Package ‘causalweight’

December 5, 2019

Type Package
Title Estimation Methods for Causal Inference Based on Inverse Probability Weighting
Version 0.1.3
Author Hugo Bodory and Martin Huber
Maintainer Hugo Bodory <hugo.bodory@unifr.ch>
License MIT + file LICENSE
Encoding UTF-8
LazyData true
RoxygenNote 7.0.0
Depends R (>= 3.5.0), mvtnorm, np, LARF, hdm
Suggests knitr, rmarkdown
VignetteBuilder knitr
NeedsCompilation no
Repository CRAN
Date/Publication 2019-12-05 16:00:02 UTC

R topics documented:

attrlateweight ... 2
didweight ... 4
lateweight ... 5
medDML ... 7
medlateweight ... 10
Local average treatment effect estimation in multiple follow-up periods with outcome attrition based on inverse probability weighting

Description

Instrumental variable-based evaluation of local average treatment effects using weighting by the inverse of the instrument propensity score.

Usage

```
attrlateweight(
y1, y2, s1, s2, d, z, x0, x1, weightmax = 0.1, boot = 1999, cluster = NULL)
```

Arguments

- `y1`: Outcome variable in the first outcome period.
- `y2`: Outcome variable in the second outcome period.
- `s1`: Selection indicator for first outcome period. Must be one if `y1` is observed (non-missing) and zero if `y1` is not observed (missing).
- `s2`: Selection indicator for second outcome period. Must be one if `y1` is observed (non-missing) and zero if `y1` is not observed (missing).
- `d`: Treatment, must be binary (either 1 or 0), must not contain missings.
- `z`: Instrument for the endogenous treatment, must be binary (either 1 or 0), must not contain missings.
- `x0`: Baseline (pre-instrument) confounders of the instrument and outcome, must not contain missings.
attrlateweight

x1 Confounders in outcome period 1 (may include outcomes of period 1 y1)
weightmax Trimming rule based on the maximum relative weight a single observation may obtain in estimation - observations with higher weights are discarded. Default is 0.1 (no observation can be assigned more than 10 percent of weights)
boot Number of bootstrap replications for estimating standard errors. Default is 1999.
cluster A cluster ID for block or cluster bootstrapping when units are clustered rather than id. Must be numerical. Default is NULL (standard bootstrap without clustering).

Details

Estimation of local average treatment effects of a binary endogenous treatment on outcomes in two follow up periods that are prone to attrition. Treatment endogeneity is tackled by a binary instrument that is assumed to be conditionally valid given observed baseline confounders x0. Outcome attrition is tackled by either assuming that it is missing at random (MAR), i.e. selection w.r.t. observed variables d, z, x0, x1 (in the case of y2), and s1 (in the case of y2); or by assuming latent ignorability (LI), i.e. selection w.r.t. the treatment compliance type as well as z, x0, x1 (in the case of y2), and s1 (in the case of y2). Units are weighted by the inverse of their conditional instrument and selection propensities, which are estimated by probit regression. Standard errors are obtained by bootstrapping the effect.

Value

An attrlateweight object contains one component results:
results: a 4X4 matrix containing the effect estimates in the first row ("effects"), standard errors in the second row ("se"), p-values in the third row ("p-value"), and the number of trimmed observations due to too large weights in the fourth row ("trimmed obs"). The first column provides the local average treatment effect (LATE) on y1 among compliers under missingness at random (MAR). The second column provides the local average treatment effect (LATE) on y2 under missingness at random (MAR). The third column provides the local average treatment effect (LATE) on y1 under latent ignorability (LI). The forth column provides the local average treatment effect (LATE) on y2 under latent ignorability (LI).

References

Examples

A little example with simulated data (4000 observations)
n=4000
e=(rmvnorm(n,rep(0,3), matrix(c(1,0.3,0.3, 0.3,1,0.3, 0.3,0.3,1),3,3)))
x0=runif(n,0,1)
z=(0.25*x0+rnorm(n)>0)*1
d=(1.2*z-0.25*x0+e[,1]>0.5)*1
y1_star=0.5*x0+0.5*d+e[,2]
s1=(0.25*x0+0.25*d+rnorm(n)>-0.5)*1
y1=s1*y1_star
\[x_1 = (0.5x_0 + 0.5 \cdot \text{rnorm}(n)) \]
\[y_2^\star = 0.5x_0 + x_1 + d + e[,3] \]
\[s_2 = s_1 \times ((0.25x_0 + 0.25x_1 + 0.25d + \text{rnorm}(n)) > -0.5) \times 1 \]
\[y_2 = s_2 \cdot y_2^\star \]

The true LATEs on y1 and y2 are equal to 0.5 and 1, respectively.
output = attrlateweight(y1 = y1, y2 = y2, s1 = s1, s2 = s2, d = d, z = z, x0 = x0, x1 = x1, boot = 19)
round(output$results, 3)

didweight

Difference-in-differences based on inverse probability weighting

Description

Difference-in-differences-based estimation of the average treatment effect on the treated in the post-treatment period, given a binary treatment with one pre- and one post-treatment period. Permits controlling for differences in observed covariates across treatment groups and/or time periods based on inverse probability weighting.

Usage

```r
didweight(y, d, t, x = NULL, boot = 1999, trim = 0.05, cluster = NULL)
```

Arguments

- **y**
 - Dependent variable, must not contain missings.
- **d**
 - Treatment, must be binary (either 1 or 0), must not contain missings.
- **t**
 - Time period, must be binary, 0 for pre-treatment and 1 for post-treatment, must not contain missings.
- **x**
 - Covariates to be controlled for by inverse probability weighting. Default is NULL.
- **boot**
 - Number of bootstrap replications for estimating standard errors. Default is 1999.
- **trim**
 - Trimming rule for discarding observations with extreme propensity scores in the 3 reweighting steps, which reweight (1) treated in the pre-treatment period, (2) non-treated in the post-treatment period, and (3) non-treated in the pre-treatment period according to the covariate distribution of the treated in the post-treatment period. Default is 0.05, implying that observations with a probability lower than 5% of not being treated in some weighting step are discarded.
- **cluster**
 - A cluster ID for block or cluster bootstrapping when units are clustered rather than iid. Must be numerical. Default is NULL (standard bootstrap without clustering).

Details

Estimation of the average treatment effect on the treated in the post-treatment period based Difference-in-differences. Inverse probability weighting is used to control for differences in covariates across treatment groups and/or over time. That is, (1) treated observations in the pre-treatment period, (2) non-treated observations in the post-treatment period, and (3) non-treated observations in the pre-treatment period are reweighted according to the covariate distribution of the treated observations in the post-treatment period. The respective propensity scores are obtained by probit regressions.
lateweight

Value

A didweight object contains 4 components, eff, se, pvalue, and ntrimmed.
eff: estimate of the average treatment effect on the treated in the post-treatment period.
se: standard error obtained by bootstrapping the effect.
pvalue: p-value based on the t-statistic.
ntrimmed: total number of discarded (trimmed) observations in any of the 3 reweighting steps due to extreme propensity score values.

References

Examples

A little example with simulated data (4000 observations)
n=4000 # sample size
t=1*(rnorm(n)>0) # time period
u=rnorm(n) # time constant unobservable
x=0.5*t+rnorm(n) # time varying covariate
d=1*(x+u+rnorm(n)>0) # treatment
y=d*t+d+t+x+u # outcome
The true effect equals 1
didweight(y=y,d=d,t=t,x=x, boot=199)

lateweight

Local average treatment effect estimation based on inverse probability weighting

Description

Instrumental variable-based evaluation of local average treatment effects using weighting by the inverse of the instrument propensity score.

Usage

lateweight(
y, d, z, x,
LATT = FALSE,
trim = 0.05,
logit = FALSE,
boot = 1999,
cluster = NULL
)

Arguments

y
Dependent variable, must not contain missings.
d
Treatment, must be binary (either 1 or 0), must not contain missings.
z
Instrument for the endogenous treatment, must be binary (either 1 or 0), must not contain missings.
x
Confounders of the instrument and outcome, must not contain missings.
LATT
If FALSE, the local average treatment effect (LATE) among compliers (whose treatment reacts to the instrument) is estimated. If TRUE, the local average treatment effect on the treated compliers (LATT) is estimated. Default is FALSE.
trim
Trimming rule for discarding observations with extreme propensity scores. If LATT=FALSE, observations with Pr(Z=1|X)<trim or Pr(Z=1|X)>(1-trim) are dropped. If LATT=TRUE, observations with Pr(Z=1|X)>(1-trim) are dropped. Default is 0.05.
logit
If FALSE, probit regression is used for propensity score estimation. If TRUE, logit regression is used. Default is FALSE.
boot
Number of bootstrap replications for estimating standard errors. Default is 1999.
cluster
A cluster ID for block or cluster bootstrapping when units are clustered rather than iid. Must be numerical. Default is NULL (standard bootstrap without clustering).

Details

Estimation of local average treatment effects of a binary endogenous treatment based on a binary instrument that is conditionally valid, implying that all confounders of the instrument and the outcome are observed. Units are weighted by the inverse of their conditional instrument propensities given the observed confounders, which are estimated by probit or logit regression. Standard errors are obtained by bootstrapping the effect.

Value

A lateweight object contains 10 components, effect, se.effect, pval.effect, first, se.first, pval.first, ITT, se.ITT, pval.ITT, and ntrimmed:
effect: local average treatment effect (LATE) among compliers if LATT=FALSE or the local average treatment effect on treated compliers (LATT) if LATT=TRUE.
se.effect: bootstrap-based standard error of the effect.
pval.effect: p-value of the effect.
first: first stage estimate of the complier share if LATT=FALSE or the first stage estimate among treated if LATT=TRUE.
se.first: bootstrap-based standard error of the first stage effect.
pval.first: p-value of the first stage effect.
ITT: intention to treat effect (ITT) of z on y if $\text{LATT} = \text{FALSE}$ or the ITT among treated if $\text{LATT} = \text{TRUE}$.

se.IIT: bootstrap-based standard error of the ITT.

pval.IIT: p-value of the ITT.

ntrimmed: number of discarded (trimmed) observations due to extreme propensity score values.

References

Examples

A little example with simulated data (10000 observations)
set.seed(123)
n = 10000
u = rnorm(n)
x = rnorm(n)
z = (0.25 * x + rnorm(n) > 0) * 1
d = (z + 0.25 * x + 0.25 * u + rnorm(n) > 0.5) * 1
y = 0.5 * d + 0.25 * x + u

The true LATE is equal to 0.5
output = lateweight(y=y, d=d, z=z, x=x, trim=0.05, LATT=FALSE, logit=TRUE, boot=100)
cat("LATE: ", round(output$effect, 3), ", standard error: ", round(output$se.effect, 3), ", p-value: ", round(output$pval.effect, 3))
output$ntrimmed

medDML

Causal mediation analysis with double machine learning

Description

Causal mediation analysis (evaluation of natural direct and indirect effects) for a binary treatment and one or several mediators using double machine learning to control for confounders based on (doubly robust) efficient score functions for potential outcomes.

Usage

medDML(
 y,
 d,
 m,
 x,
 k = 4,
 trim = 0.05,
 order = 1,
 multmed = TRUE,
 fewsplits = FALSE
)
Arguments

- **y**: Dependent variable, must not contain missings.
- **d**: Treatment, must be binary (either 1 or 0), must not contain missings.
- **m**: Mediator, must not contain missings. May be a scalar or a vector of binary, categorical, or continuous variables if multmed is TRUE. Must be a binary scalar if multmed is FALSE.
- **x**: (Potential) pre-treatment confounders of the treatment, mediator, and/or outcome, must not contain missings.
- **k**: Number of folds in k-fold cross-fitting if multmed is FALSE. k-1 folds are used for estimating the model parameters of the treatment, mediator, and outcome equations and one fold is used for predicting the efficient score functions. The roles of the folds are swapped. Default for k is 4. If multmed is TRUE, then 4-fold cross-validation is used, irrespective of the number provided in k (i.e. k is ignored if multmed is TRUE).
- **trim**: Trimming rule for discarding observations with extreme conditional treatment or mediator probabilities (or products thereof). Observations with (products of) conditional probabilities that are smaller than trim in any denominator of the potential outcomes are dropped. Default is 0.05.
- **order**: If set to an integer larger than 1, then polynomials of that order and interactions (using the power series) rather than the original control variables are used in the estimation of any conditional probability or conditional mean outcome. Polynomials/interactions are created using the Generate.Powers command of the LARF package.
- **multmed**: If set to TRUE, a representation of direct and indirect effects that avoids conditional mediator densities/probabilities is used, see Farbmacher, Huber, Langen, and Spindler (2019). This method can incorporate multiple and/or continuous mediators. If multmed is FALSE, the representation of Tchetgen Tchetgen and Shpitser (2012) is used, which involves mediator densities. In this case, the mediator must be a binary scalar. Default of multmed is TRUE.
- **fewsplits**: If set to TRUE, the same training data are used for estimating nested models of nuisance parameters. If fewsplits is FALSE, the training data are split for the sequential estimation of nested models. This parameter is only relevant if multmed is TRUE. Default of fewsplits is FALSE.

Details

Estimation of causal mechanisms (natural direct and indirect effects) of a treatment under selection on observables, assuming that all confounders of the binary treatment and the mediator, the treatment and the outcome, or the mediator and the outcome are observed and not affected by the treatment. Estimation is based on the (doubly robust) efficient score functions for potential outcomes, see Tchetgen Tchetgen and Shpitser (2012) and Farbmacher, Huber, Langen, and Spindler (2019), as well as on double machine learning with cross-fitting, see Chernozhukov et al (2018). To this end, one part of the data is used for estimating the model parameters of the treatment, mediator, and outcome equations based on post-lasso regression, using the rlasso and rlassologit functions (for conditional means and probabilities, respectively) of the hdm package with default settings. The other part of the data is used for predicting the efficient score functions. The roles
of the data parts are swapped and the direct and indirect effects are estimated based on averaging
the predicted efficient score functions in the total sample. Standard errors are based on asymptotic
approximations using the estimated variance of the (estimated) efficient score functions.

Value

A medDML object contains two components, results and ntrimmed:

results: a 3X6 matrix containing the effect estimates in the first row ("effects"), standard errors
in the second row ("se"), and p-values in the third row ("p-value"). The first column provides the
total effect, namely the average treatment effect (ATE). The second and third columns provide the
direct effects under treatment and control, respectively ("dir.treat", "dir.control"). The fourth and
fifth columns provide the indirect effects under treatment and control, respectively ("indir.treat",
"indir.control"). The sixth column provides the estimated mean under non-treatment ("Y(0,M(0))").

ntrimmed: number of discarded (trimmed) observations due to extreme conditional probabilities.

References

Chernozhukov, V., Chetverikov, D., Demirer, M., Duflo, E., Hansen, C., Newey, W., Robins, J.
(2018): "Double/debiased machine learning for treatment and structural parameters", The Econo-
metrics Journal, 21, C1–C68.

double machine learning", working paper, University of Fribourg.

analysis: efficiency bounds, multiple robustness, and sensitivity analysis", The Annals of Statistics,
40, 1816-1845.

Tibshirani, R. (1996): "Regression shrinkage and selection via the lasso", Journal of the Royal

Examples

A little example with simulated data (10000 observations)

n=10000 # sample size
p=100 # number of covariates
s=2 # number of covariates that are confounders
x=matrix(rnorm(n*p),ncol=p) # covariate matrix
beta=c(rep(0.25,s), rep(0,p-s)) # coefficients determining degree of confounding
d=(x%*%beta+rnorm(n)>0)*1 # treatment equation
m=(x%*%beta+0.5*d+rnorm(n)>0)*1 # mediator equation
y=x%*%beta+0.5*d+m+rnorm(n) # outcome equation

The true direct effects are equal to 0.5, the indirect effects equal to 0.19
output=medDML(y=y,d=d,m=m,x=x)
round(output$results,3)
output$ntrimmed
medlateweight

Causal mediation analysis with instruments for treatment and mediator based on weighting

Description

Causal mediation analysis (evaluation of natural direct and indirect effects) with instruments for a binary treatment and a continuous mediator based on weighting as suggested in Frölich and Huber (2017), Theorem 1.

Usage

```r
medlateweight(
  y,
  d,
  m,
  zd,
  zm,
  x,
  trim = 0.1,
  csquared = FALSE,
  boot = 1999,
  cminobs = 40,
  bwreg = NULL,
  bwm = NULL,
  logit = FALSE,
  cluster = NULL
)
```

Arguments

- `y`: Dependent variable, must not contain missings.
- `d`: Treatment, must be binary (either 1 or 0), must not contain missings.
- `m`: Mediator(s), must be a continuous scalar, must not contain missings.
- `zd`: Instrument for the treatment, must be binary (either 1 or 0), must not contain missings.
- `zm`: Instrument for the mediator, must contain at least one continuous element, may be a scalar or a vector, must not contain missings. If no user-specified bandwidth is provided for the regressors when estimating the conditional cumulative distribution function $F(M|Z,X)$, i.e. if `bwreg=NULL`, then `zm` must be exclusively numeric.
- `x`: Pre-treatment confounders, may be a scalar or a vector, must not contain missings. If no user-specified bandwidth is provided for the regressors when estimating the conditional cumulative distribution function $F(M|Z,X)$, i.e. if `bwreg=NULL`, then `x` must be exclusively numeric.
trim
Trimming rule for discarding observations with extreme weights. Discards observations whose relative weight would exceed the value in trim in the estimation of any of the potential outcomes. Default is 0.1 (i.e. a maximum weight of 10% per observation).

csquared
If TRUE, then not only the control function C, but also its square is used as regressor in any estimated function that conditions on C. Default is FALSE.

boot
Number of bootstrap replications for estimating standard errors. Default is 1999.

cminobs
Minimum number of observations to compute the control function C, see the numerator of equation (7) in Frölich and Huber (2017). A larger value increases boundary bias when estimating the control function for lower values of M, but reduces the variance. Default is 40, but should be adapted to sample size and the number of variables in Z2 and X.

bwreg
Bandwidths for zm and x in the estimation of the conditional cumulative distribution function F(M|Z2,X) based on the np package by Hayfield and Racine (2008). The length of the numeric vector must correspond to the joint number of elements in zm and x and will be used both in the original sample for effect estimation and in bootstrap samples to compute standard errors. If set to NULL, then the rule of thumb is used for bandwidth calculation, see the np package for details. In the latter case, all elements in the regressors must be numeric. Default is NULL.

bwm
Bandwidth for m in the estimation of the conditional cumulative distribution function F(M|Z2,X) based on the np package by Hayfield and Racine (2008). Must be scalar and will be used both in the original sample for effect estimation and in bootstrap samples to compute standard errors. If set to NULL, then the rule of thumb is used for bandwidth calculation, see the np package for details. Default is NULL.

logit
If FALSE, probit regression is used for any propensity score estimation. If TRUE, logit regression is used. Default is FALSE.

cluster
A cluster ID for block or cluster bootstrapping when units are clustered rather than iid. Must be numerical. Default is NULL (standard bootstrap without clustering).

Details
Estimation of causal mechanisms (natural direct and indirect effects) of a binary treatment among treatment compliers based on distinct instruments for the treatment and the mediator. The treatment and its instrument are assumed to be binary, while the mediator and its instrument are assumed to be continuous, see Theorem 1 in Frölich and Huber (2017). The instruments are assumed to be conditionally valid given a set of observed confounders. A control function is used to tackle mediator endogeneity. Standard errors are obtained by bootstrapping the effects.

Value
A medlateweight object contains two components, results and ntrimmed:

results: a 3x7 matrix containing the effect estimates in the first row ("effects"), standard errors in the second row ("se"), and p-values in the third row ("p-value"). The first column provides
the total effect, namely the local average treatment effect (LATE) on the compliers. The second and third columns provide the direct effects under treatment and control, respectively ("dir.treat", "dir.control"). The fourth and fifth columns provide the indirect effects under treatment and control, respectively ("indir.treat", "indir.control"). The sixth and seventh columns provide the parametric direct and indirect effect estimates ("dir.para", "indir.para") without interaction terms, respectively. For the parametric estimates, probit or logit specifications are used for the treatment model and OLS specifications for the mediator and outcome models.

ntrimmed: number of discarded (trimmed) observations due to large weights.

References

Examples

A little example with simulated data (3000 observations)
Not run:
n=3000; sigma=matrix(c(1,0.5,0.5,0.5,1,0.5,0.5,0.5,1),3,3)
e=(rmvnorm(n,rep(0,3),sigma))
x=rnorm(n)
zd=(0.5*x+rnorm(n)>0)*1
d=(-1+0.5*x+2*zd+e[,3]>0)
zm=0.5*x+rnorm(n)
m=(0.5*x+2*zm+0.5*d+e[,2])
y=0.5*x+d+m+e[,1]
The true direct and indirect effects on compliers are equal to 1 and 0.5, respectively
medlateweight(y,d,m,zd,zm,x,trim=0.1,csquared=FALSE,boot=19,cminobs=40, bwreg=NULL,bwm=NULL,logit=FALSE)
End(Not run)
Arguments

\(y \) Dependent variable, must not contain missings.
\(d \) Treatment, must be binary (either 1 or 0), must not contain missings.
\(m \) Mediator(s), may be a scalar or a vector, must not contain missings.
\(x \) Pre-treatment confounders of the treatment, mediator, and/or outcome, must not contain missings.
\(w \) Post-treatment confounders of the mediator and the outcome. Default is NULL. Must not contain missings.
\(s \) Optional selection indicator. Must be one if \(y \) is observed (non-missing) and zero if \(y \) is not observed (missing). Default is NULL, implying that \(y \) does not contain any missings. Is ignored if \(w \) is not NULL.
\(z \) Optional instrumental variable(s) for selection \(s \). If NULL, outcome selection based on observables \((x,d,m) \) - known as "missing at random" - is assumed.
\(selpop \) Only to be used if both \(s \) and \(z \) are defined. If TRUE, the effects are estimated for the selected subpopulation with \(s=1 \) only. If FALSE, the effects are estimated for the total population.
\(ATET \) If FALSE, the average treatment effect (ATE) and the corresponding direct and indirect effects are estimated. If TRUE, the average treatment effect on the treated (ATET) and the corresponding direct and indirect effects are estimated. Default is FALSE.
\(trim \) Trimming rule for discarding observations with extreme propensity scores. In the absence of post-treatment confounders \((w=NULL) \), observations with \(\Pr(D=1|M,X) < \text{trim} \) or \(\Pr(D=1|M,X) > (1-\text{trim}) \) are dropped. In the presence of post-treatment confounders \((w \text{ defined}) \), observations with \(\Pr(D=1|M,W,X) < \text{trim} \) or \(\Pr(D=1|M,W,X) > (1-\text{trim}) \) are dropped. Default is 0.05. If \(s \) is defined (only considered if \(w \) is NULL!) and \(z \) is NULL, observations with low selection propensity scores, \(\Pr(S=1|D,M,X) < \text{trim} \), are discarded, too. If \(s \) and \(z \) are defined, the treatment propensity scores to be trimmed change to \(\Pr(D=1|M,X,\Pr(S=1|D,X,Z)) \).
\(logit \) If FALSE, probit regression is used for propensity score estimation. If TRUE, logit regression is used. Default is FALSE.
\(boot \) Number of bootstrap replications for estimating standard errors. Default is 1999.
\(cluster \) A cluster ID for block or cluster bootstrapping when units are clustered rather than iid. Must be numerical. Default is NULL (standard bootstrap without clustering).
Details

Estimation of causal mechanisms (natural direct and indirect effects) of a binary treatment under a selection on observables assumption assuming that all confounders of the treatment and the mediator, the treatment and the outcome, or the mediator and the outcome are observed. Units are weighted by the inverse of their conditional treatment propensities given the mediator and/or observed confounders, which are estimated by probit or logit regression. The form of weighting depends on whether the observed confounders are exclusively pre-treatment \((x)\), or also contain post-treatment confounders of the mediator and the outcome \((w)\). In the latter case, only partial indirect effects (from \(d\) to \(m\) to \(y\)) can be estimated that exclude any causal paths from \(d\) to \(w\) to \(m\) to \(y\), see the discussion in Huber (2014). Standard errors are obtained by bootstrapping the effects. In the absence of post-treatment confounders (such that \(w\) is NULL), defining \(s\) allows correcting for sample selection due to missing outcomes based on the inverse of the conditional selection probability. The latter might either be related to observables, which implies a missing at random assumption, or in addition also to unobservables, if an instrument for sample selection is available. Effects are then estimated for the total population, see Huber and Solovyeva (2018) for further details.

Value

A medweight object contains two components, results and ntrimmed:

results: a 3X5 matrix containing the effect estimates in the first row ("effects"), standard errors in the second row ("se"), and p-values in the third row ("p-value"). The first column provides the total effect, namely the average treatment effect (ATE) if \(\text{ATET} = \text{FALSE}\) or the average treatment effect on the treated (ATET) if \(\text{ATET} = \text{TRUE}\). The second and third columns provide the direct effects under treatment and control, respectively ("dir.treat", "dir.control"). See equation (6) if \(w\) is defined, and equation (13) if \(w\) is defined, respectively, in Huber (2014). If \(w\) is defined, the fourth and fifth columns provide the partial indirect effects under treatment and control, respectively ("par.in.treat", "par.in.control"), see equation (14) in Huber (2014).

ntrimmed: number of discarded (trimmed) observations due to extreme propensity score values.

References

Examples

A little example with simulated data (10000 observations)
n=10000
x=rnorm(n)
d=(0.25*x+rnorm(n)>0)*1
w=0.2*d+0.25*x+rnorm(n)
m=0.5*w+0.5*d+0.25*x+rnorm(n)
y=0.5*d+m+w+0.25*x+rnorm(n)
The true direct and partial indirect effects are all equal to 0.5
Causal mediation analysis with a continuous treatment based on weighting by the inverse of generalized propensity scores

Description

Causal mediation analysis (evaluation of natural direct and indirect effects) of a continuous treatment based on weighting by the inverse of generalized propensity scores as suggested in Hsu, Huber, Lee, and Pipoz (2018).

Usage

```
medweightcont(
  y, d, m, x, w, trim=0.05, ATET=FALSE, logit=TRUE, boot=19)
round(output$results,3)
output$ntrimmed
```

Arguments

- **y**: Dependent variable, must not contain missings.
- **d**: Continuous treatment, must not contain missings.
- **m**: Mediator(s), may be a scalar or a vector, must not contain missings.
- **x**: Pre-treatment confounders of the treatment, mediator, and/or outcome, must not contain missings.
- **d0**: Value of d under non-treatment. Effects are based on pairwise comparisons, i.e. differences in potential outcomes evaluated at d1 and d0.
- **d1**: Value of d under treatment. Effects are based on pairwise comparisons, i.e. differences in potential outcomes evaluated at d1 and d0.
- **ATET**: If FALSE, the average treatment effect (ATE) and the corresponding direct and indirect effects are estimated. If TRUE, the average treatment effect on the treated (ATET) and the corresponding direct and indirect effects are estimated. Default is FALSE.
trim: Trimming rule for discarding observations with too large weights in the estimation of any mean potential outcome. That is, observations with a weight > trim are dropped from the sample. Default is a maximum weight of 0.1 (or 10%) per observation.

lognorm: If FALSE, a linear model with normally distributed errors is assumed for generalized propensity score estimation. If TRUE, a lognormal model is assumed. Default is FALSE.

bw: Bandwith for the second order Epanechnikov kernel functions of the treatment. If set to NULL, bandwidth computation is based on the rule of thumb for Epanechnikov kernels, determining the bandwidth as the standard deviation of the treatment times $2.34/(n^{0.25})$, where n is the sample size. Default is NULL.

boot: Number of bootstrap replications for estimating standard errors. Default is 1999.

cluster: A cluster ID for block or cluster bootstrapping when units are clustered rather than iid. Must be numerical. Default is NULL (standard bootstrap without clustering).

Details

Estimation of causal mechanisms (natural direct and indirect effects) of a continuous treatment under a selection on observables assumption assuming that all confounders of the treatment and the mediator, the treatment and the outcome, or the mediator and the outcome are observed. Units are weighted by the inverse of their conditional treatment densities (known as generalized propensity scores) given the mediator and/or observed confounders, which are estimated by linear or loglinear regression. Standard errors are obtained by bootstrapping the effects.

Value

A medweightcont object contains two components, results and ntrimmed:
results: a 3X5 matrix containing the effect estimates in the first row ("effects"), standard errors in the second row ("se"), and p-values in the third row ("p-value"). The first column provides the total effect, namely the average treatment effect (ATE) if ATET=FALSE or the average treatment effect on the treated (ATET), i.e. those with $D=d_1$, if ATET=TRUE. The second and third columns provide the direct effects under treatment and control, respectively ("dir.treat", "dir.control"). The fourth and fifth columns provide the indirect effects under treatment and control, respectively ("indir.treat", "indir.control").

ntrimmed: number of discarded (trimmed) observations due to extreme propensity score values.

References

Hsu, Y.-C., Huber, M., Lee, Y.-Y., Pipoz, L. (2018): "Direct and indirect effects of continuous treatments based on generalized propensity score weighting", SES working paper 495, University of Fribourg.

Examples

A little example with simulated data (10000 observations)
n=10000
x=runif(n=n,min=-1,max=1)
\[
\begin{align*}
d &= 0.25 \times x + \text{runif}(n=n, \text{min}=-2, \text{max}=2) \\
d &= d - \min(d) \\
m &= 0.5 \times d + 0.25 \times x + \text{runif}(n=n, \text{min}=-2, \text{max}=2) \\
y &= 0.5 \times d + m + 0.25 \times x + \text{runif}(n=n, \text{min}=-2, \text{max}=2)
\end{align*}
\]

The true direct and indirect effects are all equal to 0.5

\[
\text{output} = \text{medweightcont}(y, d, m, x, d_0=2, d_1=3, \text{ATE}=\text{FALSE}, \text{trim}=0.1, \text{lognorm}=\text{FALSE}, \text{bw}=\text{NULL}, \text{boot}=19)
\]

\[
\text{round(output$\text{results}, 3)}
\]

\[
\text{output$ntrimmed}
\]

swissexper
Correspondence test in Swiss apprenticeship market

Description

A dataset related to a field experiment (correspondence test) in the Swiss apprenticeship market 2018/2019. The experiment investigated the effects of applicant gender and parental occupation in applications to apprenticeships on callback rates (invitations to interviews, assessment centers, or trial apprenticeships).

Usage

`swissexper`

Format

A data frame with 2928 rows and 18 variables:

- **city**: agglomeration of apprenticeship: 1=Bern, 2=Zurich, 3=Basel, 6=Lausanne
- **foundatdate**: date when job add was found
- **employees**: (estimated) number of employees: 1=1-20; 2=21-50; 3=51-100; 4=101-250; 5=251-500; 6=501-1000; 7=1001+
- **sector**: 1=public sector; 2=trade/wholesale; 3=manufacturing/goods; 4=services
- **uniqueID**: ID of application
- **sendatdate**: date when application was sent
- **job_father**: treatment: father’s occupation: 1=professor; 2=unskilled worker; 3=intermediate commercial; 4=intermediate technical
- **job_mother**: treatment: mother’s occupation: 1=primary school teacher; 2=homemaker
- **tier**: skill tier of apprenticeship: 1=lower; 2=intermediate; 3=upper
- **hasmoved**: applicant moved from different city: 1=yes; 0=no
- **contgender**: gender of contact person in company: 0=unknown; 1=female; 2=male
- **letterback**: 1: letters sent from company to applicant were returned; 0: no issues with returned letters
- **outcome_invite**: outcome: invitation to interview, assessment center, or trial apprenticeship: 1=yes; 0=no
female_appl treatment: 1=female applicant; 0=male applicant
antidiscrpolicy 1=explicit antidiscrimination policy on company’s website; 0=no explicit antidiscrimination policy
outcome_interest outcome: either invitation, or asking further questions, or keeping application for further consideration
gender_neutrality 0=gender neutral job type; 1=female dominated job type; 2=male dominated type
company_activity scope of company’s activity: 0=local; 1=national; 2=international

References

treatweight

Treatment evaluation based on inverse probability weighting with optional sample selection correction.

Description
Treatment evaluation based on inverse probability weighting with optional sample selection correction.

Usage

treatweight(
y,
d,
x,
s = NULL,
z = NULL,
selpop = FALSE,
ATET = FALSE,
trim = 0.05,
logit = FALSE,
boot = 1999,
cluster = NULL)

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>y</td>
<td>Dependent variable.</td>
</tr>
<tr>
<td>d</td>
<td>Treatment, must be binary (either 1 or 0), must not contain missings.</td>
</tr>
<tr>
<td>x</td>
<td>Confounders of the treatment and outcome, must not contain missings.</td>
</tr>
</tbody>
</table>
Selection indicator. Must be one if y is observed (non-missing) and zero if y is not observed (missing). Default is NULL, implying that y does not contain any missings.

Optional instrumental variable(s) for selection s. If NULL, outcome selection based on observables (x,d) - known as "missing at random" - is assumed. If z is defined, outcome selection based on unobservables - known as "non-ignorable missingness" - is assumed. Default is NULL. If s is NULL, z is ignored.

Only to be used if both s and z are defined. If TRUE, the effect is estimated for the selected subpopulation with s=1 only. If FALSE, the effect is estimated for the total population. (note that this relies on somewhat stronger statistical assumptions). Default is FALSE. If s or z is NULL, selpop is ignored.

If FALSE, the average treatment effect (ATE) is estimated. If TRUE, the average treatment effect on the treated (ATET) is estimated. Default is FALSE.

If ATET=FALSE, observations with Pr(D=1|X)<trim or Pr(D=1|X)>(1-trim) are dropped. If ATET=TRUE, observations with Pr(D=1|X)>(1-trim) are dropped. If s is defined and z is NULL, observations with extremely low selection propensity scores, Pr(S=1|D,X)<trim, are discarded, too. If s and z are defined, the treatment propensity scores to be trimmed change to Pr(D=1|X,Pr(S=1|D,X,Z)). If in addition selpop is FALSE, observation with Pr(S=1|D,X,Z)<trim are discarded, too. Default for trim is 0.05.

If FALSE, probit regression is used for propensity score estimation. If TRUE, logit regression is used. Default is FALSE.

Number of bootstrap replications for estimating standard errors. Default is 1999.

A cluster ID for block or cluster bootstrapping when units are clustered rather than iid. Must be numerical. Default is NULL (standard bootstrap without clustering).

Estimation of treatment effects of a binary treatment under a selection on observables assumption assuming that all confounders of the treatment and the outcome are observed. Units are weighted by the inverse of their conditional treatment propensities given the observed confounders, which are estimated by probit or logit regression. Standard errors are obtained by bootstrapping the effect. If s is defined, the procedure allows correcting for sample selection due to missing outcomes based on the inverse of the conditional selection probability. The latter might either be related to observables, which implies a missing at random assumption, or in addition also to unobservables, if an instrument for sample selection is available. See Huber (2012, 2014) for further details.

A treatweight object contains six components: effect, se, pval, y1, y0, and ntrimmed.

effect: average treatment effect (ATE) if ATET=FALSE or the average treatment effect on the treated (ATET) if ATET=TRUE.

se: bootstrap-based standard error of the effect.

pval: p-value of the effect.
y1: mean potential outcome under treatment.
y0: mean potential outcome under control.
\(n_{\text{trimmed}} \): number of discarded (trimmed) observations due to extreme propensity score values.

References

Examples

A little example with simulated data (10000 observations)
n=10000
x=rnorm(n); d=(0.25*x+rnorm(n)>0)*1
y=0.5*d+0.25*x+rnorm(n)
The true ATE is equal to 0.5
output=treatweight(y=y, d=d, x=x, trim=0.05, ATET=FALSE, logit=TRUE, boot=19)
cat("ATE: ",round(c(output$effect),3), ", standard error: ",
 round(c(output$se),3), ", p-value: ",round(c(output$pval),3))
output$ntrimmed

An example with non-random outcome selection and an instrument for selection
n=10000
sigma=matrix(c(1,0.6,0.6,1),2,2)
e=(2*rmvnorm(n,rep(0,2),sigma))
x=rnorm(n)
d=(0.5*x+rnorm(n)>0)*1
z=rnorm(n)
s=(0.25*x+0.25*d+0.5*z+e[,1]>0)*1
y=d+x+e[,2]; y[s==0]=0
The true ATE is equal to 1
output=treatweight(y=y, d=d, x=x, s=s, z=z, selpop=FALSE, trim=0.05, ATET=FALSE, logit=TRUE, boot=19)
cat("ATE: ",round(c(output$effect),3), ", standard error: ",
 round(c(output$se),3), ", p-value: ",round(c(output$pval),3))
output$ntrimmed

wexpect

Wage expectations of students in Switzerland

Description

A dataset containing information on wage expectations of 804 students at the University of Fribourg and the University of Applied Sciences in Bern in the year 2017.
Usage

wexpect

Format

A data frame with 804 rows and 39 variables:

- **wexpect1** wage expectations after finishing studies: 0=less than 3500 CHF gross per month; 1=3500-4000 CHF; 2=4000-4500 CHF; ...; 15=10500-11000 CHF; 16=more than 11000 CHF
- **wexpect2** wage expectations 3 years after studying: 0=less than 3500 CHF gross per month; 1=3500-4000 CHF; 2=4000-4500 CHF; ...; 15=10500-11000 CHF; 16=more than 11000 CHF
- **wexpect1othersex** expected wage of other sex after finishing studies in percent of own expected wage
- **wexpect2othersex** expected wage of other sex 3 years after studying in percent of own expected wage
- **male** 1=male; 0=female
- **business** 1=BA in business
- **econ** 1=BA in economics
- **communi** 1=BA in communication
- **businform** 1=BA in business informatics
- **plansfull** 1=plans working fulltime after studies
- **planneduc** 1=plans obtaining further education (e.g. MA) after studies
- **sectorcons** 1=planned sector: construction
- **sectortrade** 1=planned sector: trade and sales
- **sectortransware** 1=planned sector: transport and warehousing
- **sectorhosprest** 1=planned sector: hospitality and restaurant
- **sectorinfocom** 1=planned sector: information and communication
- **sectorfininsur** 1=planned sector: finance and insurance
- **sectorconsult** 1=planned sector: consulting
- **secoreduscience** 1=planned sector: education and science
- **sectorhealthsocial** 1=planned sector: health and social services
- **typegenstratman** 1=planned job type: general or strategic management
- **typemarketing** 1=planned job type: marketing
- **typecontrol** 1=planned job type: controlling
- **typefinance** 1=planned job type: finance
- **typesales** 1=planned job type: sales
- **typetechengin** 1=planned job type: technical/engineering
- **typehumanres** 1=planned job type: human resources
- **posmanager** 1=planned position: manager
- **age** age in years
swiss 1=Swiss nationality
hassiblings 1=has one or more siblings
motherhighedu 1=mother has higher education
fatherhighedu 1=father has higher education
motherworkedfull 1=mother worked fulltime at respondent’s age 4-6
motherworkedpart 1=mother worked parttime at respondent’s age 4-6
matwellbeing self-assessed material wellbeing compared to average Swiss: 1=much worse; 2=worse; 3=as average Swiss; 4=better; 5=much better
homeowner 1=home ownership
treatmentinformation 1=if information on median wages in Switzerland was provided (randomized treatment)
treatmentorder 1=if order of questions on professional plans and personal information in survey has been reversed (randomized treatment), meaning that personal questions are asked first and professional ones later

Examples

data(wexpect)
attach(wexpect)
effect of randomized wage information (treatment) on wage expectations 3 years after studying (outcome)
treatweight(y=wexpect2,d=treatmentinformation,x=cbind(male,business,econ,communi,businform,age,swiss,motherhighedu,fatherhighedu),boot=199)
direct effect of gender (treatment) and indirect effect through choice of field of studies (mediator) on wage expectations (outcome)
medweight(y=wexpect2,d=male,m=cbind(business,econ,communi,businform),x=cbind(treatmentinformation,age,swiss,motherhighedu,fatherhighedu),boot=199)
Index

*Topic datasets
 swissexper, 17
 wexpect, 20
 attrlateweight, 2
 didweight, 4
 lateweight, 5
 medDML, 7
 medlateweight, 10
 medweight, 12
 medweightcont, 15
 swissexper, 17
 treatweight, 18
 wexpect, 20