Package ‘cbird’

February 6, 2017

Type Package
Title Clustering of Multivariate Binary Data with Dimension Reduction via L1-Regularized Likelihood Maximization
Version 1.0
Date 2017-02-06
Author Michio Yamamoto
Maintainer Michio Yamamoto <michio.koko@gmail.com>
Description The clustering of binary data with reducing the dimensionality (CLUSBIRD) proposed by Yamamoto and Hayashi (2015) <doi:10.1016/j.patcog.2015.05.026>.
License GPL (>= 2)
URL http://michioyamamoto.com
Repository CRAN
NeedsCompilation yes
Date/Publication 2017-02-06 17:38:13

R topics documented:

 cbird .. 1
 EstScore ... 3

Index

| cbird | Clustering of multivariate binary data with dimension reduction via L1-regularized likelihood maximization. |

Description

This function conducts the clustering of binary data with reducing the dimensionality (CLUSBIRD) proposed by Yamamoto and Hayashi (2015).
cbird(Y, N.comp, N.clust, lambda=0, N.ite=10000, N.random=1,
 show.random.ite=FALSE, eps=0.0001, mc.cores=1)

Arguments

- **Y**: Binary data matrix (N * D), where N denotes sample size and D denotes the number of binary variables (0 or 1).
- **N.comp**: The number of component to be extracted.
- **N.clust**: The number of mixture components, which corresponds to the number of clusters.
- **lambda**: A tuning parameter of an L1 penalty for loadings. A non-negative real value should be used as the value of lambda.
- **N.ite**: The number of maximum of iterations for the EM algorithm.
- **N.random**: The number of random sets of parameters for initial random starts.
- **show.random.ite**: If "TRUE", the number of each iteration is shown on the R console.
- **eps**: The criterion for the convergence of the alternating least-squares algorithm, which should be specified as a positive real value. If the difference between the values of penalized log likelihood functions of successive iteration is smaller than eps, then cbird makes a decision about the convergence of the algorithm.
- **mc.cores**: If "parallel" package has been installed, "cbird" adopts a multithread process for multiple initial random starts. If "mc.cores"=1, "parallel" package is not needed, and a single core process is conducted.

Value

- **F**: An estimated component score matrix for cluster centroids.
- **A**: An estimated loading matrix.
- **mu**: Estimated mean values in the subspace.
- **U**: The cluster assignment matrix (N * N.clust).
- **g**: The estimated mixture probability.
- **n.ite**: The number of iteration needed for convergence.
- **loss**: The value of log likelihood with L1 penalty.
- **bic**: The value of BIC.
- **LL**: The value of log likelihood.
- **cluster**: Estimated clusters where subjects were assigned to
- **ptime**: Time for calculation

Author(s)

Michio Yamamoto
<michio.koko@gmail.com>
EstScore

References

Examples

```r
# Random Binary Data (unmeaningful example)
# 100 subjects and 20 variables
# Consider three mixture components in the data
set.seed(1)
y <- matrix(rbinom(100 * 20, 1, 0.5), 100, 20)
out <- cbird(y, 2, 3)
est <- estscore(y, out$A, out$mu)
```

EstScore

Estimate component scores for each subject using the result of cbird.

Description

This function estimates component scores for each subject using the result of CLUSBIRD.

Usage

```r
EstScore(X, A, mu, N.ite=10000, N.random=1, show.random.ite=FALSE, oblique=FALSE, mc.cores=1)
```

Arguments

- `X` Binary data matrix (N * D).
- `A` Loading matrix (D * L) estimated by cbird.
- `mu` A D-length mean vector estimated by cbird.
- `N.ite` The number of maximum of iterations for the EM algorithm.
- `N.random` The number of random sets of parameters for initial random starts.
- `show.random.ite` If "TRUE", the number of each iteration is shown on the R console.
- `oblique` If "TRUE", the oblique component scores F are estimated. The default is "FALSE".
- `mc.cores` If "parallel" package has been installed, "EstScore" adopts a multithread process for multiple initial random starts. If "mc.cores"=1, "parallel" package is not needed, and a single core process is conducted.

Value

- `F` An estimated component score matrix (N * D) containing scores for subjects.
- `n.ite` The number of iteration needed for convergence.
- `loss` The value of loss function used in ALS algorithm
Author(s)

Michio Yamamoto
<michio.koko@gmail.com>

References

Examples

##See the example of the function "cbird".
Index

cbird, 1
EstScore, 3