Monte Carlo draws for nonparametric bootstrap.

conf.level level of the returned two-sided confidence intervals, which are estimated by the nonparametric percentile bootstrap method. Default is .95, which returns the 2.5 and 97.5 percentiles of the simulated quantities.

conditional a logical value. If ‘TRUE’, the function will return the estimates conditional on those covariate values; and all covariates in mediator and outcome models need to be centered prior to fitting. Default is ‘TRUE’. If ‘FALSE’, ‘fit.r’ needs to be specified.

cluster a vector of cluster indicators for the bootstrap. If provided, the cluster bootstrap is used. Default is ‘NULL’.

long a logical value. If ‘TRUE’, the output will contain the entire sets of estimates for all bootstrap samples. Default is ‘TRUE’.

mc.cores The number of cores to use. Must be exactly 1 on Windows.

seed seed number for the reproducibility of results. Default is ‘NULL’.

Details

This function returns the point estimates of the initial disparity, disparity reduction, and disparity remaining for a categorical treatment and a variety of types of outcome and mediator(s) in causal decomposition analysis. It also returns nonparametric percentile bootstrap confidence intervals for each estimate.

The definition of the initial disparity, disparity reduction, and disparity remaining can be found in help(‘mmi’). As opposed to the ‘mmi’ function, this function uses the single-mediator-imputation method suggested by Park et al. (2021+). See the reference for more details.

If one wants to make the inference conditional on baseline covariates, set ‘conditional = TRUE’ and center the data before fitting the models.

As of version 0.1.0, the mediator model (‘fit.m’) can be of class ‘lm’, ‘glm’, ‘multinom’, or ‘polr’, corresponding respectively to the linear regression models and generalized linear models, multinomial log-linear models, and ordered response models. The outcome model (‘fit.y’) can be of class ‘lm’ or ‘glm’. Also, the treatment model (‘fit.r’) can be of class ‘CBPS’ or ‘SumStat’, both of which use the propensity score weighting. It is only necessary when ‘conditional = FALSE’.

Value

result a matrix containing the point estimates of the initial disparity, disparity remaining, and disparity reduction, and the percentile bootstrap confidence intervals for each estimate.

all.result a matrix containing the point estimates of the initial disparity, disparity remaining, and disparity reduction for all bootstrap samples. Returned if ‘long’ is ‘TRUE’.
alpha.r a vector containing the estimates of the regression coefficient of the treatment in the mediator. Not needed unless sensitivity analysis is conducted afterwards.

se.gamma a vector containing the estimates of standard error of the regression coefficient of the mediator in the outcome model. Not needed unless sensitivity analysis is conducted afterwards.

Author(s)

Suyeon Kang, University of California, Riverside, <skang062@ucr.edu>; Soojin Park, University of California, Riverside, <soojinp@ucr.edu>.

References

See Also

mmi, sensitivity

Examples

data(sdata)

Example 1-a: Continuous Outcome
require(PSweight)
fit.r1 <- SumStat(R ~ C.num + C.bin, data = sdata, weight = "IPW")
require(CBPS)
fit.r2 <- CBPS(R ~ C.num + C.bin, data = sdata, method = "exact",
 standardize = "TRUE")

Continuous mediator
fit.m1 <- lm(M.num ~ R + C.num + C.bin, data = sdata)
fit.y1 <- lm(Y.num ~ R + M.num + X + C.num + C.bin, data = sdata)
res.1a1 <- smi(fit.r = fit.r1, fit.m = fit.m1,
 fit.y = fit.y1, sims = 40, conditional = FALSE,
 covariates = c("C.num", "C.bin"), treat = "R", seed = 32)
res.1a1

Binary mediator
fit.m2 <- glm(M.bin ~ R + C.num + C.bin, data = sdata,
 family = binomial(link = "logit"))
fit.y2 <- lm(Y.num ~ R + M.num + X + C.num + C.bin, data = sdata)
res.1a2 <- smi(fit.r = fit.r1, fit.m = fit.m2,
 fit.y = fit.y2, sims = 40, conditional = FALSE,
 covariates = c("C.num", "C.bin"), treat = "R", seed = 111)
res.1a2
Categorical mediator
require(MASS)
fit.m3 <- polr(M.cat ~ R + C.num + C.bin, data = sdata)
fit.y3 <- lm(Y.num ~ R + M.cat + X + C.num + C.bin, data = sdata)
res.1a3 <- smi(fit.r = fit.r1, fit.m = fit.m3,
 fit.y = fit.y3, sims = 40, conditional = FALSE,
 covariates = c("C.num", "C.bin"), treat = "R", seed = 111)
res.1a3

require(nnet)
fit.m4 <- multinom(M.cat ~ R + C.num + C.bin, data = sdata)
res.1a4 <- smi(fit.r = fit.r1, fit.m = fit.m4,
 fit.y = fit.y3, sims = 40, conditional = FALSE,
 covariates = c("C.num", "C.bin"), treat = "R", seed = 111)
res.1a4

#---
Example 1-b: Binary Outcome
#---
Continuous mediator
fit.y1 <- glm(Y.bin ~ R + M.num + X + C.num + C.bin,
data = sdata, family = binomial(link = "logit"))
res.1b1 <- smi(fit.r = fit.r1, fit.m = fit.m1,
 fit.y = fit.y1, sims = 40, conditional = FALSE,
 covariates = c("C.num", "C.bin"), treat = "R", seed = 32)
res.1b1

Binary mediator
fit.y2 <- glm(Y.bin ~ R + M.bin + X + C.num + C.bin,
data = sdata, family = binomial(link = "logit"))
res.1b2 <- smi(fit.r = fit.r1, fit.m = fit.m2,
 fit.y = fit.y2, sims = 40, conditional = FALSE,
 covariates = c("C.num", "C.bin"), treat = "R", seed = 111)
res.1b2

Categorical mediator
fit.y3 <- glm(Y.bin ~ R + M.cat + X + C.num + C.bin,
data = sdata, family = binomial(link = "logit"))
res.1b3 <- smi(fit.r = fit.r1, fit.m = fit.m3,
 fit.y = fit.y3, sims = 40, conditional = FALSE,
 covariates = c("C.num", "C.bin"), treat = "R", seed = 111)
res.1b3
res.1b4 <- smi(fit.r = fit.r1, fit.m = fit.m4,
 fit.y = fit.y3, sims = 40, conditional = FALSE,
 covariates = c("C.num", "C.bin"), treat = "R", seed = 111)
res.1b4

#---
Example 2-a: Continuous Outcome, Conditional on Covariates
#---
For conditional = T, need to create data with centered covariates
copy data
sdata.c <- sdata
center quantitative covariate(s)
sdata.c$C.num <- scale(sdata.c$C.num, center = TRUE, scale = FALSE)
center binary (or categorical) covariates(s).
only necessary if the desired baseline level is NOT the default baseline level.
sdata.c$C.bin <- relevel(sdata.c$C.bin, ref = "1")

Continuous mediator
fit.y1 <- lm(Y.num ~ R + M.num + X + C.num + C.bin, data = sdata.c)
fit.m1 <- lm(M.num ~ R + C.num + C.bin, data = sdata.c)
res.2a1 <- smi(fit.m = fit.m1,
 fit.y = fit.y1, sims = 40, conditional = TRUE,
 covariates = c("C.num", "C.bin"), treat = "R", seed = 111)
res.2a1

Binary mediator
fit.y2 <- glm(Y.num ~ R + M.bin + X + C.num + C.bin, data = sdata.c,
 family = binomial(link = "logit"))
fit.m2 <- glm(M.bin ~ R + C.num + C.bin, data = sdata.c,
 family = binomial(link = "logit"))
res.2a2 <- smi(fit.m = fit.m2,
 fit.y = fit.y2, sims = 40, conditional = TRUE,
 covariates = c("C.num", "C.bin"), treat = "R", seed = 111)
res.2a2

Categorical mediator
fit.y3 <- glm(Y.num ~ R + M.cat + X + C.num + C.bin, data = sdata.c)
fit.m3 <- polr(M.cat ~ R + C.num + C.bin, data = sdata.c)
res.2a3 <- smi(fit.m = fit.m3,
 fit.y = fit.y3, sims = 40, conditional = TRUE,
 covariates = c("C.num", "C.bin"), treat = "R", seed = 111)
res.2a3

fit.m4 <- multinom(M.cat ~ R + C.num + C.bin, data = sdata.c)
res.2a4 <- smi(fit.m = fit.m4,
 fit.y = fit.y3, sims = 40, conditional = TRUE,
 covariates = c("C.num", "C.bin"), treat = "R", seed = 111)
res.2a4

Example 2-b: Binary Outcome, Conditional on Covariates
#---
Continuous mediator
fit.y1 <- glm(Y.bin ~ R + M.num + X + C.num + C.bin,
 data = sdata.c, family = binomial(link = "logit"))
res.2b1 <- smi(fit.m = fit.m1,
 fit.y = fit.y1, sims = 40, conditional = TRUE,
 covariates = c("C.num", "C.bin"), treat = "R", seed = 111)
res.2b1

Binary mediator
fit.y2 <- glm(Y.bin ~ R + M.bin + X + C.num + C.bin,
 data = sdata.c, family = binomial(link = "logit"))
res.2b2 <- smi(fit.m = fit.m2,
sMIDUS

```
fit.y = fit.y2, sims = 40, conditional = TRUE,
covariates = c("C.num", "C.bin"), treat = "R", seed = 111)
res.2b2

# Categorical mediator
fit.y3 <- glm(Y.bin ~ R + M.cat + X + C.num + C.bin,
data = sdata.c, family = binomial(link = "logit"))
res.2b3 <- smi(fit.m = fit.m3,
fit.y = fit.y3, sims = 40, conditional = TRUE,
covariates = c("C.num", "C.bin"), treat = "R", seed = 111)
res.2b3

res.2b4 <- smi(fit.m = fit.m4,
fit.y = fit.y3, sims = 40, conditional = TRUE,
covariates = c("C.num", "C.bin"), treat = "R", seed = 111)
res.2b4
```

sMIDUS

Synthetic Data Generated Based on the Midlife Development in the U.S. (MIDUS) Study

Description

This is a synthetic dataset that includes variables from the Midlife Development in the U.S. (MIDUS) study. It has been artificially generated based on the actual MIDUS data, which is not publicly available due to confidentiality concerns. The synthetic data set consists of 1948 rows and 9 columns, with no missing values.

Usage

`sMIDUS`

Format

A data frame containing the following variables.

- `health`: cardiovascular health score.
- `racesex`: race-gender groups with four levels (1: White men, 2: White women, 3: Black men, 4: Black women).
- `lowchildSES`: socioeconomic status (SES) in the childhood.
- `abuse`: adverse experience in the childhood.
- `edu`: education level.
- `age`: age.
- `stroke`: genetic vulnerability with a value of 0 or 1.
- `T2DM`: genetic vulnerability with a value of 0 or 1.
- `heart`: genetic vulnerability with a value of 0 or 1.
Details

Note that all the variables are fabricated using the actual MIDUS data used in Park et al. (2023).

References

Index

* datasets
 sdata, 9
 sMIDUS, 17

causal.decomp, 2

mmi, 2, 8, 14

plot, 6
pocr, 6

sdata, 9
sensitivity, 10, 14
smi, 4, 8, 12, 12
sMIDUS, 17