Package ‘ccpsyc’

October 12, 2022

Type Package
Title Methods for Cross-Cultural Psychology
Version 0.2.6
Description With the development of new cross-cultural methods this package is intended to combine multiple functions automating and simplifying functions providing a unified analysis approach for commonly employed methods.
License GPL-3
Depends R (>= 4.0.0)
Imports magrittr, dplyr, lavaan, readr, MCMCpack, psych, ufs, xlsx, tibble, rlang, RcppAlgos, tidyr
Suggests knitr, rmarkdown, testthat (>= 3.0.0)
Config/testthat/edition 3
Encoding UTF-8
LazyData true
RoxygenNote 7.1.1
NeedsCompilation no
Author Johannes Karl [aut, cre]
Maintainer Johannes Karl <johannes.a.karl@gmail.com>
Repository CRAN
Date/Publication 2022-05-11 05:50:06 UTC

R topics documented:

 boot_inv_eff .. 2
 clearing_fa .. 3
 dMACS .. 4
 equval .. 4
 example ... 5
 format_boot_inv_eff .. 6
 gamma_hat_scaled ... 7
boot_inv_eff

Description

Bootstrapped pairwise differences in psychometric function of groups.

Usage

```r
boot_inv_eff(
  n,
  n_sample,
  df,
  items,
  group,
  eff_sizes = c("SDI2", "UDI2", "WSDI", "WUDI", "dmacs"),
  seed = 2711
)
```

Arguments

- `n` Number of bootstraps
- `n_sample` Number of participants to sample
- `df` Data to resample
- `items` Items to resample for the model as vector of strings
- `group` String variable indicating grouping variable
- `eff_sizes` Effect sizes to be returned
- `seed` Seed for replicability

Value

Returns a dataframe with the bootstrapped effect sizes based on the invariance_eff function in this package for two country comparisons.
clearing_fa

Examples

two_country <- dplyr::filter(example, country %in% c("NZ", "BRA"))
boot_inv_eff(n = 10,
 n_sample = 200, df = two_country, group = "country",
 items = paste0("voice",1:3, "m"))

clearing_fa Function to quickly organize and clear psych factor loadings

Description

Function to quickly organize and clear psych factor loadings

Usage

 clearing_fa(
 psych_fa,
 cutoff = 0.4,
 dbl_dist = 0.2,
 key_file = NULL,
 cleaned = TRUE
)

Arguments

psych_fa Output from the psych package, can be either fa or principal with at least two dimensions

cutoff Desired cutoff below which loadings are omitted defaults to .40

dbl_dist Desired distance between highest and second highest loading for an item to remove double loadings, defaults to .20

key_file Optional: Either a .csv or .xlsx file with at least two columns: 1 labeled item containing the item labels as in the data frame, 2 a column labeled wording containing the item wording.

cleaned If true (default), only the cleaned solution with a message for descriptive stats are returned. If false the function returns a list of data frames one cleaned and one showing all in-between steps

Value

clean This column contains the assignment after removing NAs and double loadings
dir This column contains the direction (positive or negative) of the highest loading.
Examples

```r
library(psych)
fa_solution <- fa(example[c(paste0("help", 1:6, "m")), c(paste0("voice", 1:5, "m"))], nfacors = 2)
clearing_fa(fa_solution)
```

dMACS

Computes dMACS

Description

Computes dMACS

Usage

```r
dMACS(fit.cfa, group1, group2)
```

Arguments

- `fit.cfa` Lavaan output object with two groups and a single factor.
- `group1` String for first group in the grouping factor
- `group2` String for second group in the grouping factor

Value

Returns dMACS for each item.

Examples

```r
dMACS
```

equival

One-step equivalence testing The function allows for a simple one step test of configural, metric, and scalar equivalence between multiple groups.

Description

One-step equivalence testing The function allows for a simple one step test of configural, metric, and scalar equivalence between multiple groups.

Usage

```r
equival(x, dat, group, standart Lv = TRUE, orthog = TRUE, estim = "MLM")
```
Arguments

- x: CFA model identical to models provided to lavaan.
- dat: A data frame or tibble containing the raw data for the specified model.
- group: A character string that indicates the column of dat that contains the grouping variable. e.g. "country".
- standart_lv: A boolean that indicates whether the latent variables should be standardised.
- orthog: A boolean that indicates whether the latent variables should be orthogonal.
- estim: A string indicating the estimator to be used MLM for complete data and MLR for incomplete data. Defaults to MLM.

Value

Returns a data frame with the fit indices for each model and delta values comparing the different levels of equivalence. For a step by step interpretation see.

Examples

```r
model <- "voice =~ voice1m + voice2m + voice3m
        help =~ help1m + help2m + help3m"
 equivalents(x = model, dat = example, group = "country")
```

Description

Help and Voice Behavior in different countries

Usage

equival

Format

A data frame with 5201 rows and 13 variables:

- country: Country of sample
- help1m: First Help Item
- help2m: Second Help Item
- help3m: Third Help Item
- help4m: Fourth Help Item
- help5m: Fifth Help Item
help6m Sixth Help Item
help7m Seventh Help Item
voice1m First Voice Item
voice2m Second Voice Item
voice3m Third Voice Item
voice4m Fourth Voice Item
voice5m Fifth Voice Item
...

Source

format_boot_inv_eff Improving boot effectsize output

Description

Improving boot effectsize output

Usage

format_boot_inv_eff(x)

Arguments

x
The output of a bootstrapped invariance effect call

Value

A formatted tibble with all effect sizes reported by boot_inv_eff from this package and significant determined by 95% CIs either crossing 0 or .30

Examples

two_country <- dplyr::filter(example, country %in% c("NZ", "BRA"))
boot_inv_eff_result <- boot_inv_eff(n = 10,
 n_sample = 200, df = two_country, group = "country",
 items = paste0("voice",1:3, "m"))
format_boot_inv_eff(boot_inv_eff_result)
gamma_hat_scaled
Gamma Hat from MLM fitted lavaan object

Description
Gamma Hat from MLM fitted lavaan object

Usage

```r
gamma_hat_scaled(object)
```

Arguments

- `object`
 A lavaan output object that was fitted with a MLM estimator

invariance_eff
Invariance Effect Sizes

Description
Invariance Effect Sizes

Usage

```r
invariance_eff(
  df,
  items,
  group,
  nodewidth = 0.01,
  intercept_fix = 1,
  lowerLV = -10,
  upperLV = 10,
  ...
)
```

Arguments

- `df`
 Multi-group dataframe
- `items`
 vector of items for the target construct
- `group`
 string defining grouping variable
- `nodewidth`
 Steps tested
- `intercept_fix`
 Which item should have a fixed intercept defaults to the first item
- `lowerLV`
 Lower range of latent variable tested
- `upperLV`
 Upper range of latent variable tested
- `...`
 Passes on to lavaan CFA functions
Return a dataframe with a row for each item comprising the uni-factorial solution and one column for each invariance effect size. A detailed interpretation of each effect size is provided in Gunn et al. (2019).

Usage

```r
lavTestScore.clean(lavaan.fit, ndigit = 3, ...)
```

Arguments

- `lavaan.fit`: Model fitted with lavaan
- `ndigit`: Defines the rounding
- `...`: Arguments passed to lavTestScore

Value

Returns a dataframe which contains one row for each constrained parameter in the model together with a chi-square test indicating whether the parameter significantly differs between groups. This is a cleaned version identical to `lavTestScore`.

Author(s)

Maksim Rudnev

Return a multi-group reliability table. The function `mg_rel_table` takes a dataframe (`df_s`), a list of measures (`measure_list`), a grouping variable (`group`), and optional arguments for rounding (`digitn`, default 3) and a seed for reproducibility (`seed`, default 2711).

Usage

```r
mg_rel_table(df_s, measure_list, group, digitn = 3, seed = 2711)
```
Arguments

- **df_s**: The full dataframe with all groups and items.
- **measure_list**: A named list of vectors containing the item names. The format should be `list(measure_name1 = c('Item1', 'Item2', 'Item3'), measure_name2 = c('Item1', 'Item2', 'Item3'))`
- **group**: Grouping variable in the dataset as string for example "country"
- **digits**: Controls the amount of digits shown in the output
- **seed**: Seed for the bootstrapped confidence intervals

Value

Returns a formatted dataframe with the reliability of all constructs by group

MNCI

Non-Centrality Index

Description

Non-Centrality Index

Usage

```R
MNCI(object)
```

Arguments

- **object**: A lavaan object that was fitted with a MLM estimator

multi_group_eff

Pairwise Effect sizes of similarities and difference in the psychometric structure between multiple groups

Description

Pairwise Effect sizes of similarities and difference in the psychometric structure between multiple groups

Usage

```R
multi_group_eff(df, group, items, eff_sizes = c("SDI2", "UDI2", "WSDI", "WUDI", "dmacs")
)```
Arguments

df      Multi-Group data frame
group   String variable indicating the grouping variable
items   Vector of strings indicating items for the uni-factorial construct
eff_sizes Effect sizes to be returned

Value

The function returns a list of dataframes with the first reporting the averaged results per item and the second reporting the pairwise comparisons.

Examples

e_example_s <- dplyr::filter(example, country %in% c("NZ", "BRA"))
multi_group_eff(df = example, group = "country", items = paste0("voice", 1:3, "m"))

---

Creating a Pan-Cultural Loading Matrix

Description

Creating a Pan-Cultural Loading Matrix

Usage

pancultural(df, group, nfactors)

Arguments

df      A data frame contains the variables for the exploratory factor analysis and the grouping variable.
group   The name of the column that contains the grouping supplied as a string.
nfactors The number of factors expected.

Value

returns a Pan-Cultural loading matrix.

Examples

pancultural(example, "country", 5)
**prost**

Procrustes rotation function, returning Tucker’s Phi

**Usage**

prost(loading, norm, rotated = FALSE, digits = 2)

**Arguments**

- **loading**: A correlation matrix to be rotated towards a target
- **norm**: A correlation matrix that is the goal of the rotation
- **rotated**: A TRUE/FALSE operator indicating if the rotated matrix should be returned in addition to Tucker’s Phi
- **digits**: The number of digits to be displayed in the output, defaults to 2

**Value**

Returns Tucker’s Phi evaluating the congruence of the loading matrix to the normative matrix

**release_bonferroni**

Examining chisquare improvement if paths are unconstrained. The function returns the paths to be unconstrained based on chisquare change. Adjusted P-values are calculated based on iterative Bonferroni corrections.

**Usage**

release_bonferroni(lavaan.fit, ndigit = 3, exp_p = 0.05, ...)

**Arguments**

- **lavaan.fit**: Model fitted with lavaan
- **ndigit**: Number of digits to round chi and p to
- **exp_p**: Expected p-value
- **...**: Arguments passed to lavTestScore
Value
Returns a dataframe representing a Bonferroni corrected version of `lavTestScore.clean`.

Author(s)
Maksim Rudnev

Arguments
- `df`: Dataframe
- `group`: Variable from the dataset that defines the groups
- `named`: TRUE/FALSE argument wheter the resulting list should be named
- `name.list`: Supply a list of names same length as number of groups

Value
Returns a list of dataframes with only the selected groups
Index

* datasets
  example, 5

boot_inv_eff, 2

clearing_fa, 3

dMACS, 4

equival, 4

example, 5

format_boot_inv_eff, 6

gamma_hat_scaled, 7

invariance_eff, 7

lavTestScore, 8
lavTestScore.clean, 8, 12

mg_rel_table, 8

MNICI, 9

multi_group_eff, 9

pancultural, 10

prost, 11

release_bonferroni, 11

splitgroup, 12