Package ‘ccda’

October 12, 2022

Type Package

Title Combined Cluster and Discriminant Analysis

Version 1.1.1

Author Solt Kovacs, Jozsef Kovacs, Peter Tanos

Maintainer Solt Kovacs <ccda@caesar.elte.hu>

Description Implements the combined cluster and discriminant analysis method for finding homogeneous groups of data with known origin as described in Kovacs et. al (2014): Classification into homogeneous groups using combined cluster and discriminant analysis (CCDA). Environmental Modelling & Software. <doi:10.1016/j.envsoft.2014.01.010>.

License GPL-2

Depends MASS

NeedsCompilation no

Repository CRAN

Date/Publication 2019-10-02 16:01:41 UTC

R topics documented:

ccda.main ... 1
percentage ... 3
plotccda.cluster ... 4
plotccda.q95 .. 4
plotccda.results .. 5

Index

ccda.main Combined Cluster and Discriminant Analysis

Description

Classification into homogeneous groups using combined cluster and discriminant analysis (CCDA).
Usage

```r
cnda.main(dataset, names_vector, nr, nameslist,
prior = "proportions", return.RCDP = FALSE)
```

Arguments

- `dataset`: Contains only the dataset as a matrix (without labels).
- `names_vector`: Contains labels (names of sample origins) for each individual observation.
- `nr`: Number of randomly coded datasets (RCD) investigated.
- `nameslist`: Contains the names of sample origins as a list.
- `prior`: A specified method that can be either "proportions" (in the case of different group sizes) or "equal" (in the case of equal group sizes). If unspecified, "proportions" is used as the default.
- `return.RCDP`: A logical value indicating whether the method should return the percentages for the randomly coded datasets as a matrix. Not returned, unless set to "TRUE".

Details

cnda.main determines the basic grouping (Step I). For this it uses hierarchical clustering with Ward's method for the averages of the measured variables. Step II, the core cycle then runs for every one of the obtained groupings. For a suggestion on the number of randomly coded datasets investigated (nr), see Appendix in Kovacs et al., 2014. It should be noted that nr has a linear influence on the amount of time needed for computing.

Step III, the evaluation of the results is left to the user based on the output of cnda.main. Based on these outputs, the function plot.cnda.result helps the decision regarding further division.

The subgroups component of the output contains the grouping with the highest corresponding difference value. The iterative further investigation of these subgroups is required in order to obtain homogeneous groups as a final result. One should stop when the highest difference value is reached when every sampling location belongs to the same group.

Value

- `nameslist`: Returns the input nameslist.
- `q95`: The 95% quantiles of the ratios of correctly classified cases by LDA for the randomly coded datasets.
- `ratio`: Ratios of correctly classified cases by LDA for each coded dataset.
- `difference`: Ratio-q95.
- `sub_groups`: Suggestion for subdivision according to the maximal difference value.
- `RCDP`: Percentages for the randomly coded datasets as a matrix.

References

Jozsef Kovacs, Solt Kovacs, Norbert Magyar, Peter Tanos, Istvan Gabor Hatvani, Angela Anda (2014): Classification into homogeneous groups using combined cluster and discriminant analysis (CCDA). Environmental Modelling & Software. DOI: http://dx.doi.org/10.1016/j.envsoft.2014.01.010
See Also

percentage, plotccda.results, plotccda.q95, plotccda.cluster

Examples

ccda.main(iris[,1:4], iris[,5], 500, c("setosa","versicolor","virginica"), "proportions",return.RCDP=FALSE)
plotccda.cluster

Plot of the basic grouping

Description

The function plotccda.cluster draws the dendrogram for the basic grouping using hierarchical clustering for the averages with Ward’s method (as used in ccda.main).

Usage

```r
plotccda.cluster(x)
```

Arguments

- `x`
 The output list of ccda.main.

See Also

ccda.main, plotccda.results, plotccda.q95

Examples

```r
result <- ccda.main(iris[,1:4], iris[,5], 500, c("setosa","versicolor", "virginica"), "proportions", return.RCDP=FALSE)
plotccda.cluster(result)
```

plotccda.q95

CCDA density drawer

Description

The function plotccda.q95 draws the simulated density for the randomly coded datasets.

Usage

```r
plotccda.q95(x, pl="max")
```

Arguments

- `x`
 The output list of ccda.main which has to include the RCDP output! (Set return.RCDP=TRUE while running ccda.main).

- `pl`
 "max" if the grouping with the highest difference value is considered or the number of the grouping for which the plot is made.
plotccda.results

See Also

ccda.main, plotccda.results, plotccda.cluster

Examples

result<-ccda.main(iris[,1:4], iris[,5], 500, c("setosa","versicolor", "virginica"), "proportions", return.RCDP=TRUE)
plotccda.q95(result)
plotccda.q95(result, pl=2)

plotccda.results
Plot of the results of ccda.main

Description

Plots the summarized results of CCDA for all possible groupings based on the output of ccda.main.

Usage

plotccda.results(x)

Arguments

x
The output list of ccda.main.

See Also

ccda.main, plotccda.cluster, plotccda.q95

Examples

result<-ccda.main(iris[,1:4], iris[,5], 500, c("setosa","versicolor", "virginica"), "proportions", return.RCDP=FALSE)
plotccda.results(result)
Index

ccda.main, 1, 3–5

percentage, 3, 3
plotccda.cluster, 3, 4, 5
plotccda.q95, 3, 4, 4, 5
plotccda.results, 3–5, 5