Package ‘cbq’

January 9, 2020

Title Conditional Binary Quantile Models
Version 0.1.0.0
Author Xiao Lu
Maintainer Xiao LU <xiao.lu.research@gmail.com>
License MIT + file LICENSE
Encoding UTF-8
LazyData true
Biarch true
Depends R (>= 3.4.0)
Imports methods, Formula, Rcpp (>= 0.12.0), rstan (>= 2.18.1)
LinkingTo BH (>= 1.66.0), Rcpp (>= 0.12.0), RcppEigen (>= 0.3.3.3.0), rstan (>= 2.18.1), StanHeaders (>= 2.18.0)
SystemRequirements GNU make
RoxygenNote 6.1.1
NeedsCompilation yes
Repository CRAN
Date/Publication 2020-01-09 11:20:02 UTC

R topics documented:
cbq-package .. 2
cbq .. 2
coeff.cbq ... 5
dald .. 5
inverse ... 6
is.dichotomous ... 6
pald .. 7
cbq-package

cbq: An R Package for Estimating Conditional Binary Quantile Models

Description

Bayesian estimation of conditional binary quantile models.

References

cbq

Fitting conditional binary quantile models

Description

The main function for running the conditional binary quantile model. The function returns a cbq cbq object that can be further investigated using standard functions such as plot, print, coef, and predict.

Usage

cbq(formula, data, q = NULL, vi = FALSE, nsim = 1000,
 grad_samples = 1, elbo_samples = 100, tol_rel_obj = 0.01,
 output_samples = 2000, burnin = NULL, thin = 1, CIsize = 0.95,
 nchain = 1, seeds = 12345, inverse_distr = FALSE, offset = 1e-20,
 mc_core = TRUE)
cbq

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>formula</td>
<td>An object of class "Formula" (or one that can be coerced to that class): a symbolic description of the model to be fitted.</td>
</tr>
<tr>
<td>data</td>
<td>A data frame containing the variables in the model.</td>
</tr>
<tr>
<td>q</td>
<td>The quantile value.</td>
</tr>
<tr>
<td>vi</td>
<td>Indicating whether variational inference should be used instead of MCMC sampling procedure.</td>
</tr>
<tr>
<td>nsim</td>
<td>The number of iterations.</td>
</tr>
<tr>
<td>grad_samples</td>
<td>Passed to vb (positive integer), the number of samples for Monte Carlo estimate of gradients, defaulting to 1.</td>
</tr>
<tr>
<td>elbo_samples</td>
<td>Passed to vb (positive integer), the number of samples for Monte Carlo estimate of ELBO (objective function), defaulting to 100. (ELBO stands for "the evidence lower bound".)</td>
</tr>
<tr>
<td>tol_rel_obj</td>
<td>Passed to vb (positive double), the convergence tolerance on the relative norm of the objective, defaulting to 0.01.</td>
</tr>
<tr>
<td>output_samples</td>
<td>Passed to vb (positive integer), number of posterior samples to draw and save, defaults to 1000.</td>
</tr>
<tr>
<td>burnin</td>
<td>The number of burnin iterations.</td>
</tr>
<tr>
<td>thin</td>
<td>Thinning parameter.</td>
</tr>
<tr>
<td>CIsize</td>
<td>The size of confidence interval.</td>
</tr>
<tr>
<td>nchain</td>
<td>The number of parallel chains.</td>
</tr>
<tr>
<td>seeds</td>
<td>Random seeds to replicate the results.</td>
</tr>
<tr>
<td>inverse_distr</td>
<td>If FALSE, the ALD will not be reversed. The default is FALSE.</td>
</tr>
<tr>
<td>offset</td>
<td>Offset values to enhance sampling stability. The default value is 1e-20.</td>
</tr>
<tr>
<td>mc_core</td>
<td>Indicating whether the estimation will be run in multiple parallel chains. The default is TRUE.</td>
</tr>
</tbody>
</table>

Details

The model can be passed either as a combination of a formula and a data frame data, as in lm().

Convergence diagnostics can be performed using either print(object,"mcmc") or plot(object,"mcmc").

Value

A cbq object, which can be further analyzed with its associated plot.cbq, coef.cbq and print.cbq functions.

An object of class cbq contains the following elements

Call The matched call.
formula Symbolic representation of the model.
q The quantile value.
nsim The number of MCMC iterations.
cbq

burnin The number of burnin periods.
thin Thinning.
seeds Random seeds.
CIsize The size of confidence interval.
data Data used.
x Covaraites used.
y The dependent variable.
xnames Names of the covariates.
stanfit Outputs from stan.
sampledf A matrix of posterior samples.
summaryout A summary based on posterior samples.
npars Number of covariates.
ulbs Lower and upper confidence bounds.
means Estimates at the mean.
vi Indicating whether variational inference has been performed.
output_samples Sample outputs.
fixed_var Variables estimated using fixed effects.
random_var Variables estimated using random effects.
xq Variables indicating the choice sets.

Author(s)
Xiao Lu

References

Examples

Simulate the data
x <- rnorm(50)
y <- ifelse(x > 0, 1, 0)
dat <- as.data.frame(cbind(y, x))

Estimate the CBQ model
model <- cbq(y ~ x, dat, 0.5)

Show the results
print(model)
coef(model)
plot(model)
coef.cbq

<table>
<thead>
<tr>
<th>Extract CBQ Coefficients</th>
</tr>
</thead>
</table>

Description

Create a table of coefficient results from a cbq object.

Usage

```r
## S3 method for class 'cbq'
coef(object, ...)
```

Arguments

- `object`: A cbq object.
- `...`: Further arguments passed to or from other methods.

Value

A table of coefficients with their corresponding lower and upper bounds.

dald

<table>
<thead>
<tr>
<th>Probability density function of asymmetric Laplace distributions</th>
</tr>
</thead>
</table>

Description

dald calculates probability densities of asymmetric Laplace distributions.

Usage

```r
dald(x, mu, p, sigma)
```

Arguments

- `x`: Random variable.
- `mu`: Position parameter.
- `p`: Quantile.
- `sigma`: Scale parameter.

Value

probability density of `x`.
inverse
Inverse function

Description

inverse generates inverse function of any given function.

Usage

inverse(f, mu, p, sigma, lower = -10000, upper = 10000)

Arguments

- f: pald function
- mu: Position parameter.
- p: Quantile.
- sigma: Scale parameter.
- lower: Lower bound.
- upper: Upper bound.

Value

inversed pald

is.dichotomous
Check if a predictor is dichotomous, adopted from package circGLM

Description

Check if a predictor is dichotomous, adopted from package circGLM

Usage

is.dichotomous(x)

Arguments

- x: A character or numerical vector to be tested.

Value

A logical, TRUE if the x has dummy coding (0, 1), FALSE otherwise.
pald

Cumulative density function of asymmetric Laplace distributions

Description

pald calculates cumulative densities of asymmetric Laplace distributions.

Usage

```r
pald(x, mu, p, sigma)
```

Arguments

- `x` Random variable.
- `mu` Position parameter.
- `p` Quantile.
- `sigma` Scale parameter.

Value

Cumulative probability density of `x`.

plot.cbq

Plot cbq object

Description

General plot function for cbq objects, which dispatches the chosen type of plotting to the corresponding function.

Usage

```r
## S3 method for class 'cbq'
plot(x, type = "trace", 
```

Arguments

- `x` A cbq object to be plotted.
- `type` Character string giving the type of plotting. The options are "trace" for trace plots, "coef" for coefficient plots. The default is the traceplot.
- `...` Additional arguments to be passed to subsequent plot functions.

Value

None.
plot_coef.cbq
Make coefficient plots for cbq

Description

Plot traceplots from a cbq object.

Usage

```r
plot_coef.cbq(object, ...)
```

Arguments

- `object` A cbq object.
- `...` Additional parameters to be passed to the plot function.

Value

None.

plot_trace.cbq
Make traceplots for cbq

Description

Plot traceplots from a cbq object.

Usage

```r
plot_trace.cbq(object, ...)
```

Arguments

- `object` A cbq object.
- `...` Additional parameters to be passed to the traceplot function.

Value

None.
predict.cbq
Predictions based on the fitted parameter values

Description
Create a vector of predictions from a cbq object.

Usage
```r
## S3 method for class 'cbq'
predict(object, data, ci = 0.95, ...)
```

Arguments
- `object`: A cbq object.
- `data`: Data used for prediction.
- `ci`: Confidence interval. The default is 0.95.
- `...`: Further arguments passed to or from other methods.

Value
A vector of predictions.

print.cbq
Print cbq object

Description
General print function for cbq objects, which dispatches the chosen type of printing to the corresponding function.

Usage
```r
## S3 method for class 'cbq'
print(x, type = "text", ...)  
```

Arguments
- `x`: A cbq object to be printed.
- `type`: Character string giving the type of printing, such as "text", "mcmc", "coef".
- `...`: Additional arguments to be passed to print functions.

Value
None.
print_coef.cbq
Print cbq coefficients

Description

Print cbq coefficients

Usage

```r
print_coef.cbq(object, digits = 3)
```

Arguments

- `object`: A cbq object.
- `digits`: Number of digits to display.

Value

None.

print_mcmc.cbq
Print the mcmc results from a cbq object

Description

This prints a number of diagnostics about the results of a cbq objects

Usage

```r
print_mcmc.cbq(object, ...)
```

Arguments

- `object`: A cbq object.
- `...`: Additional arguments to be passed to the print function.

Value

None.
print_text.cbq

Print the main results from a cbq object.

Description

Print the main results from a cbq object.

Usage

```
print_text.cbq(object, digits = 3)
```

Arguments

- `object`: A cbq object.
- `digits`: Number of digits to display.

qald

Quantile function of asymmetric Laplace distributions

Description

qald calculates quantiles values of asymmetric Laplace distributions.

Usage

```
qald(y, mu, p, sigma)
```

Arguments

- `y`: Quantile value.
- `mu`: Position parameter.
- `p`: Quantile.
- `sigma`: Scale parameter.

Value

quantile value.
rald

Random number generator of asymmetric Laplace distributions

Description

rald generates random numbers from asymmetric Laplace distributions.

Usage

```
rald(n, mu, p, sigma)
```

Arguments

- **n** : Number of random numbers to be generated.
- **mu** : Position parameter.
- **p** : Quantile.
- **sigma** : Scale parameter.

Value

random numbers.
Index

cbq, 2
cbq-package, 2
coeff.cbq, 3, 5
dald, 5

inverse, 6
is.dichotomous, 6

pald, 7
plot.cbq, 3, 7
plot_coef.cbq, 8
plot_trace.cbq, 8
predict.cbq, 9
print.cbq, 3, 9
print_coef.cbq, 10
print_mcmc.cbq, 10
print_text.cbq, 11

qald, 11
rald, 12

vb, 3