Package ‘causalweight’

July 23, 2024

Title Estimation Methods for Causal Inference Based on Inverse Probability Weighting

Version 1.1.1

Maintainer Hugo Bodory <hugo.bodory@unisg.ch>

License MIT + file LICENSE

Encoding UTF-8

LazyData true

RoxygenNote 7.3.2

Depends R (>= 3.5.0), ranger

Imports mvtnorm, np, LARF, hdm, SuperLearner, glmnet, xgboost, e1071, fastDummies, grf, checkmate, sandwich

NeedsCompilation no

Author Hugo Bodory [aut, cre] (<https://orcid.org/0000-0002-3645-1204>), Martin Huber [aut] (<https://orcid.org/0000-0002-8590-9402>), Jannis Kueck [aut] (<https://orcid.org/0000-0003-4367-0285>)

Repository CRAN

Date/Publication 2024-07-23 13:40:01 UTC

Contents

attrlateweight ... 2

1
Local average treatment effect estimation in multiple follow-up periods with outcome attrition based on inverse probability weighting

Description

Instrumental variable-based evaluation of local average treatment effects using weighting by the inverse of the instrument propensity score.

Usage

```r
attrlateweight(
  y1, y2, s1, s2, d,
)```
z, x0, x1,
weightmax = 0.1,
boot = 1999,
cluster = NULL
)

Arguments

y1 Outcome variable in the first outcome period.
y2 Outcome variable in the second outcome period.
s1 Selection indicator for first outcome period. Must be one if \( y_1 \) is observed (non-missing) and zero if \( y_1 \) is not observed (missing).
s2 Selection indicator for second outcome period. Must be one if \( y_1 \) is observed (non-missing) and zero if \( y_1 \) is not observed (missing).
d Treatment, must be binary (either 1 or 0), must not contain missings.
z Instrument for the endogenous treatment, must be binary (either 1 or 0), must not contain missings.
x0 Baseline (pre-instrument) confounders of the instrument and outcome, must not contain missings.
x1 Confounders in outcome period 1 (may include outcomes of period 1 \( y_1 \))
weightmax Trimming rule based on the maximum relative weight a single observation may obtain in estimation - observations with higher weights are discarded. Default is 0.1 (no observation can be assigned more than 10 percent of weights)
boot Number of bootstrap replications for estimating standard errors. Default is 1999.
cluster A cluster ID for block or cluster bootstrapping when units are clustered rather than iid. Must be numerical. Default is NULL (standard bootstrap without clustering).

Details

Estimation of local average treatment effects of a binary endogenous treatment on outcomes in two follow up periods that are prone to attrition. Treatment endogeneity is tackled by a binary instrument that is assumed to be conditionally valid given observed baseline confounders \( x_0 \). Outcome attrition is tackled by either assuming that it is missing at random (MAR), i.e. selection w.r.t. observed variables \( d, z, x_0, x_1 \) (in the case of \( y_2 \)), and \( s_1 \) (in the case of \( y_2 \)); or by assuming latent ignorability (LI), i.e. selection w.r.t. the treatment compliance type as well as \( z, x_0, x_1 \) (in the case of \( y_2 \)), and \( s_1 \) (in the case of \( y_2 \)). Units are weighted by the inverse of their conditional instrument and selection propensities, which are estimated by probit regression. Standard errors are obtained by bootstrapping the effect.

Value

An attrlaterweight object contains one component results:
results: a 4X4 matrix containing the effect estimates in the first row ("effects"), standard errors in the second row ("se"), p-values in the third row ("p-value"), and the number of trimmed observations due to too large weights in the fourth row ("trimmed obs"). The first column provides the local average treatment effect (LATE) on \( y_1 \) among compliers under missingness at random (MAR). The second column provides the local average treatment effect (LATE) on \( y_2 \) under missingness at random (MAR). The third column provides the local average treatment effect (LATE) on \( y_1 \) under latent ignorability (LI). The forth column provides the local average treatment effect (LATE) on \( y_2 \) under latent ignorability (LI).

References

Examples

```r
A little example with simulated data (4000 observations)
Not run:
n=4000
e=(rmvnorm(n,rep(0,3), matrix(c(1,0.3,0.3, 0.3,1,0.3, 0.3,0.3,1),3,3)))
x0=runif(n,0,1)
z=(0.25*x0+rnorm(n)>0)*1
d=(1.2*z-0.25*x0+e[,1]>0.5)*1
y1_star=0.5*x0+0.5*d+e[,2]
s1=(0.25*x0+0.25*d+rnorm(n)>-0.5)*1
y1=s1*y1_star
x1=(0.5*x0+0.5*rnorm(n))
y2_star=0.5*x0+x1+d+e[,3]
s2=s1*(0.25*x0+0.25*x1+0.25*d+rnorm(n)>-0.5)*1
y2=s2*y2_star
The true LATEs on \(y_1 \) and \(y_2 \) are equal to 0.5 and 1, respectively.
output=attrlateweight(y1=y1,y2=y2,s1=s1,s2=s2,d=d,z=z,x0=x0,x1=x1,boot=19)
round(output$results,3)
End(Not run)
```

coffeeflyer

Information leaflet on coffee production and environmental awareness of high school / university students in Bulgaria

Description
A dataset on the impact of an information leaflet about coffee production on students’ awareness about environmental issues collected at Bulgarian highschools and universities in the year 2015.

Usage

coffeeflyer
Format

A data frame with 522 rows and 48 variables:

- **grade**: school grade
- **sex**: 1=male, 0=female
- **age**: age in years
- **mob**: month of birth
- **bulgnationality**: dummy for Bulgarian nationality
- **langbulg**: dummy for Bulgarian mother tongue
- **mumage**: mother’s age in years
- **numedu**: mother’s education (1=lower secondary or less, 2=upper secondary, 3=higher)
- **mumprof**: mother’s profession (1=manager, 2=specialist, 3=worker, 4=self-employed, 5=not working, 6=retired, 7=other)
- **dadage**: father’s age in years
- **dadedu**: father’s education (1=lower secondary or less, 2=upper secondary, 3=higher)
- **dadprof**: father’s profession (1=manager, 2=specialist, 3=worker, 4=self-employed, 5=not working, 6=retired, 7=other)
- **material**: material situation of the family (1=very bad, ..., 5=very good)
- **withbothpar**: dummy for living with both parents
- **withmum**: dummy for living with mother only
- **withdad**: dummy for living with father only
- **withneither**: dummy for living with neither mother nor father
- **oldsiblings**: number of older siblings
- **younsgsiblings**: number of younger siblings
- **schoolmaths**: school dummy (for highschool with maths specialization)
- **schoolrakdelsve**: school dummy
- **schoolvazov**: school dummy
- **schoolfinance**: school dummy
- **schoolvarna**: school dummy (for highschool in city of Varna)
- **schoolspanish**: school dummy (for Spanish highschool)
- **schooltechnubi**: school dummy (for technical university)
- **schoolvidin**: school dummy (for highschool in city of Vidin)
- **schooluni**: school dummy (for university)
- **citysofia**: dummy for the capital city of Sofia
- **cityvarna**: dummy for the city of Varna
- **cityvidin**: dummy for the city of Vidin
- **treatment**: treatment (1=leaflet on environmental impact of coffee growing, 0=control group)
- **drinkcoffee**: drinks coffee (1=never, 2=not more than 1 time per week, 3=several times per week, 4=1 time per day, 5=several times per day)
**cupsest** outcome: guess how many cups of coffee per capita are consumed in Bulgaria per year

**devi_cupsest** outcome: deviation of guess from true coffee consumption per capita and year in Bulgaria

**impwordecon** outcome: assess the importance of coffee for world economy (1=not at all important, ..., 5=very important)

**impincome** assess the importance of coffee as a source of income for people in Africa and Latin America (1=not at all important, ..., 5=very important)

**awarewaste** outcome: awareness of waste production due to coffee production (1=not aware, ..., 5=fully aware)

**awarepesticide** outcome: awareness of pesticide use due to coffee production (1=not aware, ..., 5=fully aware)

**awaredeforestation** outcome: awareness of deforestation due to coffee production (1=not aware, ..., 5=fully aware)

**awarewastewater** outcome: awareness of waste water due to coffee production (1=not aware, ..., 5=fully aware)

**awarebiodiversityloss** outcome: awareness of biodiversity loss due to coffee production (1=not aware, ..., 5=fully aware)

**awareunfairworking** outcome: awareness of unfair working conditions due to coffee production (1=not aware, ..., 5=fully aware)

**reuserepurposeful** outcome: can coffee waste be reused purposefully (1=no, 2=maybe, 3=yes)

**reusesoil** outcome: can coffee waste be reused as soil (1=no, 2=maybe, 3=yes)

**choiceprice** importance of price when buying coffee (1=not important at all, ..., 5=very important, 6=I don’t drink coffee)

**choicetastepleasure** importance of pleasure or taste when buying coffee (1=not important at all, ..., 5=very important, 6=I don’t drink coffee)

**choiceenvironsocial** importance of environmental or social impact when buying coffee (1=not important at all, ..., 5=very important, 6=I don’t drink coffee)

**References**

Faldzhiyskiy, S. (Ecosystem Europe, Bulgaria) and Huber, M. (University of Fribourg): "The impact of an information leaflet about coffee production on students’ awareness about environmental issues".

**Examples**

```r
Not run:
data(coffeeleaflet)
attach(coffeeleaflet)
data=na.omit(cbind(awarewaste,treatment,grade,sex,age))
effect of information leaflet (treatment) on awareness of waste production
treatweight(y=data[,1],d=data[,2],x=data[,3:5],boot=199)
End(Not run)
```
Data on daily spending and coupon receipt (selective subsample) This data set is a selective subsample of the data set "couponsretailer" which was constructed for illustrative purposes.

**Description**

Data on daily spending and coupon receipt (selective subsample) This data set is a selective subsample of the data set "couponsretailer" which was constructed for illustrative purposes.

**Usage**

coupon

couponsretailer

**Format**

A data frame with 1293 rows and 9 variables:

- **dailyspending** outcome: customer’s daily spending at the retailer in a specific period
- **coupons** treatment: 1 = customer received at least one coupon in that period; 0 = customer did not receive any coupon
- **coupons_preperiod** coupon reception in previous period: 1 = customer received at least one coupon; 0 = customer did not receive any coupon
- **dailyspending_preperiod** daily spending at the retailer in previous period
- **income_bracket** income group: 1 = lowest to 12 = highest
- **age_range** age of customer: 1 = 18-25; 2 = 26-35; 3 = 36-45; 4 = 46-55; 5 = 56-70; 6 = 71 plus
- **married** marital status: 1 = married; 0 = unmarried
- **rented** dwelling type: 1 = rented; 0 = owned
- **family_size** number of family members: 1 = 1; 2 = 2; 3 = 3; 4 = 4; 5 = 5 plus

**Description**

Data on daily spending and coupon receipt A dataset containing information on the purchasing behavior of 1582 retail store customers across 32 coupon campaigns.

**Usage**

couponsretailer
Format

A data frame with 50,624 rows and 27 variables:

- **customer_id** customer identifier
- **period** period of observation: 1 = 1st period to 32 = last period
- **age_range** age of customer: 1 = 18-25; 2 = 26-35; 3 = 36-45; 4 = 46-55; 5 = 56-70; 6 = 71 plus
- **married** marital status: 1 = married; 0 = unmarried
- **rented** dwelling type: 1 = rented; 0 = owned
- **family_size** number of family members: 1 = 1; 2 = 2; 3 = 3; 4 = 4; 5 = 5 plus
- **income_bracket** income group: 1 = lowest to 12 = highest
- **dailyspending_preperiod** customer’s daily spending at the retailer in previous period
- **purchase_ReadyEatFood_preperiod** purchases of ready-to-eat food in previous period: 1 = yes, 0 = no
- **purchase_MeatSeafood_preperiod** purchases of meat and seafood products in previous period: 1 = yes, 0 = no
- **purchase_OtherFood_preperiod** purchases of other food products in previous period: 1 = yes, 0 = no
- **purchase_Drugstore_preperiod** purchases of drugstore products in previous period: 1 = yes, 0 = no
- **purchase_OtherNonfood_preperiod** purchases of other non-food products in previous period: 1 = yes, 0 = no
- **coupons_Any_preperiod** coupon reception in previous period: 1 = customer received at least one coupon; 0 = customer did not receive any coupon
- **coupons_ReadyEatFood_preperiod** coupon reception in previous period: 1 = customer received at least one ready-to-eat food coupon; 0 = customer did not receive any ready-to-eat food coupon
- **coupons_MeatSeafood_preperiod** coupon reception in previous period: 1 = customer received at least one meat/seafood coupon; 0 = customer did not receive any meat/seafood coupon
- **coupons_OtherFood_preperiod** coupon reception in previous period: 1 = customer received at least one coupon applicable to other food items; 0 = customer did not receive any coupon applicable to other food items
- **coupons_Drugstore_preperiod** coupon reception in previous period: 1 = customer received at least one drugstore coupon; 0 = customer did not receive any drugstore coupon
- **coupons_OtherNonfood_preperiod** coupon reception in previous period: 1 = customer received at least one coupon applicable to other non-food items; 0 = customer did not receive any coupon applicable to other non-food items
- **coupons_Any_redeemed_preperiod** coupon redemption in previous period: 1 = customer redeemed at least one coupon; 0 = customer did not redeem any coupon
- **coupons_Any** treatment: 1 = customer received at least one coupon in current period; 0 = customer did not receive any coupon
- **coupons_ReadyEatFood** treatment: 1 = customer received at least one ready-to-eat food coupon; 0 = customer did not receive any ready-to-eat food coupon
**didcontDML**

**coupons_MeatSeafood** treatment: 1 = customer received at least one meat/seafood coupon; 0 = customer did not receive any meat/seafood coupon

**coupons_OtherFood** treatment: 1 = customer received at least one coupon applicable to other food items; 0 = customer did not receive any coupon applicable to other food items

**coupons_Drugstore** treatment: 1 = customer received at least one drugstore coupon; 0 = customer did not receive any drugstore coupon

**coupons_OtherNonfood** treatment: 1 = customer received at least one coupon applicable to other non-food items; 0 = customer did not receive any coupon applicable to other non-food items

**dailyspending** outcome: customer’s daily spending at the retailer in current period

**References**


---

**didcontDML**

*Continuous Difference-in-Differences using Double Machine Learning for Repeated Cross-Sections*

---

**Description**

This function estimates the average treatment effect on the treated of a continuously distributed treatment in repeated cross-sections based on a Difference-in-Differences (DiD) approach using double machine learning to control for time-varying confounders in a data-driven manner. It supports estimation under various machine learning methods and uses k-fold cross-fitting.

**Usage**

```r
didcontDML(
 y,
 d,
 t,
 dtreat,
 dcontrol,
 t0 = 0,
 t1 = 1,
 controls,
 MLmethod = "lasso",
 psmethod = 1,
 trim = 0.1,
 lognorm = FALSE,
 bw = NULL,
 bwfactor = 0.7,
 cluster = NULL,
 k = 3
)
```

Arguments

y  Outcome variable. Should not contain missing values.
d  Treatment variable in the treatment period of interest. Should be continuous and not contain missing values.
t  Time variable indicating outcome periods. Should not contain missing values.
dtreat  Value of the treatment under treatment (in the treatment period of interest). This value would be 1 for binary treatments.
dcontrol  Value of the treatment under control (in the treatment period of interest). This value would be 0 for binary treatments.
t0  Value indicating the pre-treatment outcome period. Default is 0.
t1  Value indicating the post-treatment outcome period in which the effect is evaluated. Default is 1.
controls  Covariates and/or previous treatment history to be controlled for. Should not contain missing values.
MLmethod  Machine learning method for estimating nuisance parameters using the SuperLearner package. Must be one of "lasso" (default), "randomforest", "xgboost", "svm","ensemble", or "parametric".
psmethod  Method for computing generalized propensity scores. Set to 1 for estimating conditional treatment densities using the treatment as dependent variable, or 2 for using the treatment kernel weights as dependent variable. Default is 1.
trim  Trimming threshold (in percentage) for discarding observations with too much influence within any subgroup defined by the treatment group and time. Default is 0.1.
lognorm  Logical indicating if log-normal transformation should be applied when estimating conditional treatment densities using the treatment as dependent variable. Default is FALSE.
bw  Bandwidth for kernel density estimation. Default is NULL, implying that the bandwidth is calculated based on the rule-of-thumb.
bwfactor  Factor by which the bandwidth is multiplied. Default is 0.7 (undersmoothing).
cluster  Optional clustering variable for calculating standard errors.
k  Number of folds in k-fold cross-fitting. Default is 3.

Details

This function estimates the Average Treatment Effect on the Treated (ATET) by Difference-in-Differences in repeated cross-sections while controlling for confounders using double machine learning. The function supports different machine learning methods for estimating nuisance parameters and performs k-fold cross-fitting to improve estimation accuracy. The function also handles binary and continuous outcomes, and provides options for trimming and bandwidth adjustments in kernel density estimation.
Value
A list with the following components:

- **ATET**: Estimate of the Average Treatment Effect on the Treated.
- **se**: Standard error of the ATET estimate.
- **trimmed**: Number of discarded (trimmed) observations.
- **pval**: P-value.
- **pscores**: Propensity scores (4 columns): under treatment in period t1, under treatment in period t0, under control in period t1, under control in period t0.
- **outcomes**: Conditional outcomes (3 columns): in treatment group in period t0, in control group in period t1, in control group in period t0.

References


Examples

```r
Not run:
Example with simulated data
n=2000
t=rep(c(0, 1), each=n/2)
x=0.5*runif(n)
u=runif(n,0,2)
d=x+u+rnorm(n)
y=(2*d+x)*t+u+rnorm(n)
true effect is 2
results=didcontDML(y=y, d=d, t=t, dtreat=1, dcontrol=0, controls=x, MLmethod="lasso")
cat("ATET: ", round(results$ATET, 3), ", Standard error: ", round(results$se, 3))
End(Not run)
```

**Description**
This function estimates the average treatment effect on the treated of a continuously distributed treatment in panel data based on a Difference-in-Differences (DiD) approach using double machine learning to control for time-varying confounders in a data-driven manner. It supports estimation under various machine learning methods and uses k-fold cross-fitting.
Usage

didcontDMLpanel(
  ydiff,
  d,
  t,
  dtreat,
  dcontrol,
  t1 = 1,
  controls,
  MLmethod = "lasso",
  psmethod = 1,
  trim = 0.1,
  lognorm = FALSE,
  bw = NULL,
  bwfactor = 0.7,
  cluster = NULL,
  k = 3
)

Arguments

ydiff | Outcome difference between two pre- and post-treatment periods. Should not contain missing values.
d | Treatment variable in the treatment period of interest. Should be continuous and not contain missing values.
t | Time variable indicating outcome periods. Should not contain missing values.
dtreat | Value of the treatment under treatment (in the treatment period of interest). This value would be 1 for binary treatments.
dcontrol | Value of the treatment under control (in the treatment period of interest). This value would be 0 for binary treatments.
t1 | Value indicating the post-treatment outcome period in which the effect is evaluated, which is the later of the two periods used to generate the outcome difference in ydiff. For instance, if the pre-treatment outcome is measured in period 0 and the post-treatment outcome is measured in period 1 to generate ydiff, then t1 is equal to 1. Default is 1.
controls | Covariates and/or previous treatment history to be controlled for. Should not contain missing values.
MLmethod | Machine learning method for estimating nuisance parameters using the SuperLearner package. Must be one of "lasso" (default), "randomforest", "xgboost", "svm", "ensemble", or "parametric".
psmethod | Method for computing generalized propensity scores. Set to 1 for estimating conditional treatment densities using the treatment as dependent variable, or 2 for using the treatment kernel weights as dependent variable. Default is 1.
trim | Trimming threshold (in percentage) for discarding observations with too much influence within any subgroup defined by the treatment group and time. Default is 0.1.
**lognorm**
Logical indicating if log-normal transformation should be applied when estimating conditional treatment densities using the treatment as dependent variable. Default is FALSE.

**bw**
Bandwidth for kernel density estimation. Default is NULL, implying that the bandwidth is calculated based on the rule-of-thumb.

**bwfactor**
Factor by which the bandwidth is multiplied. Default is 0.7 (undersmoothing).

**cluster**
Optional clustering variable for calculating standard errors.

**k**
Number of folds in k-fold cross-fitting. Default is 3.

**Details**
This function estimates the Average Treatment Effect on the Treated (ATET) by Difference-in-Differences in panel data while controlling for confounders using double machine learning. The function supports different machine learning methods for estimating nuisance parameters and performs k-fold cross-fitting to improve estimation accuracy. The function also handles binary and continuous outcomes, and provides options for trimming and bandwidth adjustments in kernel density estimation.

**Value**
A list with the following components:
- **ATET**: Estimate of the Average Treatment Effect on the Treated.
- **se**: Standard error of the ATET estimate.
- **trimmed**: Number of discarded (trimmed) observations.
- **pval**: P-value.
- **pscores**: Propensity scores (2 columns): under treatment, under control.
- **outcomepred**: Conditional outcome predictions.

**References**


**Examples**
```r
Not run:
Example with simulated data
n=1000
x=0.5*runif(n)
u=runif(n,0,2)
d=x+u+runif(n)
y0=u+runif(n)
y1=2*d+x+u+runif(n)
t=rep(1,n)
```
# true effect is 2
results=didcontDMLpanel(ydiff=y1-y0, d=d, t=t, dtreat=1, dcontrol=0, controls=x, MLmethod="lasso")
cat("ATET: ", round(results$ATET, 3), ", Standard error: ", round(results$se, 3))

## End(Not run)

didDML

### Difference-in-Differences in Repeated Cross-Sections for Binary Treatments using Double Machine Learning

**Description**

This function estimates the average treatment effect on the treated (ATET) in the post-treatment period for a binary treatment using a doubly robust Difference-in-Differences (DiD) approach for repeated cross-sections that is combined with double machine learning. It controls for (possibly time-varying) confounders in a data-driven manner and supports various machine learning methods for estimating nuisance parameters through k-fold cross-fitting.

**Usage**

```r
didDML(
 y, d, t, x,
 MLmethod = "lasso", est = "dr", trim = 0.05, cluster = NULL, k = 3
)
```

**Arguments**

- **y**  
  Outcome variable. Should not contain missing values.

- **d**  
  Treatment group indicator (binary). Should not contain missing values.

- **t**  
  Time period indicator (binary). Should be 1 for post-treatment period and 0 for pre-treatment period. Should not contain missing values.

- **x**  
  Covariates to be controlled for. Should not contain missing values.

- **MLmethod**  
  Machine learning method for estimating nuisance parameters using the SuperLearner package. Must be one of "lasso" (default), "randomforest", "xgboost", "svm", "ensemble", or "parametric".

- **est**  
  Estimation method. Must be one of "dr" (default) for doubly robust, "ipw" for inverse probability weighting (not doubly robust!), or "reg" for regression (not doubly robust!).
trim Trimming threshold (in percentage) for discarding observations with too small propensity scores within any subgroup defined by the treatment group and time. Default is 0.05.

cluster Optional clustering variable for calculating cluster-robust standard errors.

k Number of folds in k-fold cross-fitting. Default is 3.

Details

This function estimates the Average Treatment Effect on the Treated (ATET) in the post-treatment period based on Difference-in-Differences in repeated cross-sections when controlling for confounders in a data-adaptive manner using double machine learning. The function supports different machine learning methods to estimate nuisance parameters (conditional mean outcomes and propensity scores) as well as cross-fitting to mitigate overfitting. Besides double machine learning, the function also provides inverse probability weighting and regression adjustment methods (which are, however, not doubly robust).

Value

A list with the following components:

- **ATET**: Estimate of the Average Treatment Effect on the Treated (ATET) in the post-treatment period.
- **se**: Standard error of the ATET estimate.
- **pval**: P-value of the ATET estimate.
- **trimmed**: Number of discarded (trimmed) observations.
- **pscores**: Propensity scores (4 columns): under treatment in period 1, under treatment in period 0, under control in period 1, under control in period 0.
- **outcomepred**: Conditional outcome predictions (3 columns): in treatment group in period 0, in control group in period 1, in control group in period 0.

References


Examples

```r
Not run:
Example with simulated data
n=4000 # sample size
t=1*(rnorm(n)>0) # time period
u=runif(n,0,1) # time constant unobservable
x= 0.25*t+runif(n,0,1) # time varying covariate
d=1*(x+u+2*runif(n)>0) # treatment
y=d*t+t+x+u+2*runif(n) # outcome
true effect is equal to 1
```
results <- didDML(y = y, d = d, t = t, x = x)
cat("ATET: ", round(results$ATET, 3), ", Standard error: ", round(results$se, 3))

## End(Not run)

didweight

Difference-in-differences based on inverse probability weighting

Description

Difference-in-differences-based estimation of the average treatment effect on the treated in the post-treatment period, given a binary treatment with one pre- and one post-treatment period. Permits controlling for differences in observed covariates across treatment groups and/or time periods based on inverse probability weighting.

Usage

didweight(y, d, t, x = NULL, boot = 1999, trim = 0.05, cluster = NULL)

Arguments

- **y**: Dependent variable, must not contain missings.
- **d**: Treatment, must be binary (either 1 or 0), must not contain missings.
- **t**: Time period, must be binary, 0 for pre-treatment and 1 for post-treatment, must not contain missings.
- **x**: Covariates to be controlled for by inverse probability weighting. Default is NULL.
- **boot**: Number of bootstrap replications for estimating standard errors. Default is 1999.
- **trim**: Trimming rule for discarding observations with extreme propensity scores in the 3 reweighting steps, which reweight (1) treated in the pre-treatment period, (2) non-treated in the post-treatment period, and (3) non-treated in the pre-treatment period according to the covariate distribution of the treated in the post-treatment period. Default is 0.05, implying that observations with a probability lower than 5 percent of not being treated in some weighting step are discarded.
- **cluster**: A cluster ID for block or cluster bootstrapping when units are clustered rather than iid. Must be numerical. Default is NULL (standard bootstrap without clustering).

Details

Estimation of the average treatment effect on the treated in the post-treatment period based Difference-in-differences. Inverse probability weighting is used to control for differences in covariates across treatment groups and/or over time. That is, (1) treated observations in the pre-treatment period, (2) non-treated observations in the post-treatment period, and (3) non-treated observations in the pre-treatment period are reweighted according to the covariate distribution of the treated observations in the post-treatment period. The respective propensity scores are obtained by probit regressions.
A didweight object contains 4 components, eff, se, pvalue, and ntrimmed.

eff: estimate of the average treatment effect on the treated in the post-treatment period.
se: standard error obtained by bootstrapping the effect.
pvalue: p-value based on the t-statistic.
ntrimmed: total number of discarded (trimmed) observations in any of the 3 reweighting steps due to extreme propensity score values.

References


Examples

# A little example with simulated data (4000 observations)
## Not run:
n=4000 # sample size
t=1*(rnorm(n)>0) # time period
u=rnorm(n) # time constant unobservable
x=0.5*t+rnorm(n) # time varying covariate
d=1*(x+u+rnorm(n)>0) # treatment
y=d*t+t+x+u+rnorm(n) # outcome
# The true effect equals 1
didweight(y=y,d=d,t=t,x=x, boot=199)
## End(Not run)
s = NULL,
d1treat = 1,
d2treat = 1,
d1control = 0,
d2control = 0,
trim = 0.01,
MLmethod = "lasso",
fewplits = FALSE,
normalized = TRUE
)

Arguments

y2 Dependent variable in the second period (=outcome period), must not contain missings.
d1 Treatment in the first period, must be discrete, must not contain missings.
d2 Treatment in the second period, must be discrete, must not contain missings.
x0 Covariates in the baseline period (prior to the treatment in the first period), must not contain missings.
x1 Covariates in the first period (prior to the treatment in the second period), must not contain missings.
s Indicator function for defining a subpopulation for whom the treatment effect is estimated as a function of the subpopulation's distribution of x0. Default is NULL (estimation of the treatment effect in the total population).
d1treat Value of the first treatment in the treatment sequence. Default is 1.
d2treat Value of the second treatment in the treatment sequence. Default is 1.
d1control Value of the first treatment in the control sequence. Default is 0.
d2control Value of the second treatment in the control sequence. Default is 0.
trim Trimming rule for discarding observations with products of treatment propensity scores in the first and second period that are smaller than trim (to avoid too small denominators in weighting by the inverse of the propensity scores). Default is 0.01.
MLmethod Machine learning method for estimating the nuisance parameters based on the SuperLearner package. Must be either "lasso" (default) for lasso estimation, "randomforest" for random forests, "xgboost" for xg boosting, "svm" for support vector machines, "ensemble" for using an ensemble algorithm based on all previously mentioned machine learners, or "parametric" for linear or logit regression.
fewplits If set to TRUE, the same training data are used for estimating a nested model of conditional mean outcomes, namely E[E[y2|d1,d2,x0,x1]|d1,x0]. If fewplits is FALSE, the training data are split for the sequential estimation of the nested model. Default of fewplits is FALSE.
normalized If set to TRUE, then the inverse probability-based weights are normalized such that they add up to 1 within treatment groups. Default is TRUE.
Details

Estimation of the causal effects of sequences of two treatments under sequential conditional independence, assuming that all confounders of the treatment in either period and the outcome of interest are observed. Estimation is based on the (doubly robust) efficient score functions for potential outcomes, see e.g. Bodory, Huber, and Laffers (2020), in combination with double machine learning with cross-fitting, see Chernozhukov et al (2018). To this end, one part of the data is used for estimating the model parameters of the treatment and outcome equations based machine learning. The other part of the data is used for predicting the efficient score functions. The roles of the data parts are swapped (using 3-fold cross-fitting) and the average dynamic treatment effect is estimated based on averaging the predicted efficient score functions in the total sample. Standard errors are based on asymptotic approximations using the estimated variance of the (estimated) efficient score functions.

Value

A dyntreatDML object contains ten components, effect, se, pval, ntrimmed, meantreat, meancontrol, psd1treat, psd2treat, psd1control, and psd2control:

- **effect**: estimate of the average effect of the treatment sequence.
- **se**: standard error of the effect estimate.
- **pval**: p-value of the effect estimate.
- **ntrimmed**: number of discarded (trimmed) observations due to low products of propensity scores.
- **meantreat**: Estimate of the mean potential outcome under the treatment sequence.
- **meancontrol**: Estimate of the mean potential outcome under the control sequence.
- **psd1treat**: P-score estimates for first treatment in treatment sequence.
- **psd2treat**: P-score estimates for second treatment in treatment sequence.
- **psd1control**: P-score estimates for first treatment in control sequence.
- **psd2control**: P-score estimates for second treatment in control sequence.

References


Examples

```r
A little example with simulated data (2000 observations)
Not run:
n=2000
sample size
p0=10
```
# number of covariates at baseline
s0=5
# number of covariates that are confounders at baseline
p1=10
# number of additional covariates in period 1
s1=5
# number of additional covariates that are confounders in period 1
x0=matrix(rnorm(n*p0),ncol=p0)
# covariate matrix at baseline
beta0=c(rep(0.25,s0), rep(0,p0-s0))
# coefficients determining degree of confounding for baseline covariates
d1=(x0%*%beta0+rnorm(n)>0)*1
# equation of first treatment in period 1
x1=matrix(rnorm(n*p1),ncol=p1)+matrix(0.1 * d1, nrow = n, ncol = p1)
# covariate matrix for covariates of period 1 (affected by 1st treatment d1)
beta1=c(rep(0.25,s1), rep(0,p1-s1))
# coefficients determining degree of confounding for covariates of period 1
d2=(x0%*%beta0+x1%*%beta1+0.5*d1+rnorm(n)>0)*1
# equation of second treatment in period 2
y2=x0%*%beta0+x1%*%beta1+1*d1+0.5*d2+rnorm(n)
# outcome equation in period 2
output=dyntreatDML(y2=y2,d1=d1,d2=d2,x0=x0,x1=x1,
                   d1treat=1,d2treat=1,d1control=0,d2control=0)
cat("dynamic ATE: ",round(c(output$effect),3),", standard error: ",
    round(c(output$se),3),", p-value: ",round(c(output$pval),3))
output$ntrimmed
# The true effect of the treatment sequence is 1.5
## End(Not run)

games

Sales of video games

Description
A dataset containing information on 3956 video games, including sales as well as expert and user ratings.

Usage
games

Format
A data frame with 3956 rows and 9 variables:

- **name** factor variable providing the name of the video game
- **genre** factor variable indicating the genre of the game (e.g. Action, Sports...)
- **platform** factor variable indicating the hardware platform of the game (e.g. PC,...)
**esrb**

**rating** factor variable indicating the age recommendation for the game (E is age 6+, T is 13+, M is 17+)

**publisher** factor variable indicating the publisher of the game

**year** numeric variable indicating the year the video game was released

**metascore** numeric variable providing a weighted average rating of the game by professional critics

**userscore** numeric variable providing the average user rating of the game

**sales** numeric variable indicating the total global sales (in millions) of the game up to the year 2018

**References**


**Examples**

```r
Not run:
load data
data(games)
select non-missing observations
games_nomis=na.omit(games)
turn year into a factor variable
games_nomis$year=factor(games_nomis$year)
attach data
attach(games_nomis)
load library for generating dummies
library(fastDummies)
generate dummies for genre
dummies=dummy_cols(genre, remove_most_frequent_dummy = TRUE)
drop original variable
genredummies=dummies[,2:ncol(dummies)]
make dummies numeric
genredummies=apply(genredummies, 2, function(genredummies) as.numeric(genredummies))
generate dummies for year
dummies=dummy_cols(year, remove_most_frequent_dummy = TRUE)
drop original variable
yeardummies=dummies[,2:ncol(dummies)]
make dummies numeric
yeardummies=apply(yeardummies, 2, function(yeardummies) as.numeric(yeardummies))
mediation analysis with metascore as treatment, userscore as mediator, sales as outcome
x=cbind(genredummies, yeardummies)
output=medweightcont(y=sales, d=metascore, d0=60, d1=80, m=userscore, x=x, boot=199)
round(output$results,3)
output$ntrimmed
End(Not run)
```
identificationDML  Testing identification with double machine learning

Description

Testing identification with double machine learning

Usage

identificationDML(
  y, d, x, z,
  score = "DR",
  bootstrap = FALSE,
  ztreat = 1,
  zcontrol = 0,
  seed = 123,
  MLmethod = "lasso",
  k = 3,
  DR_parameters = list(s = NULL, normalized = TRUE, trim = 0.01),
  squared_parameters = list(zeta_sigma = min(0.5, 500/dim(y)[1])),
  bootstrap_parameters = list(B = 2000, importance = 0.95, alpha = 0.1, share = 0.5)
)

Arguments

y  Dependent variable, must not contain missings.
d  Treatment variable, must be discrete, must not contain missings.
x  Covariates, must not contain missings.
z  Instrument, must not contain missings.
score  Orthogonal score used for testing identification, either "DR" for using the average of the doubly robust (DR) score function (see Section 6 of Huber and Kueck, 2022) for testing, or "squared" for using squared differences in the conditional means outcomes (see Section 7 of Huber and Kueck, 2022). Default is "DR". Note that this argument is ignored if bootstrap=TRUE.
bootstrap  If set to TRUE, testing identification is based on the DR score function within data-driven partitioning of the data (using a random forest with 200 trees) as described at the end of Sections 6 and 8 in Huber and Kueck (2022). Default is FALSE. Note that the argument score is ignored if bootstrap=TRUE.
ztreat  Value of the instrument in the "treatment" group. Default is 1.
zcontrol  Value of the instrument in the "control" group. Default is 0.
seed  Default is 123.
MLmethod

Machine learning method for estimating the nuisance parameters based on the SuperLearner package. Must be either "lasso" (default) for lasso estimation, "randomforest" for random forests, "xgboost" for xg boosting, "svm" for support vector machines, "ensemble" for using an ensemble algorithm based on all previously mentioned machine learners, or "parametric" for linear or logit regression.

k

Number of folds in k-fold cross-fitting. Default is 3.

DR_parameters

List of input parameters to test identification using the doubly robust score: s: Indicator function for defining a subpopulation for which the treatment effect is estimated as a function of the subpopulation’s distribution of x. Default is NULL (estimation of the average treatment effect in the total population). normalized: If set to TRUE, then the inverse probability-based weights are normalized such that they add up to 1 within treatment groups. Default is TRUE trim: Trimming rule for discarding observations with treatment propensity scores that are smaller than trim or larger than 1-trim (to avoid too small denominators in weighting by the inverse of the propensity scores). Default is 0.01.

squared_parameters

List of input parameters to test identification using the squared deviation: zeta_sigma: standard deviation of the normal distributed errors to avoid degenerated limit distribution. Default is min(0.05,500/n).

bootstrap_parameters

List of input parameters to test identification using the DR score and sample splitting to detect heterogeneity (if bootstrap=TRUE): B: number of bootstrap samples to be used in the multiplier bootstrap. Default is 2000. importance: upper quantile of covariates in terms of their predictive importance for heterogeneity in the DR score function according to a random forest (with 200 trees). The data are split into subsets based on the median values of these predictive covariates (entering the upper quantile). Default is 0.95. alpha: level of the statistical test. Default is 0.1. share: share of observations used to detect heterogeneity in the DR score function by the random forest (while the remaining observations are used for hypothesis testing). Default is 0.5.

details

Testing the identification of causal effects of a treatment d on an outcome y in observational data using a supposed instrument z and controlling for observed covariates x.

value

An identificationDML object contains different parameters, at least the two following:

effect: estimate of the target parameter(s).

pval: p-value(s) of the identification test.

references

Examples

# Two examples with simulated data
## Not run:
```r
cat("set.seed(777)\n\n\nn <- 20000 # sample size\np <- 50 # number of covariates\ns <- 5 # sparsity (relevant covariates)\nalpha <- 0.1 # level\ndelta <- 2 # effect of unobservable in outcome on index of treatment - either 0 or 2\ngamma <- 0 # direct effect of the instrument on outcome - either 0 or 0.1\ncontrol violation of identification\n\nDGP - general\nxcorr <- 1 # if 1, then non-zero covariance between regressors\nif (xcorr == 0) {\n sigmax <- diag(1,p)} # covariate matrix at baseline\nif (xcorr != 0){\n sigmax = matrix(NA,p,p)\n for (i in 1:p){\n for (j in 1:p){\n sigmax[i,j] = 0.5^(abs(i-j))\n }\n }\n}\nsparse = FALSE # if FALSE, an approximate sparse setting is considered\nif (s == TRUE){\n for (j in 1:p) beta[j] <- 1\n} else {\n for (j in 1:p) beta[j] <- (1/j)\n}\nnoise_U <- 0.1 # control signal-to-noise\nnnoise_V <- 0.1\nnnoise_W <- 0.25\nx <- (rmvnorm(n,rep(0,p),sigmax))\nw <- rnorm(n,0,sd=noise_W)\nz <- 1*(rnorm(n)>0)\nd <- (x%*%beta+z+w+rnorm(n,0,sd=noise_V)>0)*1 # treatment equation\n\nDGP 1 - effect homogeneity\ny <- x%*%beta+d+gamma*z+delta*w+rnorm(n,0,sd=noise_U)\n```
```r
cat("output1 <- identificationDML(y = y, d=d, x=x, z=z, score = "DR", bootstrap = FALSE, ztreat = 1, zcontrol = 0 , seed = 123, MLmethod ="lasso", k = 3, DR_parameters = list(s = NULL , normalized = TRUE, trim = 0.01))\noutput1$pval\noutput2 <- identificationDML(y=y, d=d, x=x, z=z, score = "squared", bootstrap = FALSE, ztreat = 1, zcontrol =0 , seed = 123, MLmethod ="lasso", k = 3)\noutput2$pval\noutput3 <- identificationDML(y=y, d=d, x=x, z=z, score = "squared", bootstrap = TRUE, ztreat = 1, zcontrol =0 , seed = 123, MLmethod ="lasso", k = 3, DR_parameters = list(s = NULL , normalized = TRUE, trim = 0.005)),\n```
```
bootstrap_parameters = list(B = 2000, importance = 0.95, alpha = 0.1, share = 0.5))
output3$pval

DGP 2 - effect heterogeneity

\[y = x'\beta + d + \gamma z'x[,1] + \gamma z'x[,2] + \delta w'x[,1] + \delta w'x[,2] + \text{rnorm}(n/2,0,\text{sd=noise_U}) \]

output1 <- identificationDML(y = y, d = d, x = x, z = z, score = "DR", bootstrap = FALSE,
ztreat = 1, zcontrol = 0, seed = 123, MLmethod = "lasso", k = 3,
DR_parameters = list(s = NULL, normalized = TRUE, trim = 0.01))
output1$pval
output2 <- identificationDML(y = y, d = d, x = x, z = z, score = "squared", bootstrap = FALSE,
ztreat = 1, zcontrol = 0, seed = 123, MLmethod = "lasso", k = 3)
output2$pval
output3 <- identificationDML(y = y, d = d, x = x, z = z, score = "DR", bootstrap = TRUE,
ztreat = 1, zcontrol = 0, seed = 123, MLmethod = "lasso", k = 3,
DR_parameters = list(s = NULL, normalized = TRUE, trim = 0.005),
bootstrap_parameters = list(B = 2000, importance = 0.95, alpha = 0.1, share = 0.5))
output3$pval

End(Not run)

Description

A dataset which is a subset of the data from the randomized evaluation of the India’s National Health Insurance Program (RSBY).

Usage

india

Format

A data frame with 11’089 rows and 7 variables:

- **X** individual identification
- **village_id** village identification
- **DistrictId** district identification
- **treat** treatment status (insurance)
- **mech** treatment assignment mechanism
- **enrolled** enrolled
- **EXPhosp_1** hospital expenditure
References

Imai, Kosuke; Jiang, Zhichao; Malani, Anup, 2020, "Replication Data for: Causal Inference with Interference and Noncompliance in Two-Stage Randomized Experiments.", https://doi.org/10.7910/DVN/N7D9LS, Harvard Dataverse, V1

Examples

```r
## Not run:
require(devtools)  # load devtools package
install_github("szonszein/interference")  # install interference package
library(interference)  # load interference package
data(india)  # load data
attach(india)  # attach data
india=na.omit(india)  # drop observations with missings
group=india$village_id  # cluster id
group_tr=india$mech  # indicator high treatment proportion
indiv_tr=india$treat  # individual treatment (insurance)
obs_outcome=india$EXPhosp_1  # outcome (hospital expenditure)
dat=data.frame(group,group_tr,indiv_tr,obs_outcome)  # generate data frame
estimates_hierarchical(dat)
## End(Not run)  # run estimation
```

ivnr

Instrument-based treatment evaluation under endogeneity and non-response bias

Description

Non- and semiparametric treatment effect estimation under treatment endogeneity and selective non-response in the outcome based on a binary instrument for the treatment and a continuous instrument for response.

Usage

```r
ivnr(y, d, r, z1, z2, x = NULL, xpar = NULL, ruleofthumb = 1, wgtfct = 2, rtype = "ll", numresprob = 20, boot = 499, estlate = TRUE,
```

trim = 0.01
)

Arguments

y Dependent variable.
d Treatment, must be binary and must not contain missings.
r Response, must be a binary indicator for whether the outcome is observed.
z1 Binary instrument for the treatment, must not contain missings.
z2 Continuous instrument for response, must not contain missings.
x A data frame of covariates to be included in the nonparametric estimation, must not contain missings. Factors and ordered variables must be appropriately defined as such by factor() and ordered(). Default is NULL (no covariates included). Covariates are only considered if both x and xpar are not NULL.
xpar Covariates to be included in the semiparametric estimation, must not contain missings. Default is NULL (no covariates included). Covariates are only considered if both x and xpar are not NULL.
ruleofthumb If 1, bandwidth selection in any kernel function is based on the Silverman (1986) rule of thumb. Otherwise, least squares cross-validation is used. Default is 1.
wgtfct Weighting function to be used in effect estimation. If set to 1, equation (18) in Fricke et al (2020) is used as weight. If set to 2, equation (19) in Fricke et al (2020) is used as weight. If set to 3, the median of LATEs across values of response probabilities numresprob is used. Default is 2.
rtype Regression type used for continuous outcomes in the kernel regressions. Either “ll” for local linear or “lc” for local constant regression. Default is “ll”.
numresprob number of response probabilities at which the effects are evaluated. An equidistant grid is constructed based on the number provided. Default is 20.
boot Number of bootstrap replications for estimating standard errors of the effects. Default is 499.
estlate If set to TRUE the local average treatment effect on compliers (LATE) is estimated, otherwise the average treatment effect (ATE) is estimated. Default is TRUE.
trim Trimming rule for too extreme denominators in the weighting functions or inverses of products of conditional treatment probabilities. Values below trim are set to trim to avoid values that are too close to zero in any denominator. Default is 0.01.

Details

Non- and semiparametric treatment effect estimation under treatment endogeneity and selective non-response in the outcome based on a binary instrument for the treatment and a continuous instrument for response. The effects are estimated both semi-parametrically (using probit and OLS for the estimation of plug-in parameters like conditional probabilities and outcomes) and fully non-parametrically (based on kernel regression for any conditional probability/mean). Besides the instrument-based estimates, results are also presented under a missing-at-random assumption (MAR) when not using the instrument z2 for response (but only z1 for the treatment). See Fricke et al. (2020) for further details.
Value

A `ivnr` object contains one output component:

output: The first row provides the effect estimates under non- and semi-parametric estimation using both instruments, see "nonpara (L)ATE IV" and "semipara (L)ATE IV" as well as under a missing-at-random assumption for response when using only the first instrument for the treatment, see "nonpara (L)ATE MAR" and "semipara (L)ATE MAR". The second row provides the standard errors based on bootstrapping the effects. The third row provides the p-values based on the t-statistics.

References

Examples

```r
# A little example with simulated data (1000 observations)
## Not run:
n=1000 # sample size
e<-rmvnorm(n,rep(0,3), matrix(c(1,0.5,0.5, 0.5,1,0.5, 0.5,0.5,1),3,3)))
# correlated error term of treatment, response, and outcome equation
x=runif(n,-0.5,0.5) # observed confounder
z1<-(0.25*x+rnorm(n)>0)*1 # binary instrument for treatment
z2<- -0.25*x+rnorm(n) # continuous instrument for selection
d<-(z1-0.25*x+d+e[,1]>0)*1 # treatment equation
y_star<- -0.25*x+d+e[,2] # latent outcome
r<-(-0.25*x+z2+d+e[,3]>0)*1 # response equation
y=y_star # observed outcome
y[r==0]=0 # nonobserved outcomes are set to zero
# The true treatment effect is 1
ivnr(y=y,d=d,r=r,z1=z1,z2=z2,x=x,xpar=x,numresprob=4,boot=39)
## End(Not run)
```

Description

A dataset from the U.S. Job Corps experimental study with information on the participation of disadvantaged youths in (academic and vocational) training in the first and second year after program assignment.

Usage

`JC`
Format

A data frame with 9240 rows and 46 variables:

- **assignment** 1=randomly assigned to Job Corps, 0=randomized out of Job Corps
- **female** 1=female, 0=male
- **age** age in years at assignment
- **white** 1=white, 0=non-white
- **black** 1=black, 0=non-black
- **hispanic** 1=hispanic, 0=non-hispanic
- **educ** years of education at assignment
- **educmis** 1=education missing at assignment
- **geddegree** 1=has a GED degree at assignment
- **hsdegree** 1=has a high school degree at assignment
- **english** 1=English mother tongue
- **cohabmarried** 1=cohabiting or married at assignment
- **haschild** 1=has at least one child, 0=no children at assignment
- **everwk** 1=has ever worked at assignment, 0=has never worked at assignment
- **mwearn** average weekly gross earnings at assignment
- **hhsize** household size at assignment
- **hhsizemis** 1=household size missing
- **educmum** mother’s years of education at assignment
- **educmummis** 1=mother’s years of education missing
- **educdad** father’s years of education at assignment
- **educdadmis** 1=father’s years of education missing
- **welfarechild** welfare receipt during childhood in categories from 1 to 4 (measured at assignment)
- **welfarechildmis** 1=missing welfare receipt during childhood
- **health** general health at assignment from 1 (excellent) to 4 (poor)
- **healthmis** 1=missing health at assignment
- **smoke** extent of smoking at assignment in categories from 1 to 4
- **smokemis** 1=extent of smoking missing
- **alcohol** extent of alcohol consumption at assignment in categories from 1 to 4
- **alcoholmis** 1=extent of alcohol consumption missing
- **everwkdy1** 1=has ever worked one year after assignment, 0=has never worked one year after assignment
- **earnq4** weekly earnings in fourth quarter after assignment
- **earnq4mis** 1=missing weekly earnings in fourth quarter after assignment
- **pworky1** proportion of weeks employed in first year after assignment
- **pworky1mis** 1=missing proportion of weeks employed in first year after assignment
lateweight

Local average treatment effect estimation based on inverse probability weighting

Description

Instrumental variable-based evaluation of local average treatment effects using weighting by the inverse of the instrument propensity score.

Examples

```r
## Not run:
data(JC)
# Dynamic treatment effect evaluation of training in 1st and 2nd year
# define covariates at assignment (x0) and after one year (x1)
x0=JC[,2:29]; x1=JC[,30:36]
# define treatment (training) in first year (d1) and second year (d2)
d1=JC[,37]; d2=JC[,38]
# define outcome (weekly earnings in fourth year after assignment)
y2=JC[,44]
# assess dynamic treatment effects (training in 1st+2nd year vs. no training)
output=dynDML(y2=y2, d1=d1, d2=d2, x0=x0, x1=x1)
cat("dynamic ATE: ",round(c(output$effect),3), ", standard error: ",
       round(c(output$se),3), ", p-value: ",round(c(output$pval),3))
## End(Not run)
```

References

health12
General health 12 months after assignment from 1 (excellent) to 4 (poor)

health12mis
1=missing general health 12 months after assignment

trainy1
1=enrolled in education and/or vocational training in the first year after assignment, 0=no education or training in the first year after assignment

trainy2
1=enrolled in education and/or vocational training in the second year after assignment, 0=no education or training in the second year after assignment

pworky2
Proportion of weeks employed in second year after assignment

pworky3
Proportion of weeks employed in third year after assignment

pworky4
Proportion of weeks employed in fourth year after assignment

earny2
Weekly earnings in second year after assignment

earny3
Weekly earnings in third year after assignment

earny4
Weekly earnings in fourth year after assignment

health30
General health 30 months after assignment from 1 (excellent) to 4 (poor)

health48
General health 48 months after assignment from 1 (excellent) to 4 (poor)
Usage

```
lateweight(
    y,
    d,
    z,
    x,
    LATT = FALSE,
    trim = 0.05,
    logit = FALSE,
    boot = 1999,
    cluster = NULL
)
```

Arguments

- **y**: Dependent variable, must not contain missings.
- **d**: Treatment, must be binary (either 1 or 0), must not contain missings.
- **z**: Instrument for the endogenous treatment, must be binary (either 1 or 0), must not contain missings.
- **x**: Confounders of the instrument and outcome, must not contain missings.
- **LATT**: If FALSE, the local average treatment effect (LATE) among compliers (whose treatment reacts to the instrument) is estimated. If TRUE, the local average treatment effect on the treated compliers (LATT) is estimated. Default is FALSE.
- **trim**: Trimming rule for discarding observations with extreme propensity scores. If LATT=FALSE, observations with \(\Pr(Z=1|X)<trim \) or \(\Pr(Z=1|X)>(1-\text{trim}) \) are dropped. If LATT=TRUE, observations with \(\Pr(Z=1|X)>(1-\text{trim}) \) are dropped. Default is 0.05.
- **logit**: If FALSE, probit regression is used for propensity score estimation. If TRUE, logit regression is used. Default is FALSE.
- **boot**: Number of bootstrap replications for estimating standard errors. Default is 1999.
- **cluster**: A cluster ID for block or cluster bootstrapping when units are clustered rather than iid. Must be numerical. Default is NULL (standard bootstrap without clustering).

Details

Estimation of local average treatment effects of a binary endogenous treatment based on a binary instrument that is conditionally valid, implying that all confounders of the instrument and the outcome are observed. Units are weighted by the inverse of their conditional instrument propensities given the observed confounders, which are estimated by probit or logit regression. Standard errors are obtained by bootstrapping the effect.

Value

A lateweight object contains 10 components, `effect`, `se.effect`, `pval.effect`, `first`, `se.first`, `pval.first`, `ITT`, `se.ITT`, `pval.ITT`, and `ntrimmed`:
effect: local average treatment effect (LATE) among compliers if LATT=FALSE or the local average treatment effect on treated compliers (LATT) if LATT=TRUE.

se.effect: bootstrap-based standard error of the effect.

pval.effect: p-value of the effect.

first: first stage estimate of the complier share if LATT=FALSE or the first stage estimate among treated if LATT=TRUE.

se.first: bootstrap-based standard error of the first stage effect.

pval.first: p-value of the first stage effect.

ITT: intention to treat effect (ITT) of z on y if LATT=FALSE or the ITT among treated if LATT=TRUE.

se.ITT: bootstrap-based standard error of the ITT.

pval.ITT: p-value of the ITT.

ntrimmed: number of discarded (trimmed) observations due to extreme propensity score values.

References

Examples

A little example with simulated data (10000 observations)
Not run:
n=10000
u=rnorm(n)
x=rnorm(n)
z=(0.25*x+rnorm(n)>0)*1
d=(z+0.25*x+0.25*u+rnorm(n)>0.5)*1
y=0.5*d+0.25*x+u
The true LATE is equal to 0.5
output=lateweight(y=y,d=d,z=z,x=x,trim=0.05,LATT=FALSE,logit=TRUE,boot=19)
cat("LATE: ",round(c(output$effect),3),", standard error: ",round(c(output$se.effect),3),", p-value: ",round(c(output$pval.effect),3))
output$ntrimmed
End(Not run)

medDML Causal mediation analysis with double machine learning

Description
Causal mediation analysis (evaluation of natural direct and indirect effects) for a binary treatment and one or several mediators using double machine learning to control for confounders based on (doubly robust) efficient score functions for potential outcomes.
medDML

Usage

```r
medDML(
  y,
  d,
  m,
  x,
  k = 3,
  trim = 0.05,
  order = 1,
  multmed = TRUE,
  fewsplits = FALSE,
  normalized = TRUE
)
```

Arguments

- **y**: Dependent variable, must not contain missings.
- **d**: Treatment, must be binary (either 1 or 0), must not contain missings.
- **m**: Mediator, must not contain missings. May be a scalar or a vector of binary, categorical, or continuous variables if `multmed` is `TRUE`. Must be a binary scalar if `multmed` is `FALSE`.
- **x**: (Potential) pre-treatment confounders of the treatment, mediator, and/or outcome, must not contain missings.
- **k**: Number of folds in k-fold cross-fitting if `multmed` is `FALSE`. k-1 folds are used for estimating the model parameters of the treatment, mediator, and outcome equations and one fold is used for predicting the efficient score functions. The roles of the folds are swapped. Default for `k` is 3. If `multmed` is `TRUE`, then 3-fold cross-validation is used, irrespective of the number provided in `k` (i.e. `k` is ignored if `multmed` is `TRUE`).
- **trim**: Trimming rule for discarding observations with extreme conditional treatment or mediator probabilities (or products thereof). Observations with (products of) conditional probabilities that are smaller than `trim` in any denominator of the potential outcomes are dropped. Default is 0.05.
- **order**: If set to an integer larger than 1, then polynomials of that order and interactions (using the power series) rather than the original control variables are used in the estimation of any conditional probability or conditional mean outcome. Polynomials/interactions are created using the `Generate.Powers` command of the LARF package.
- **multmed**: If set to `TRUE`, a representation of direct and indirect effects that avoids conditional mediator densities/probabilities is used, see Farbmacher, Huber, Langen, and Spindler (2019). This method can incorporate multiple and/or continuous mediators. If `multmed` is `FALSE`, the representation of Tchetgen Tchetgen and Shpitser (2012) is used, which involves mediator densities. In this case, the mediator must be a binary scalar. Default of `multmed` is `TRUE`.
- **fewsplits**: If set to `TRUE`, the same training data are used for estimating nested models of nuisance parameters, i.e. $E[Y|D=d,M,X]$ and $E[E[Y|D=d,M,X]|D=1-d,X]$. If
fewsplits is FALSE, the training data are split for the sequential estimation of nested models $E[Y|D=d,M,X]$ and $E[E[Y|D=d,M,X]|D=1-d,X]$. This parameter is only relevant if multmed is TRUE. Default of fewsplits is FALSE.

normalized If set to TRUE, then the inverse probability-based weights are normalized such that they add up to 1 within treatment groups. Default is TRUE.

Details

Estimation of causal mechanisms (natural direct and indirect effects) of a treatment under selection on observables, assuming that all confounders of the binary treatment and the mediator, the treatment and the outcome, or the mediator and the outcome are observed and not affected by the treatment. Estimation is based on the (doubly robust) efficient score functions for potential outcomes, see Tchetgen Tchetgen and Shpitser (2012) and Farbmacher, Huber, Langen, and Spindler (2019), as well as on double machine learning with cross-fitting, see Chernozhukov et al (2018). To this end, one part of the data is used for estimating the model parameters of the treatment, mediator, and outcome equations based on post-lasso regression, using the rlasso and rlassologit functions (for conditional means and probabilities, respectively) of the hdm package with default settings. The other part of the data is used for predicting the efficient score functions. The roles of the data parts are swapped and the direct and indirect effects are estimated based on averaging the predicted efficient score functions in the total sample. Standard errors are based on asymptotic approximations using the estimated variance of the (estimated) efficient score functions.

Value

A medDML object contains two components, results and ntrimmed:

results: a 3X6 matrix containing the effect estimates in the first row ("effects"), standard errors in the second row ("se"), and p-values in the third row ("p-value"). The first column provides the total effect, namely the average treatment effect (ATE). The second and third columns provide the direct effects under treatment and control, respectively ("dir.treat", "dir.control"). The fourth and fifth columns provide the indirect effects under treatment and control, respectively ("indir.treat", "indir.control"). The sixth column provides the estimated mean under non-treatment ("Y(0,M(0))").

ntrimmed: number of discarded (trimmed) observations due to extreme conditional probabilities.

References

Examples

A little example with simulated data (10000 observations)
Not run:
n=10000 # sample size
p=100 # number of covariates
s=2 # number of covariates that are confounders
x=matrix(rnorm(n*p),ncol=p) # covariate matrix
beta=c(rep(0.25,s), rep(0,p-s)) # coefficients determining degree of confounding
d=(x%*%beta+rnorm(n)>0)*1 # treatment equation
m=(x%*%beta+0.5*d+rnorm(n)>0)*1 # mediator equation
y=x%*%beta+0.5*d+m+rnorm(n) # outcome equation
The true direct effects are equal to 0.5, the indirect effects equal to 0.19
output=medDML(y=y,d=d,m=m,x=x)
round(output$results,3)
output$ntrimmed
End(Not run)

medlateweight Causal mediation analysis with instruments for treatment and mediator based on weighting

Description

Causal mediation analysis (evaluation of natural direct and indirect effects) with instruments for a binary treatment and a continuous mediator based on weighting as suggested in Frölich and Huber (2017), Theorem 1.

Usage

medlateweight(
 y,
 d,
 m,
 zd,
 zm,
 x,
 trim = 0.1,
 csquared = FALSE,
 boot = 1999,
 cminobs = 40,
 bwreg = NULL,
 bwm = NULL,
 logit = FALSE,
 cluster = NULL
)
Arguments

\(y \) Dependent variable, must not contain missings.

\(d \) Treatment, must be binary (either 1 or 0), must not contain missings.

\(m \) Mediator(s), must be a continuous scalar, must not contain missings.

\(zd \) Instrument for the treatment, must be binary (either 1 or 0), must not contain missings.

\(zm \) Instrument for the mediator, must contain at least one continuous element, may be a scalar or a vector, must not contain missings. If no user-specified bandwidth is provided for the regressors when estimating the conditional cumulative distribution function \(F(\text{MIZ2.X}) \), i.e. if \(bwreg=NULL \), then \(zm \) must be exclusively numeric.

\(x \) Pre-treatment confounders, may be a scalar or a vector, must not contain missings. If no user-specified bandwidth is provided for the regressors when estimating the conditional cumulative distribution function \(F(\text{MIZ2.X}) \), i.e. if \(bwreg=NULL \), then \(x \) must be exclusively numeric.

\(\text{trim} \) Trimming rule for discarding observations with extreme weights. Discards observations whose relative weight would exceed the value in \(\text{trim} \) in the estimation of any of the potential outcomes. Default is 0.1 (i.e. a maximum weight of 10 percent per observation).

\(\text{csquared} \) If TRUE, then not only the control function \(C \), but also its square is used as regressor in any estimated function that conditions on \(C \). Default is FALSE.

\(\text{boot} \) Number of bootstrap replications for estimating standard errors. Default is 1999.

\(\text{cminobs} \) Minimum number of observations to compute the control function \(C \), see the numerator of equation (7) in Frölich and Huber (2017). A larger value increases boundary bias when estimating the control function for lower values of \(M \), but reduces the variance. Default is 40, but should be adapted to sample size and the number of variables in \(Z_2 \) and \(X \).

\(\text{bwreg} \) Bandwidths for \(zm \) and \(x \) in the estimation of the conditional cumulative distribution function \(F(\text{MIZ2.X}) \) based on the np package by Hayfield and Racine (2008). The length of the numeric vector must correspond to the joint number of elements in \(zm \) and \(x \) and will be used both in the original sample for effect estimation and in bootstrap samples to compute standard errors. If set to \(\text{NULL} \), then the rule of thumb is used for bandwidth calculation, see the np package for details. In the latter case, all elements in the regressors must be numeric. Default is \(\text{NULL} \).

\(\text{bwm} \) Bandwidth for \(m \) in the estimation of the conditional cumulative distribution function \(F(\text{MIZ2.X}) \) based on the np package by Hayfield and Racine (2008). Must be scalar and will be used both in the original sample for effect estimation and in bootstrap samples to compute standard errors. If set to \(\text{NULL} \), then the rule of thumb is used for bandwidth calculation, see the np package for details. Default is \(\text{NULL} \).

\(\text{logit} \) If FALSE, probit regression is used for any propensity score estimation. If TRUE, logit regression is used. Default is FALSE.

\(\text{cluster} \) A cluster ID for block or cluster bootstrapping when units are clustered rather than iid. Must be numerical. Default is \(\text{NULL} \) (standard bootstrap without clustering).
Details

Estimation of causal mechanisms (natural direct and indirect effects) of a binary treatment among treatment compliers based on distinct instruments for the treatment and the mediator. The treatment and its instrument are assumed to be binary, while the mediator and its instrument are assumed to be continuous, see Theorem 1 in Frölich and Huber (2017). The instruments are assumed to be conditionally valid given a set of observed confounders. A control function is used to tackle mediator endogeneity. Standard errors are obtained by bootstrapping the effects.

Value

A medlateweight object contains two components, results and ntrimmed:

results: a 3x7 matrix containing the effect estimates in the first row ("effects"), standard errors in the second row ("se"), and p-values in the third row ("p-value"). The first column provides the total effect, namely the local average treatment effect (LATE) on the compliers. The second and third columns provide the direct effects under treatment and control, respectively ("dir.treat", "dir.control"). The fourth and fifth columns provide the indirect effects under treatment and control, respectively ("indir.treat", "indir.control"). The sixth and seventh columns provide the parametric direct and indirect effect estimates ("dir.para", "indir.para") without intercations terms, respectively. For the parametric estimates, probit or logit specifications are used for the treatment model and OLS specifications for the mediator and outcome models.

ntrimmed: number of discarded (trimmed) observations due to large weights.

References

Examples

A little example with simulated data (3000 observations)
Not run:
n=3000; sigma=matrix(c(1,0.5,0.5,0.5,1,0.5,0.5,0.5,1),3,3)
e=(rmvnorm(n,rep(0,3),sigma))
x=rnorm(n)
zd=(0.5*x+rnorm(n)>0)*1
d=(-1+0.5*x+2*zd+e[,3]>0)
zm=0.5*x+rnorm(n)
m=(0.5*x+2*zm+0.5*d+e[,2])
y=0.5*x+d+m+e[,1]
End(Not run)

The true direct and indirect effects on compliers are equal to 1 and 0.5, respectively
medlateweight(y,d,m,zd,zm,x,trim=0.1,csquared=FALSE,boot=19,cminobs=40,
bwreg=NULL,bwm=NULL,logit=FALSE)
End(Not run)
medweight

Causal mediation analysis based on inverse probability weighting with optional sample selection correction.

Description

Causal mediation analysis (evaluation of natural direct and indirect effects) based on weighting by the inverse of treatment propensity scores as suggested in Huber (2014) and Huber and Solovyeva (2018).

Usage

medweight(
 y, # Dependent variable, must not contain missings.
 d, # Treatment, must be binary (either 1 or 0), must not contain missings.
 m, # Mediator(s), may be a scalar or a vector, must not contain missings.
 x, # Pre-treatment confounders of the treatment, mediator, and/or outcome, must not contain missings.
 w = NULL, # Post-treatment confounders of the mediator and the outcome. Default is NULL. Must not contain missings.
 s = NULL, # Optional selection indicator. Must be one if y is observed (non-missing) and zero if y is not observed (missing). Default is NULL, implying that y does not contain any missings. Is ignored if w is not NULL.
 z = NULL, # Optional instrumental variable(s) for selection s. If NULL, outcome selection based on observables (x,d,m) - known as "missing at random" - is assumed.
 selpop = FALSE, # Only to be used if both s and z are defined. If TRUE, the effects are estimated for the selected subpopulation with s=1 only. If FALSE, the effects are estimated for the total population.
 ATET = FALSE, # treatment-level average treatment effect.
 trim = 0.05, # trimming proportion of extreme weights.
 logit = FALSE, # use logistic regression to estimate the treatment propensity scores.
 boot = 1999, # number of bootstrap replications.
 cluster = NULL
)

Arguments

y # Dependent variable, must not contain missings.
d # Treatment, must be binary (either 1 or 0), must not contain missings.
m # Mediator(s), may be a scalar or a vector, must not contain missings.
x # Pre-treatment confounders of the treatment, mediator, and/or outcome, must not contain missings.
w # Post-treatment confounders of the mediator and the outcome. Default is NULL. Must not contain missings.
s # Optional selection indicator. Must be one if y is observed (non-missing) and zero if y is not observed (missing). Default is NULL, implying that y does not contain any missings. Is ignored if w is not NULL.
z # Optional instrumental variable(s) for selection s. If NULL, outcome selection based on observables (x,d,m) - known as "missing at random" - is assumed.
selpop # Only to be used if both s and z are defined. If TRUE, the effects are estimated for the selected subpopulation with s=1 only. If FALSE, the effects are estimated for the total population.
ATET
If FALSE, the average treatment effect (ATE) and the corresponding direct and indirect effects are estimated. If TRUE, the average treatment effect on the treated (ATET) and the corresponding direct and indirect effects are estimated. Default is FALSE.

trim
Trimming rule for discarding observations with extreme propensity scores. In the absence of post-treatment confounders (w=NULL), observations with Pr(D=1|M,X)<trim or Pr(D=1|M,X)>(1-trim) are dropped. In the presence of post-treatment confounders (w is defined), observations with Pr(D=1|M,W,X)<trim or Pr(D=1|M,W,X)>(1-trim) are dropped. Default is 0.05. If s is defined (only considered if w is NULL!) and z is NULL, observations with low selection propensity scores, Pr(S=1|D,M,X)<trim, are discarded, too. If s and z are defined, the treatment propensity scores to be trimmed change to Pr(D=1|M,X,Pr(S=1|D,X,Z)).

logit
If FALSE, probit regression is used for propensity score estimation. If TRUE, logit regression is used. Default is FALSE.

boot
Number of bootstrap replications for estimating standard errors. Default is 1999.

cluster
A cluster ID for block or cluster bootstrapping when units are clustered rather than iid. Must be numerical. Default is NULL (standard bootstrap without clustering).

Details
Estimation of causal mechanisms (natural direct and indirect effects) of a binary treatment under a selection on observables assumption assuming that all confounders of the treatment and the mediator, the treatment and the outcome, or the mediator and the outcome are observed. Units are weighted by the inverse of their conditional treatment propensities given the mediator and/or observed confounders, which are estimated by probit or logit regression. The form of weighting depends on whether the observed confounders are exclusively pre-treatment (x), or also contain post-treatment confounders of the mediator and the outcome (w). In the latter case, only partial indirect effects (from d to m to y) can be estimated that exclude any causal paths from d to w to m to y, see the discussion in Huber (2014). Standard errors are obtained by bootstrapping the effects. In the absence of post-treatment confounders (such that w is NULL), defining s allows correcting for sample selection due to missing outcomes based on the inverse of the conditional selection probability. The latter might either be related to observables, which implies a missing at random assumption, or in addition also to unobservables, if an instrument for sample selection is available. Effects are then estimated for the total population, see Huber and Solovyeva (2018) for further details.

Value
A medweight object contains two components, results and ntrimmed:

results: a 3X5 matrix containing the effect estimates in the first row ("effects"), standard errors in the second row ("se"), and p-values in the third row ("p-value"). The first column provides the total effect, namely the average treatment effect (ATE) if ATET=FALSE or the average treatment effect on the treated (ATET) if ATET=TRUE. The second and third columns provide the direct effects under treatment and control, respectively ("dir.treat", "dir.control"). See equation (6) if w=NULL (no post-treatment confounders) and equation (13) if w is defined, respectively, in Huber (2014). If w=NULL, the fourth and fifth columns provide the indirect effects under treatment and control, respectively ("indir.treat", "indir.control"), see equation (7) in Huber (2014). If w is defined, the fourth and fifth
columns provide the partial indirect effects under treatment and control, respectively ("par.in.treat", "par.in.control"), see equation (14) in Huber (2014).

ntrimmed: number of discarded (trimmed) observations due to extreme propensity score values.

References

Examples

A little example with simulated data (10000 observations)
Not run:
n=10000
x=rnorm(n)
d=(0.25*x+rnorm(n)>0)*1
w=0.2*d+0.25*x+rnorm(n)
m=0.5*w+0.5*d+0.25*x+rnorm(n)
y=0.5*d+m+0.25*x+rnorm(n)
The true direct and partial indirect effects are all equal to 0.5
output=medweight(y=y,d=d,m=m,x=x,w=w,trim=0.05,ATET=FALSE,logit=TRUE,boot=19)
round(output$results,3)
output$ntrimmed
End(Not run)

medweightcont Causal mediation analysis with a continuous treatment based on weighting by the inverse of generalized propensity scores

Description

Causal mediation analysis (evaluation of natural direct and indirect effects) of a continuous treatment based on weighting by the inverse of generalized propensity scores as suggested in Hsu, Huber, Lee, and Lettry (2020).

Usage

medweightcont(
 y,
 d,
 m,
 x,
 d0,
 d1,
 ATET = FALSE,
 trim = 0.1,
lognorm = FALSE,
bw = NULL,
boot = 1999,
cluster = NULL
)

Arguments

y Dependent variable, must not contain missings.
d Continuous treatment, must not contain missings.
m Mediator(s), may be a scalar or a vector, must not contain missings.
x Pre-treatment confounders of the treatment, mediator, and/or outcome, must not contain missings.
d0 Value of d under non-treatment. Effects are based on pairwise comparisons, i.e. differences in potential outcomes evaluated at d1 and d0.
d1 Value of d under treatment. Effects are based on pairwise comparisons, i.e. differences in potential outcomes evaluated at d1 and d0.

ATET If FALSE, the average treatment effect (ATE) and the corresponding direct and indirect effects are estimated. If TRUE, the average treatment effect on the treated (ATET) and the corresponding direct and indirect effects are estimated. Default is FALSE.

trim Trimming rule for discarding observations with too large weights in the estimation of any mean potential outcome. That is, observations with a weight>trim are dropped from the sample. Default is a maximum weight of 0.1 (or 10 percent) per observation.

lognorm If FALSE, a linear model with normally distributed errors is assumed for generalized propensity score estimation. If TRUE, a lognormal model is assumed. Default is FALSE.

bw Bandwith for the second order Epanechnikov kernel functions of the treatment. If set to NULL, bandwidth computation is based on the rule of thumb for Epanechnikov kernels, determining the bandwidth as the standard deviation of the treatment times 2.34/(n^0.25), where n is the sample size. Default is NULL.

boot Number of bootstrap replications for estimating standard errors. Default is 1999.

cluster A cluster ID for block or cluster bootstrapping when units are clustered rather than iid. Must be numerical. Default is NULL (standard bootstrap without clustering).

Details

Estimation of causal mechanisms (natural direct and indirect effects) of a continuous treatment under a selection on observables assumption assuming that all confounders of the treatment and the mediator, the treatment and the outcome, or the mediator and the outcome are observed. Units are weighted by the inverse of their conditional treatment densities (known as generalized propensity scores) given the mediator and/or observed confounders, which are estimated by linear or loglinear regression. Standard errors are obtained by bootstrapping the effects.
A medweightcont object contains two components, results and ntrimmed:

results: a 3X5 matrix containing the effect estimates in the first row ("effects"), standard errors in the second row ("se"), and p-values in the third row ("p-value"). The first column provides the total effect, namely the average treatment effect (ATE) if ATET=FALSE or the average treatment effect on the treated (ATET), i.e. those with D=d1, if ATET=TRUE. The second and third columns provide the direct effects under treatment and control, respectively ("dir.treat", "dir.control"). The fourth and fifth columns provide the indirect effects under treatment and control, respectively ("indir.treat", "indir.control").

ntrimmed: number of discarded (trimmed) observations due to extreme propensity score values.

References

Examples

A little example with simulated data (10000 observations)
Not run:
n=10000
x=runif(n=n,min=-1,max=1)
d=0.25*x+runif(n=n,min=-2,max=2)
d=d-min(d)
m=0.5*d+0.25*x+runif(n=n,min=-2,max=2)
y=0.5*m+d+0.25*x+runif(n=n,min=-2,max=2)
The true direct and indirect effects are all equal to 0.5
output=medweightcont(y,d,m,x,d0=2,d1=3,ATET=FALSE,trim=0.1,
 lognorm=FALSE,bw=NULL,boot=19)
round(output$results,3)
output$ntrimmed
End(Not run)
Arguments

- **y1**: Potential outcomes for the treated.
- **y0**: Potential outcomes for the non-treated.
- **d**: Treatment group indicator (binary). Should not contain missing values.
- **x**: Covariates to be controlled for. Should not contain missing values.
- **trim**: Trimming threshold for discarding observations with too small propensity scores within any subgroup defined by the treatment group and time. Default is 0.05.
- **MLmethod**: Machine learning method for estimating nuisance parameters using the SuperLearner package. Must be one of "lasso" (default), "randomforest", "xgboost", "svm", "ensemble", or "parametric".
- **k**: Number of folds in k-fold cross-fitting. Default is 3.

Details

The test statistic corresponds to the difference between the ATETs that are based on two distinct doubly robust score functions, namely that under unconfoundedness and that based on difference-in-differences under conditional common trends. Estimation in panel data is based on double machine learning and the function supports different machine learning methods to estimate nuisance parameters (conditional mean outcomes and propensity scores) as well as cross-fitting to mitigate overfitting. ATETselobs and ATETdid equals zero.

Value

A list with the following components:

- **est**: Test statistic.
- **se**: Standard error.
- **pval**: P-value.
- **ntrimmed**: Number of trimmed or dropped observations due to propensity scores below the threshold trim.
- **pscore.xy0**: Propensity score under unconfoundedness.
- **pscore.x**: Propensity score under conditional common trends.
- **ATETselobs**: ATET based on the selection on observables/unconfoundedness assumption.
- **seATETselobs**: Standard error of the ATET based on the selection on observables/unconfoundedness assumption.
- **ATETdid**: ATET based on difference-in-differences invoking the conditional common trends assumption.
- **seATETdid**: Standard error of the ATET based on difference-in-differences invoking the conditional common trends assumption.

References

Examples

```r
## Not run:
n=1000
x=matrix(rnorm(n * 5), n, 5)
d=1*(x[,1]+2*rnorm(n)>0)
t=rbinom(n, 1, 0.5)
y0=x[,1]+rnorm(n)
y1=y0+rnorm(n)
y=ifelse(t == 1, y1, y0)
# report p-value (note that unconfoundedness and common trends hold jointly)
paneltestDML(y1, y0, d, x)$pval
## End(Not run)
```

RDDcovar
Sharp regression discontinuity design conditional on covariates

Description

Nonparametric (kernel regression-based) sharp regression discontinuity controlling for covariates that are permitted to jointly affect the treatment assignment and the outcome at the threshold of the running variable, see Frölich and Huber (2019).

Usage

```r
RDDcovar(
  y,  
z,  
x,  
  boot = 1999,
  bw0 = NULL,
  bw1 = NULL,
  regtype = "ll",
  bwz = NULL
)
```

Arguments

- **y**: Dependent variable, must not contain missings.
- **z**: Running variable. Must be coded such that the treatment is zero for `z` being smaller than zero and one for `z` being larger than or equal to zero. Must not contain missings.
- **x**: Covariates, must not contain missings.
- **boot**: Number of bootstrap replications for estimating standard errors. Default is 1999.
- **bw0**: Bandwidth for a kernel regression of `y` on `z` and `x` below the threshold (for treatment equal to zero), using the Epanechnikov kernel. Default is NULL, implying that the bandwidth is estimated by least squares cross-validation.
bw1

Bandwidth for a kernel regression of \(y \) on \(z \) and \(x \) above the threshold (for treatment equal to one), using the Epanechnikov kernel. Default is NULL, implying that the bandwidth is estimated by least squares cross-validation.

regtype

Defines the type of the kernel regressions of \(y \) on \(z \) and \(x \) below and above the threshold. Must either be set to "11" for local linear regression or to "1" for local constant regression. Default is "11".

bwz

Bandwidth for the (Epanechnikov) kernel function on \(z \). Default is NULL, implying that the bandwidth is estimated by least squares cross-validation.

Details

Sharp regression discontinuity design conditional on covariates to control for observed confounders jointly affecting the treatment assignment and outcome at the threshold of the running variable as discussed in Frölich and Huber (2019). This is implemented by running kernel regressions of the outcome on the running variable and the covariates separately above and below the threshold and by applying a kernel smoother to the running variable around the threshold. The procedure permits choosing kernel bandwidths by cross-validation, even though this does in general not yield the optimal bandwidths for treatment effect estimation (checking the robustness of the results by varying the bandwidths is therefore highly recommended). Standard errors are based on bootstrapping.

Value

- **effect**: Estimated treatment effect at the threshold.
- **se**: Bootstrap-based standard error of the effect estimate.
- **pvalue**: P-value based on the t-statistic.
- **bw0**: Bandwidth for kernel regression of \(y \) on \(z \) and \(x \) below the threshold (for treatment equal to zero).
- **bw1**: Bandwidth for kernel regression of \(y \) on \(z \) and \(x \) above the threshold (for treatment equal to one).
- **bwz**: Bandwidth for the kernel function on \(z \).

References

Examples

```r
## Not run:
# load unemployment duration data
data(ubduration)
# run sharp RDD conditional on covariates with user-defined bandwidths
output=RDDcovar(y=ubduration[,1],z=ubduration[,2],x=ubduration[,c(-1,-2)],
bw0=c(0.17, 1, 0.01, 0.05, 0.54, 70000, 0.12, 0.91, 100000),
bw1=c(0.59, 0.65, 0.30, 0.06, 0.81, 0.04, 0.12, 0.76, 1.03),bwz=0.2,boot=19)
cat("RDD effect estimate: ",round(c(output$effect),3)," standard error: ",
round(c(output$se),3), ", p-value: ", round(c(output$pvalue),3))
## End(Not run)
```
Swedish municipalities

Description

A dataset containing information on Swedish municipalities in the years 1996-2004

Usage

rkd

Format

A data frame with 2511 rows and 53 variables:

- **code** Municipality code
- **year** Year
- **municipality** Minicipality name
- **pop_1** Population, lagged 1 year
- **pop** Population
- **partpop06** Share of population aged 0-6
- **partpop7_15** Share of population aged 7-15
- **partpop80_** Share of population aged 80+
- **partforeign** Share of foreign born population
- **costequalgrants** Cost-equalizing grants
- **popchange_10y** 10 year out-migration, lagged 2 years
- **pers_admin** Personnel, administration
- **pers_child** Personnel, child care
- **pers_school** Personnel, schools
- **pers_elder** Personnel, elderly care
- **pers_total** Personnel, total (full time equivalents pers 1,000 capita)
- **pers_social** Personnel, social welfare
- **pers_tech** Personnel, technical services
- **expenditures_total** Total per capita public expenditures
- **wage_admin** Average montly wage, administration
- **wage_child** Average monthly wage, child care
- **wage_school** Average monthly wage, schools
- **wage_elder** Average monthly wage, elderly care
- **wage_total** Average monthly wage, total
- **wage_social** Average monthly wage, social welfare
wage.tech Average monthly wage, technical services
pers.officials Personnel, high administrative officials
pers.assistants Personnel, administrative assistants
pers.priv.school Outsourced personnel, schools
pers.priv.elder Outsourced personnel, elderly care
pers.priv.social Outsourced personnel, social welfare
pers.priv.child Outsourced personnel, child care
migrationgrant round(abs((popchange_10y+2)*100)) if popchange_10y <= -2, 0 otherwise
migpop migrationgrant*pop_1
summigpop sum(migpop) by year
sumpop sum(pop_1) by year
migrationmean summigpop/sumpop
exp.total Annual expenditures on personnel in 100SEK/capita
exp.admin Annual expenditures on personnel in 100SEK/capita
exp.child Annual expenditures on personnel in 100SEK/capita
exp.school Annual expenditures on personnel in 100SEK/capita
exp.elder Annual expenditures on personnel in 100SEK/capita
exp.social Annual expenditures on personnel in 100SEK/capita
exp.tech Annual expenditures on personnel in 100SEK/capita
expshare.total exp.total*100/expenditures_total
expshare.admin exp.admin*100/expenditures_total
expshare.child exp.child*100/expenditures_total
expshare.school exp.school*100/expenditures_total
expshare.elder exp.elder*100/expenditures_total
expshare.social exp.social*100/expenditures_total
expshare.tech exp.tech*100/expenditures_total
outmigration -popchange.10y
forcing outmigration-2

References
Examples

```r
## Not run:
require(rdrobust) # load rdrobust package
require(causalweight) # load causalweight package
data(rkd) # load rkd data
attach(rkd) # attach rkd data
Y=pers_total # define outcome (total personnel)
R=forcing # define running variable
D=costequalgrants # define treatment (grants)
results=rdrobust(y=Y, x=R, fuzzy=D, deriv=1) # run fuzzy RKD
summary(results)
## End(Not run) # show results
```

swissexper

Correspondence test in Swiss apprenticeship market

Description

A dataset related to a field experiment (correspondence test) in the Swiss apprenticeship market 2018/2019. The experiment investigated the effects of applicant gender and parental occupation in applications to apprenticeships on callback rates (invitations to interviews, assessment centers, or trial apprenticeships)

Usage

swissexper

Format

A data frame with 2928 rows and 18 variables:

city agglomeration of apprenticeship: 1=Bern,2=Zurich,3=Basel,6=Lausanne
foundatdate date when job add was found
employees (estimated) number of employees: 1=1-20; 2=21-50; 3=51-100; 4=101-250; 5=251-500; 6=501-1000; 7=1001+
sector 1=public sector; 2=trade/wholesale; 3=manufacturing/goods; 4=services
uniqueID ID of application
sendatdate date when application was sent
job_father treatment: father’s occupation: 1=professor; 2=unskilled worker; 3=intermediate commercial; 4=intermediate technical
job_mother treatment: mother’s occupation: 1= primary school teacher; 2=homemaker
tier skill tier of apprenticeship: 1=lower; 2=intermediate; 3=upper
hasmoved applicant moved from different city: 1=yes; 0=no
contgender gender of contact person in company: 0=unknown; 1=female; 2=male
letterback 1: letters sent from company to applicant were returned; 0: no issues with returned letters
outcome_invite outcome: invitation to interview, assessment center, or trial apprenticeship: 1=yes; 0=no
female_applicant treatment: 1=female applicant; 0=male applicant
antidiscrpolicy 1=explicit antidiscrimination policy on company’s website; 0=no explicit antidiscrimination policy
outcome_interest outcome: either invitation, or asking further questions, or keeping application for further consideration
gender_neutrality 0=gender neutral job type; 1=female dominated job type; 2=male dominated type
company_activity scope of company’s activity: 0=local; 1=national; 2= international

References

testmedident

Description
This function tests for identification in causal mediation and dynamic treatment models based on covariates and instrumental variables using machine learning methods.

Usage
testmedident(
y, d, m = NULL, x, w = NULL, z1, z2 = NULL, testmediator = TRUE, seed = 123, MLmethod = "lasso", k = 3, zeta_sigma = min(0.5, 500/length(y)))
Arguments

y Outcome variable.
d Treatment variable.
m Mediator variable (optional).
x Baseline covariates (prior to treatment assignment).
w Post-treatment covariates (prior to mediator assignment, optional).
z1 Instrument for the treatment.
z2 Instrument for the mediator (optional).
testmediator Logical indicating if the mediator should be used as dependent variable (in addition to outcome y) when testing if the effect of treatment d is identified. Default is TRUE.
seed Random seed for sample splitting in cross-fitting. Default is 123.
MLmethod Machine learning method for estimating conditional outcome/mediator means required for testing. Default is "lasso".
k Number of cross-fitting folds. Default is 3.
zeta_sigma Tuning parameter defining the standard deviation of a random, mean zero, and normal variable that is added to the test statistic to avoid a degenerate distribution of test statistic under the null hypothesis. zeta_sigma gauges the trade-off between power and size of the test. Default is the minimum of 0.5 and 500/(# of observations).

Details

This function implements a hypothesis test for identifying causal effects in mediation and dynamic treatment models involving sequential assignment of treatment and mediator variables. The test jointly verifies the exogeneity/ignorability of treatment and mediator variables conditional on covariates and the validity of (distinct) instruments for the treatment and mediator (ignorability of instrument assignment and exclusion restriction). If the null hypothesis holds, dynamic and pathwise causal effects may be identified based on the sequential exogeneity/ignorability of the treatment and the mediator given the covariates. The function employs machine learning techniques to control for covariates in a data-driven manner.

Value

A list with the following components:

teststat Test statistic.
se Standard error of the test statistic.
pval Two-sided p-value of the test.

References

Examples

```r
# Example with simulated data in which null hypothesis holds
n=2000
x=rnorm(n)
z1=rnorm(n)
z2=rnorm(n)
d=1*(0.5*x+0.5*z1+rnorm(n)>0)  # Treatment equation
m=0.5*x+0.5*d+0.5*z2+rnorm(n)  # Mediator equation
y=0.5*x+d+0.5*m+rnorm(n)      # Outcome equation
# Run test and report p-value
testmedident(y=y, d=d, m=m, x=x, z1=z1, z2=z2)$pval
```

End(Not run)

treatDML | Binary or multiple discrete treatment effect evaluation with double machine learning

Description

Treatment effect estimation for assessing the average effects of discrete (multiple or binary) treatments. Combines estimation based on (doubly robust) efficient score functions with double machine learning to control for confounders in a data-driven way.

Usage

```r
treatDML(  
  y,  
  d,  
  x,  
  s = NULL,  
  dtreat = 1,  
  dcontrol = 0,  
  trim = 0.01,  
  MLmethod = "lasso",  
  k = 3,  
  normalized = TRUE  
)
```

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>y</td>
<td>Dependent variable, must not contain missings.</td>
</tr>
<tr>
<td>d</td>
<td>Treatment variable, must be discrete, must not contain missings.</td>
</tr>
<tr>
<td>x</td>
<td>Covariates, must not contain missings.</td>
</tr>
</tbody>
</table>
Indicator function for defining a subpopulation for whom the treatment effect is estimated as a function of the subpopulation’s distribution of \(x \). Default is NULL (estimation of the average treatment effect in the total population).

dtreat Value of the treatment in the treatment group. Default is 1.
dcontrol Value of the treatment in the control group. Default is 0.
trim Trimming rule for discarding observations with treatment propensity scores that are smaller than \(\text{trim} \) or larger than \(1-\text{trim} \) (to avoid too small denominators in weighting by the inverse of the propensity scores). Default is 0.01.
MLmethod Machine learning method for estimating the nuisance parameters based on the SuperLearner package. Must be either "lasso" (default) for lasso estimation, "randomforest" for random forests, "xgboost" for xg boosting, "svm" for support vector machines, "ensemble" for using an ensemble algorithm based on all previously mentioned machine learners, or "parametric" for linear or logit regression.
k Number of folds in k-fold cross-fitting. Default is 3.
normalized If set to TRUE, then the inverse probability-based weights are normalized such that they add up to 1 within treatment groups. Default is TRUE.

details Estimation of the causal effects of binary or multiple discrete treatments under conditional independence, assuming that confounders jointly affecting the treatment and the outcome can be controlled for by observed covariates. Estimation is based on the (doubly robust) efficient score functions for potential outcomes in combination with double machine learning with cross-fitting, see Chernozhukov et al (2018). To this end, one part of the data is used for estimating the model parameters of the treatment and outcome equations based machine learning. The other part of the data is used for predicting the efficient score functions. The roles of the data parts are swapped (using k-fold cross-fitting) and the average treatment effect is estimated based on averaging the predicted efficient score functions in the total sample. Standard errors are based on asymptotic approximations using the estimated variance of the (estimated) efficient score functions.

Value

A `treatDML` object contains eight components, `effect`, `se`, `pval`, `ntrimmed`, `meantreat`, `meancntrol`, `pstreat`, and `pscontrol`:

effect: estimate of the average treatment effect.
se: standard error of the effect.
pval: p-value of the effect estimate.
ntrimmed: number of discarded (trimmed) observations due to extreme propensity scores.
meantreat: Estimate of the mean potential outcome under treatment.
meancntrol: Estimate of the mean potential outcome under control.
pstreat: P-score estimates for treatment in treatment group.
pscontrol: P-score estimates for treatment in control group.
References

Examples

A little example with simulated data (2000 observations)
Not run:
n=2000 # sample size
p=100 # number of covariates
s=2 # number of covariates that are confounders
x=matrix(rnorm(n*p),ncol=p) # covariate matrix
beta=c(rep(0.25,s), rep(0,p-s)) # coefficients determining degree of confounding
d=(x%*%beta+rnorm(n)>0)*1 # treatment equation
y=x%*%beta+0.5*d+rnorm(n) # outcome equation
The true ATE is equal to 0.5
output=treatDML(y,d,x)
cat("ATE: ",round(c(output$effect),3),", standard error: ",
 round(c(output$se),3), ", p-value: ",round(c(output$pval),3))
output$ntrimmed
End(Not run)

Description

Average treatment effect (ATE) estimation for assessing the average effects of discrete (multiple or binary) treatments under sample selection/outcome attrition. Combines estimation based on Neyman-orthogonal score functions with double machine learning to control for confounders in a data-driven way.

Usage

treatDML(y,
 d,
 x,
 s,
 z = NULL,
 selected = 0,
 dtreat = 1,
 dcontrol = 0,
```r
treatselDML(
  trim = 0.01,
  MLmethod = "lasso",
  k = 3,
  normalized = TRUE
)
```

Arguments

- **y**: Dependent variable, may contain missings.
- **d**: Treatment variable, must be discrete, must not contain missings.
- **x**: Covariates, must not contain missings.
- **s**: Selection indicator. Must be 1 if `y` is observed (non-missing) and 0 if `y` is not observed (missing).
- **z**: Optional instrumental variable(s) for selection `s`. If `NULL`, outcome selection based on observables (`x`, `d`) - known as "missing at random" - is assumed. If `z` is defined, outcome selection based on unobservables - known as "non-ignorable missingness" - is assumed. Default is `NULL`.
- **selected**: Must be 1 if ATE is to be estimated for the selected population without missing outcomes. Must be 0 if the ATE is to be estimated for the total population. Default is 0 (ATE for total population). This parameter is ignored if `z` is `NULL` (under MAR, the ATE in the total population is estimated).
- **dtreat**: Value of the treatment in the treatment group. Default is 1.
- **dcontrol**: Value of the treatment in the control group. Default is 0.
- **trim**: Trimming rule for discarding observations with (products of) propensity scores that are smaller than `trim` (to avoid too small denominators in weighting by the inverse of the propensity scores). If `selected` is 0 (ATE estimation for the total population), observations with products of the treatment and selection propensity scores that are smaller than `trim` are discarded. If `selected` is 1 (ATE estimation for the subpopulation with observed outcomes), observations with treatment propensity scores smaller than `trim` are discarded. Default for `trim` is 0.01.
- **MLmethod**: Machine learning method for estimating the nuisance parameters based on the SuperLearner package. Must be either "lasso" (default) for lasso estimation, "randomforest" for random forests, "xgboost" for xg boosting, "svm" for support vector machines, "ensemble" for using an ensemble algorithm based on all previously mentioned machine learners, or "parametric" for linear or logit regression.
- **k**: Number of folds in k-fold cross-fitting. Default is 3.
- **normalized**: If set to `TRUE`, then the inverse probability-based weights are normalized such that they add up to 1 within treatment groups. Default is `TRUE`.

Details

Estimation of the causal effects of binary or multiple discrete treatments under conditional independence, assuming that confounders jointly affecting the treatment and the outcome can be controlled for by observed covariates, and sample selection/outcome attrition. The latter might either be related...
to observables, which implies a missing at random assumption, or in addition also to unobservables, if an instrument for sample selection is available. Estimation is based on Neyman-orthogonal score functions for potential outcomes in combination with double machine learning with cross-fitting, see Chernozhukov et al (2018). To this end, one part of the data is used for estimating the model parameters of the treatment and outcome equations based machine learning. The other part of the data is used for predicting the efficient score functions. The roles of the data parts are swapped (using k-fold cross-fitting) and the average treatment effect is estimated based on averaging the predicted efficient score functions in the total sample. Standard errors are based on asymptotic approximations using the estimated variance of the (estimated) efficient score functions.

Value

A treatDML object contains eight components, `effect`, `se`, `pval`, `ntrimmed`, `meantreat`, `meancontrol`, `pstreat`, and `pscontrol`:
effect: estimate of the average treatment effect.
se: standard error of the effect.
pval: p-value of the effect estimate.
ntrimmed: number of discarded (trimmed) observations due to extreme propensity scores.
meantreat: Estimate of the mean potential outcome under treatment.
meancontrol: Estimate of the mean potential outcome under control.
pstreat: P-score estimates for treatment in treatment group.
pscontrol: P-score estimates for treatment in control group.

References

Examples

A little example with simulated data (2000 observations)
Not run:
n=2000 # sample size
p=100 # number of covariates
s=2 # number of covariates that are confounders
sigma=matrix(c(1,0.5,0.5,1),2,2)
e=(2*rmvnorm(n,rep(0,2),sigma))
x=matrix(rnorm(n*p),ncol=p) # covariate matrix
beta=c(rep(0.25,s), rep(0,p-s)) # coefficients determining degree of confounding
d=(x%*%beta+rnorm(n)>0)*1 # treatment equation
z=rnorm(n)
s=(x%*%beta+0.25*d+z+e[,1]>0)*1 # selection equation
treatweight

Treatment evaluation based on inverse probability weighting with optional sample selection correction.

Description

Treatment evaluation based on inverse probability weighting with optional sample selection correction.

Usage

treatweight(
 y,
 d,
 x,
 s = NULL,
 z = NULL,
 selpop = FALSE,
 ATET = FALSE,
 trim = 0.05,
 logit = FALSE,
 boot = 1999,
 cluster = NULL
)

Arguments

y Dependent variable.
d Treatment, must be binary (either 1 or 0), must not contain missings.
x Confounders of the treatment and outcome, must not contain missings.
s Selection indicator. Must be one if y is observed (non-missing) and zero if y is not observed (missing). Default is NULL, implying that y does not contain any missings.
z Optional instrumental variable(s) for selection s. If NULL, outcome selection based on observables (x,d) - known as "missing at random" - is assumed. If z is defined, outcome selection based on unobservables - known as "non-ignorable missingness" - is assumed. Default is NULL. If s is NULL, z is ignored.
Only to be used if both \(s \) and \(z \) are defined. If \(\text{TRUE} \), the effect is estimated for the selected subpopulation with \(s=1 \) only. If \(\text{FALSE} \), the effect is estimated for the total population. (note that this relies on somewhat stronger statistical assumptions). Default is \(\text{FALSE} \). If \(s \) or \(z \) is \(\text{NULL} \), \(\text{selpop} \) is ignored.

If \(\text{FALSE} \), the average treatment effect (ATE) is estimated. If \(\text{TRUE} \), the average treatment effect on the treated (ATET) is estimated. Default is \(\text{FALSE} \).

Trimming rule for discarding observations with extreme propensity scores. If \(\text{ATET=FALSE} \), observations with \(\Pr(D=1|X)<\text{trim} \) or \(\Pr(D=1|X)>(1-\text{trim}) \) are dropped. If \(\text{ATET=TRUE} \), observations with \(\Pr(D=1|X)>1-\text{trim} \) are dropped. If \(s \) is defined and \(z \) is \(\text{NULL} \), observations with extremely low selection propensity scores, \(\Pr(S=1|D,X)\text{trim} \), are discarded, too. If \(s \) and \(z \) are defined, the treatment propensity scores to be trimmed change to \(\Pr(D=1|X,\Pr(S=1|D,X,Z)) \). If in addition \(\text{selpop=FALSE} \), observations with \(\Pr(S=1|D,X,Z)<\text{trim} \) are discarded, too. Default for \(\text{trim} \) is 0.05.

If \(\text{FALSE} \), probit regression is used for propensity score estimation. If \(\text{TRUE} \), logit regression is used. Default is \(\text{FALSE} \).

Number of bootstrap replications for estimating standard errors. Default is 1999.

A cluster ID for block or cluster bootstrapping when units are clustered rather than iid. Must be numerical. Default is \(\text{NULL} \) (standard bootstrap without clustering).

Details

Estimation of treatment effects of a binary treatment under a selection on observables assumption assuming that all confounders of the treatment and the outcome are observed. Units are weighted by the inverse of their conditional treatment propensities given the observed confounders, which are estimated by probit or logit regression. Standard errors are obtained by bootstrapping the effect. If \(s \) is defined, the procedure allows correcting for sample selection due to missing outcomes based on the inverse of the conditional selection probability. The latter might either be related to observables, which implies a missing at random assumption, or in addition also to unobservables, if an instrument for sample selection is available. See Huber (2012, 2014) for further details.

Value

A treatweight object contains six components: \(\text{effect} \), \(\text{se} \), \(\text{pval} \), \(\text{y1} \), \(\text{y0} \), and \(\text{ntrimmed} \).

\(\text{effect} \): average treatment effect (ATE) if \(\text{ATET=FALSE} \) or the average treatment effect on the treated (ATET) if \(\text{ATET=TRUE} \).

\(\text{se} \): bootstrap-based standard error of the effect.

\(\text{pval} \): p-value of the effect.

\(\text{y1} \): mean potential outcome under treatment.

\(\text{y0} \): mean potential outcome under control.

\(\text{ntrimmed} \): number of discarded (trimmed) observations due to extreme propensity score values.
References

Examples

A little example with simulated data (10000 observations)
Not run:
n=10000
x=rnorm(n); d=(0.25*x+rnorm(n)>0)*1
y=0.5*x+d*0.25*x+rnorm(n)
The true ATE is equal to 0.5
output=treatweight(y=y,d=d,x=x,trim=0.05,ATET=FALSE,logit=TRUE,boot=19)
cat("ATE: ",round(c(output$effect),3),", standard error: ",round(c(output$se),3),", p-value: ",round(c(output$pval),3))
output$ntrimmed
End(Not run)

An example with non-random outcome selection and an instrument for selection
Not run:
n=10000
sigma=matrix(c(1,0.6,0.6,1),2,2)
e=(2*rmvnorm(n,rep(0,2),sigma))
x=rnorm(n)
d=(0.5*x+d*0.5+z+e[,1]>0)*1
s=(0.25*x+0.25*d+0.5*z+e[,1]>0)*1
y=d+x+e[,2]; y[s==0]=0
The true ATE is equal to 1
output=treatweight(y=y,d=d,x=x,s=s,z=z,selpop=FALSE,trim=0.05,ATET=FALSE,
logit=TRUE,boot=19)
cat("ATE: ",round(c(output$effect),3),", standard error: ",round(c(output$se),3),", p-value: ",round(c(output$pval),3))
output$ntrimmed
End(Not run)

ubduration

Austrian unemployment duration data

Description

A dataset containing unemployed females between 46 and 53 years old living in an Austrian region where an extension of the maximum duration of unemployment benefits (from 30 to 209 weeks under particular conditions) for job seekers aged 50 or older was introduced.
Usage

ubduration

Format

A data frame with 5659 rows and 10 variables:

y Outcome variable: unemployment duration of the jobseeker in weeks (registered at the unemployment office). Variable is numeric.

z Running variable: distance to the age threshold of 50 (implying an extended duration of unemployment benefits), measured in months divided by 12. Variable is numeric.

marrstatus Marital status: 0=other, 1=married, 2=single. Variable is a factor.

education Education: 0=low education, 1=medium education, 2=high education. Variable is ordered.

foreign Migrant status: 1=foreigner, 0=Austrian. Variable is a factor.

rr Replacement rate (of previous earnings by unemployment benefits). Variable is numeric.

lwageljob Log wage in last job. Variable is numeric.

experience Ratio of actual to potential work experience. Variable is numeric.

whitecollar 1=white collar worker, 0=blue collar worker. Variable is a factor.

industry Industry: 0=other, 1=agriculture, 2=utilities, 3=food, 4=textiles, 5=wood, 6=machines, 7=other manufacturing, 8=construction, 9=tourism, 10=traffic, 11=services. Variable is a factor.

References

Examples

```r
## Not run:
# load unemployment duration data
data(ubduration)
# run sharp RDD conditional on covariates with user-defined bandwidths
output=RDDcovar(y=ubduration[,1], z=ubduration[,2], x=ubduration[,c(-1,-2)],
bw0=c(0.17, 1, 0.01, 0.05, 0.54, 70000, 0.12, 0.91, 100000),
bwl=c(0.59, 0.65, 0.30, 0.06, 0.81, 0.04, 0.12, 0.76, 1.03),bwz=0.2,boot=19)
cat("RDD effect estimate: ",round(c(output$effect),3),", standard error: ",
    round(c(output$se),3), ", p-value: ", round(c(output$pvalue),3))
## End(Not run)
```
Description

A dataset containing information on wage expectations of 804 students at the University of Fribourg and the University of Applied Sciences in Bern in the year 2017.

Usage

wexpect

Format

A data frame with 804 rows and 39 variables:

- **wexpect1**: wage expectations after finishing studies: 0=less than 3500 CHF gross per month; 1=3500-4000 CHF; 2=4000-4500 CHF;...; 15=10500-11000 CHF; 16=more than 11000 CHF
- **wexpect2**: wage expectations 3 years after studying: 0=less than 3500 CHF gross per month; 1=3500-4000 CHF; 2=4000-4500 CHF;...; 15=10500-11000 CHF; 16=more than 11000 CHF
- **wexpect1othersex**: expected wage of other sex after finishing studies in percent of own expected wage
- **wexpect2othersex**: expected wage of other sex 3 years after studying in percent of own expected wage
- **male**: 1=male; 0=female
- **business**: 1=BA in business
- **econ**: 1=BA in economics
- **communi**: 1=BA in communication
- **businform**: 1=BA in business informatics
- **plansfull**: 1=plans working fulltime after studies
- **planseduc**: 1=plans obtaining further education (e.g. MA) after studies
- **sectorcons**: 1=planned sector: construction
- **sectortradesales**: 1=planned sector: trade and sales
- **sectortransware** 1=planned sector: transport and warehousing
- **sectorhosprest**: 1=planned sector: hospitality and restaurant
- **sectorinfocom**: 1=planned sector: information and communication
- **sectorfininsur**: 1=planned sector: finance and insurance
- **sectorconsult**: 1=planned sector: consulting
- **sectoreducscience**: 1=planned sector: education and science
- **sectorhealthsocial**: 1=planned sector: health and social services
- **typegenstratman**: 1=planned job type: general or strategic management
typemarketing 1=planned job type: marketing
typecontrol 1=planned job type: controlling
typefinance 1=planned job type: finance
typesales 1=planned job type: sales
typetechengin 1=planned job type: technical/engineering
typehumanres 1=planned job type: human resources
posmanager 1=planned position: manager
age age in years
swiss 1=Swiss nationality
hassiblings 1=has one or more siblings
motherhighedu 1=mother has higher education
fatherhighedu 1=father has higher education
motherworkedfull 1=mother worked fulltime at respondent’s age 4-6
motherworkedpart 1=mother worked parttime at respondent’s age 4-6
matwellbeing self-assessed material wellbeing compared to average Swiss: 1=much worse; 2=worse; 3=as average Swiss; 4=better; 5=much better
homeowner 1=home ownership
treatmentinformation 1=if information on median wages in Switzerland was provided (randomized treatment)
treatmentorder 1=if order of questions on professional plans and personal information in survey has been reversed (randomized treatment), meaning that personal questions are asked first and professional ones later

References

Examples

data(wexpect)
attach(wexpect)
effect of randomized wage information (treatment) on wage expectations 3 years after studying (outcome)
treatweight(y=wexpect2,d=treatmentinformation,x=cbind(male,business,econ,communi,businform,age,swiss,motherhighedu,fatherhighedu),boot=199)
direct effect of gender (treatment) and indirect effect through choice of field of studies (mediator) on wage expectations (outcome)
medweight(y=wexpect2,d=gender,m=cbind(business,econ,communi,businform),
x=cbind(treatmentinformation,age,swiss,motherhighedu,fatherhighedu),boot=199)
Index

* datasets
 coffeeleaflet, 4
 coupon, 7
 couponsretailer, 7
 games, 20
 india, 25
 JC, 28
 rkd, 46
 swissexper, 48
 ubduration, 58
 wexpect, 60

attrlateweight, 2

coffeeleaflet, 4
 coupon, 7
 couponsretailer, 7

didcontDML, 9
 didcontDMLpanel, 11
 didDML, 14
 didweight, 16
 dyntreatDML, 17

games, 20

identificationDML, 22
 india, 25
 ivnr, 26

 JC, 28

 lateweight, 30

 medDML, 32
 medlateweight, 35
 medweight, 38
 medweightcont, 40
 paneltestDML, 42
 RDDcovar, 44

rkd, 46

swissexper, 48

testmedident, 49
 treatDML, 51
 treatselDML, 53
 treatweight, 56

ubduration, 58

wexpect, 60

62