Package ‘cdmTools’

March 30, 2022

Type Package
Title Useful Tools for Cognitive Diagnosis Modeling
Version 1.0.1
Date 2022-03-29
Description Provides useful tools for cognitive diagnosis modeling (CDM). The packages includes the discrete factor loading method for Q-matrix estimation (Wang, Song, & Ding, 2018, doi:10.1007/978-3-319-77249-3_29) and the Hull method for Q-matrix validation (Nájera, Sorrel, de la Torre, & Abad, 2021, doi:10.1111/bmsp.12228). It also provides dimensionality assessment procedures for determining the number of attributes underlying CDM data, including parallel analysis and automated CDM fit comparison as explored in Nájera, Abad, and Sorrel (2021, doi:10.3389/fpsyg.2021.614470). Lastly, the package provides some useful functions for CDM simulation studies, such as random Q-matrix generation and detection of complete/identified Q-matrices.
License GPL-3
Depends R (>= 3.6.0)
Imports GDINA (>= 2.8.0), NPCD (>= 1.0-11), ggplot2 (>= 3.3.0), psych (>= 1.9.12), sirt (>= 3.9-4), parallel (>= 3.6.3), stats (>= 3.6.3), GPArotation (>= 2014.11-1), combinat (>= 0.0-8)
Suggests CDM
URL https://github.com/pablo-najera/cdmTools
BugReports https://github.com/pablo-najera/cdmTools/issues
RoxygenNote 7.1.1
Encoding UTF-8
Author Pablo Nájera [aut, cre, cph],
Miguel A. Sorrel [aut, cph],
Francisco J. Abad [aut, cph]
Maintainer Pablo Nájera <pablo.najera@uam.es>
NeedsCompilation no
Repository CRAN
Date/Publication 2022-03-30 06:40:09 UTC
Description

Empirical Q-matrix estimation based on the discrete factor loading method (Wang, Song, & Ding, 2018) as used in Nájera, Abad, and Sorrel (2021). Apart from the conventional dichotomization criteria, the procedure based on loading differences described in Garcia-Garzon, Abad, and Garrido (2018) is also available. Furthermore, the bagging bootstrap implementation (Xu & Shang, 2018) can be applied; it is recommended when working with small sample sizes. The psych package (Revelle, 2020) is used for estimating the required exploratory factor analysis (EFA).

Usage

```r
estQ(
  r, 
  K, 
  n.obs = NULL, 
  criterion = "row", 
  boot = FALSE, 
  efa.args = list(cor = "tet", rotation = "oblimin", fm = "uls"), 
  boot.args = list(N = 0.8, R = 100, verbose = TRUE, seed = NULL)
)
```

Arguments

- `r` A correlation matrix or raw data (matrix or data.frame). If a correlation matrix is used, it must have dimensions J items $\times J$ items. Please note that tetrachoric or polychoric correlations should be used when working with dichotomous or polytomous items, respectively. If raw data is used, it must have dimensions N individuals $\times J$ items. Missing values need to be coded as NA.

- `K` Number of attributes to use.

- `n.obs` Number of individuals if `r` is a correlation matrix. If `n.obs` is provided, `r` will be treated as a correlation matrix. Use NULL if `r` is raw data. The default is NULL.
Dichotomization criterion to transform the factor loading matrix into the Q-matrix. The possible options include "row" (for row means), "col" (for column means), "loaddiff" (for the procedure based on loading differences), or a value between 0 and 1 (for a specific threshold). The default is "row".

Apply the bagging bootstrap implementation? Only available if r is raw data. If FALSE, the EFA will be applied once using the whole sample size. If TRUE, several EFAs will be applied with different subsamples; the estimated Q-matrix will be dichotomized from the bootstrapped Q-matrix, but the EFA fit indices, factor loadings, and communalities will be computed from the EFA with the whole sample size. The default is FALSE.

A list of arguments for the EFA estimation:

- **cor** Type of correlations to use. It includes "cor" (for Pearson correlations) and "tet" (for tetrachoric/polychoric correlations), among others. See fa function from the psych R package for additional details. The default is "tet".

- **rotation** Rotation procedure to use. It includes "oblimin", "varimax", and "promax", among others. An oblique rotation procedure is usually recommended. See fa function from the psych R package for additional details. The default is "oblimin".

- **fm** Factoring method to use. It includes "uls" (for unweighted least squares), "ml" (for maximum likelihood), and "wls" (for weighted least squares), among others. See fa function from the psych R package for additional details. The default is "uls".

A list of arguments for the bagging bootstrap implementation (ignored if boot = FALSE):

- **N** Sample size (or proportion of the total sample size, if lower than 1) to use in each bootstrap replication. The default is .8.

- **R** Number of bootstrap replications. The default is 100.

- **verbose** Show progress? The default is TRUE.

- **seed** A seed for obtaining consistent results. If NULL, no seed is used. The default is NULL.

estQ returns an object of class estQ.

- **est.Q** Estimated Q-matrix (matrix).
- **efa.loads** Factor loading matrix (matrix).
- **efa.comm** EFA communalities (vector).
- **efa.fit** EFA model fit indices (vector).
- **boot.Q** Bagging bootstrap Q-matrix before dichotomization. Only if boot = TRUE (matrix).
- **is.Qid** Is the generated Q-matrix identifiable under the DINA/DINO models or others CDMs? (vector).
- **specifications** Function call specifications (list).
Author(s)

Pablo Nájera, Universidad Autónoma de Madrid

References

Examples

library(GDINA)
dat <- sim30GDINA$simdat
Q <- sim30GDINA$simQ

#-------------------------------
Using default specifications
#-------------------------------
sugQ1 <- estQ(r = dat, K = 5) # Estimate Q-matrix
sugQ1$est.Q <- orderQ(sugQ1$est.Q, Q)$order.Q # Reorder Q-matrix attributes
mean(sugQ1$est.Q == Q) # Check similarity with the generating Q-matrix

#-------------------------------
Using the bagging bootstrap method
#-------------------------------
In boot.args argument, R >= 100 is recommended (R = 20 is here used for illustration purposes)
sugQ2 <- estQ(r = dat, K = 5, boot = TRUE, boot.args = list(R = 20, seed = 123)) # Estimate Q-matrix
sugQ2$est.Q <- orderQ(sugQ2$est.Q, Q)$order.Q # Reorder Q-matrix attributes
sugQ2$boot.Q # Proportion of replicas a q-entry was specified in the estimated Q-matrix
mean(sugQ2$est.Q == Q) # Check similarity with the generating Q-matrix

genQ Generate Q-matrix
Description

Generates a Q-matrix. The criteria from Chen, Liu, Xu, & Ying (2015) and Xu & Shang (2018) can be used to generate identifiable Q-matrices. Only binary Q-matrix are supported so far. Useful for simulation studies.

Usage

genQ(J, K, Kj, I = 2, min.JK = 3, max.Kcor = 1, Qid = "none", seed = NULL)

Arguments

J Number of items.
K Number of attributes.
Kj A vector specifying the number (or proportion, if summing up to 1) of items measuring 1, 2, 3, ..., attributes. The first element of the vector determines the number (or proportion) of items measuring 1 attribute, and so on. See Examples.
I Number of identity matrices to include in the Q-matrix (up to column permutation). The default is 2.
min.JK Minimum number of items measuring each attribute. It can be overwritten by I, if I is higher than min.JK. The default is 3.
max.Kcor Maximum allowed tetrachoric correlation among the columns to avoid overlapping (Nájera, Sorrel, de la Torre, & Abad, 2020). The default is 1.
Qid Assure that the generated Q-matrix is identifiable. It includes "none" (for no identifiability assurance), "DINA", "DINO", or "others" (for other CDMs identifiability). The default is "none".
seed A seed for obtaining consistent results. If NULL, no seed is used. The default is NULL.

Value

genQ returns an object of class genQ.

gen.Q The generated Q-matrix (matrix).
JK Number of items measuring each attribute (vector).
Kcor Tetrachoric correlations among the columns (matrix).
is.Qid Is the generated Q-matrix identifiable under the DINA/DINO models or others CDMs? (vector).
specifications Function call specifications (list).

Author(s)

Pablo Nájera, Universidad Autónoma de Madrid
References

Examples

Kj <- c(15, 10, 0, 5) # 15 one-atts, 10 2-atts, 0 3-atts, and 5 four-atts items
Q <- genQ(J = 30, K = 4, Kj = Kj, Qid = "others", seed = 123)

GNPC

General nonparametric classification method

Description

Attribute profile estimation using the general nonparametric classification method (GNPC; Chiu, Sun, & Bian, 2018). The GNPC can be considered as a robust alternative to the parametric G-DINA model with low sample sizes. The AlphaNP function from the NPCD package (Zheng & Chiu, 2019; Chiu, Sun, & Bian, 2018) using weighted Hamming distances is used to initiate the procedure.

Usage

```
GNPC(
  dat,
  Q,
  initiate = "AND",
  min.change = 0.001,
  maxitr = 1000,
  verbose = TRUE
)
```

Arguments

- `dat` A N individuals x J items (matrix or data.frame). Missing values need to be coded as NA. Caution is advised if missing data are present.
- `Q` A J items x K attributes Q-matrix (matrix or data.frame).
- `initiate` Should the conjunctive (“AND”) or disjunctive (“OR”) NPC be used to initiate the procedure? Default is “AND”.
- `min.change` Minimum proportion of modified attribute profiles to use as a stopping criterion. Default is .001.
- `maxitr` Maximum number of iterations. Default is 1000.
- `verbose` Print information after each iteration. Default is TRUE.

Value

GNPC returns an object of class GNPC.

- `alpha.est` Estimated attribute profiles (matrix).
- `loss.matrix` The distances between the weighted ideal responses from each latent class (rows) and examinees’ observed responses (columns) (matrix).
- `eta.w` The weighted ideal responses for each latent class (rows) on each item (columns) (matrix).
- `w` The estimated weights, used to compute the weighted ideal responses (matrix).
- `n.ite` Number of iterations required to achieve convergence (double).
- `hist.change` Proportion of modified attribute profiles in each iteration (vector).
- `specifications` Function call specifications (list).

Author(s)

Pablo Nájera, Universidad Autónoma de Madrid

References

Examples

```r
library(GDINA)
Q <- sim30GDINA$simQ # Q-matrix
K <- ncol(Q)
J <- nrow(Q)
set.seed(123)
GS <- data.frame(guessing = rep(0.1, J), slip = rep(0.1, J))
sim <- simGDINA(200, Q, GS)
simdat <- sim$dat # Simulated data
simatt <- sim$attribute # Generating attributes
fit.GNPC <- GNPC(simdat, Q) # Apply the GNPC method
ClassRate(fit.GNPC$alpha.est, simatt) # Check classification accuracy
```
is.Qid

Check whether a Q-matrix is identifiable

Description

Checks whether a Q-matrix is complete (Köhn & Chiu, 2017, 2018) and identifiable according to the criteria from Chen, Liu, Xu, & Ying (2015) and Xu & Shang (2018).

Usage

is.Qid(Q, model = "others", verbose = TRUE)

Arguments

Q A J items x K attributes Q-matrix (matrix or data.frame).
model CDM to be considered. It includes "DINA", "DINO", or "others" (for other CDMs; e.g., G-DINA, A-CDM). The default is "others".
verbose Should a message about the identifiability of the Q-matrix be printed? The default is TRUE.

Value

is.Qid returns an object of class is.Qid.

id.Q Is the Q-matrix identifiable? (logical).
comp.Q Is the Q-matrix complete? (logical).
criteria.Qid Identifiability criteria and whether they are fulfilled or not (vector).
message A message about the identifiability of the Q-matrix and references (string).
specifications Function call specifications (list).

Author(s)

Pablo Nájera, Universidad Autónoma de Madrid
Miguel A. Sorrel, Universidad Autónoma de Madrid

References

Examples

```r
Kj <- c(15, 10, 0, 5)
Q <- genQ(J = 30, K = 4, Kj = Kj, Qid = "others", seed = 123)$gen.Q
idQ <- is.Qid(Q)
```

Description

Introduces random misspecifications in a Q-matrix. Only binary Q-matrix are supported so far. Useful for simulation studies.

Usage

```r
missQ(Q, qjk, retainJ = 0, Qid = "none", seed = NULL)
```

Arguments

- `Q`: A J items x K attributes Q-matrix (matrix or data.frame).
- `qjk`: Number (or proportion, if lower than 1) of q-entries to modify in the Q-matrix.
- `retainJ`: Number of items to retain (i.e., not modify) in the Q-matrix. It will retain the first `retainJ` items. It is useful for assuring the completeness of the misspecified Q-matrix if the first items conform one or more identity matrices. The default is 0.
- `Qid`: Assure that the generated Q-matrix is identifiable. It includes "none" (for no identifiability assurance), "DINA", "DINO", or "others" (for other CDMs identifiability). The default is "none".
- `seed`: A seed for obtaining consistent results. If NULL, no seed is used. The default is NULL.

Value

`missQ` returns an object of class `missQ`.

- `Q`: The input (true) Q-matrix (matrix).
- `JK`: Number of items measuring each attribute (vector).
- `Kcor`: Tetrachoric correlations among the columns (matrix).
- `is.Qid`: Is the generated Q-matrix identifiable under the DINA/DINO models or others CDMs? (vector).
- `specifications`: Function call specifications (list).

Author(s)

Pablo Nájera, Universidad Autónoma de Madrid
References

Examples

```r
Kj <- c(15, 10, 0, 5) # 15 one-att, 10 2atts, 0 3-atts, and 5 four-atts items
Q <- genQ(J = 30, K = 4, Kj = Kj, Qid = "others", seed = 123)
miss.Q <- missQ(Q = Q$gen.Q, qjk = .20, retainJ = 4, seed = 123)
```

Description

A procedure for determining the number of attributes underlying CDM using model fit comparison. For each number of attributes under exploration, a Q-matrix is estimated from the data using the discrete factor loading method (Wang, Song, & Ding, 2018), which can be further validated using the Hull method (Nájera, Sorrel, de la Torre, & Abad, 2020). Then, a CDM is fitted to the data using the resulting Q-matrix, and several fit indices are computed. After the desired range of number of attributes has been explored, the fit indices are compared. A suggested number of attributes is given for each fit index. The AIC index should be preferred among the other fit indices. For further details, see Nájera, Abad, & Sorrel (2021). This function can be also used by directly providing different Q-matrices (instead of estimating them from the data) in order to compare their fit and select the most appropriate Q-matrix. Note that, if Q-matrices are provided, this function will no longer serve as a dimensionality assessment method, but just as an automated model comparison procedure.

Usage

```r
modelcompK(dat, exploreK = 1:7, Qs = NULL, stop = "none", val.Q = TRUE, estQ.args = list(criterion = "row", cor = "tet", rotation = "oblimin", fm = "uls"), valQ.args = list(index = "PVAF", iterative = "test.att", maxitr = 5, CDMconv = 0.01), verbose = TRUE)
```

Arguments

- `dat` A N individuals x J items (matrix or data.frame). Missing values need to be coded as NA.
- `exploreK` Number of attributes to explore. The default is from 1 to 7 attributes.
- `Qs` A list of Q-matrices to compare in terms of fit. If Qs is used, exploreK is ignored.
stop A fit index to use for stopping the procedure if a model leads to worse fit than
a simpler one. This can be useful for saving time without exploring the whole
exploreK when it is probable that the correct dimensionality has been already
visited. It includes "AIC", "BIC", "CAIC", "SABIC", "M2", "SRMSR", "RMSEA2",
or "sig.item.pairs". The latter represents the number of items that show bad
fit with at least another item based on the transformed correlations (see itemfit
function in the GDINA package; Ma & de la Torre, 2020). It can be also "none",
which means that the whole exploreK will be examined. The default is "none".

val.Q Validate the estimated Q-matrices using the Hull method? Note that validating
the Q-matrix is expected to increase its quality, but the computation time will
increase. The default is TRUE.

estQ.args A list of arguments for the discrete factor loading empirical Q-matrix estimation
method (see the estQ function):
criterion Dichotomization criterion to transform the factor loading matrix
into the Q-matrix. The possible options include "row" (for row means),
"col" (for column means), "loaddiff" (for the procedure based on loading
differences), or a value between 0 and 1 (for a specific threshold). The
default is "row".
cor Type of correlations to use. It includes "cor" (for Pearson correlations)
and "tet" (for tetrachoric/polychoric correlations), among others. See fa
function from the psych R package for additional details. The default is
"tet".
rotation Rotation procedure to use. It includes "oblimin", "varimax", and
"promax", among others. An oblique rotation procedure is usually recom-

.fm Factoring method to use. It includes "uls" (for unweighted least squares),
"ml" (for maximum likelihood), and "wls" (for weighted least squares),
among others. See fa function from the psych R package for additional
details. The default is "uls".

valQ.args A list of arguments for the Hull empirical Q-matrix validation method. Only
applicable if valQ = TRUE (see the valQ function):
index What index to use. It includes "PVAF" or "R2". The default is "PVAF".
iterative (Iterative) implementation procedure. It includes "none" (for non-
iterative), "test" (for test-level iterations), "test.att" (for test-level iterations modifying the least possible amount of q-entries in each iteration),
and "item" (for item-level iterations). The default is "test.att".
maxitr Maximum number of iterations if an iterative procedure has been se-
lected. The default is 5.
CDMconv Convergence criteria for the CDM estimations between iterations (only
if an iterative procedure has been selected). The default is 0.01.

verbose Show progress? The default is TRUE.

Value

modelcompK returns an object of class modelcompK.
sug.K The suggested number of attributes for each fit index (vector). Only if Qs = NULL.
sel.Q The suggested Q-matrix for each fit index (vector).
fit The fit indices for each fitted model (matrix).
exp.exploreK Explored dimensionality (vector). It can be different from exploreK if stop has been used.
usedQ Q-matrices used to fit each model (list). They will be the estimated (and validated) Q-matrices if Qs = NULL. Otherwise, they will be Qs.
specifications Function call specifications (list).

Author(s)
Pablo Nájera, Universidad Autónoma de Madrid
Miguel A. Sorrel, Universidad Autónoma de Madrid
Francisco J. Abad, Universidad Autónoma de Madrid

References

Examples

```r
library(GDINA)
dat <- sim30GDINA$simdat
Q <- sim30GDINA$simQ

#-------------------------------------
# Assess dimensionality from CDM data
#-------------------------------------
mcK <- modelcompK(dat = dat, exploreK = 4:7, stop = "AIC", val.Q = TRUE, verbose = TRUE)
mcK$sug.K # Check suggested number of attributes by each fit index
mcK$fit # Check fit indices for each K explored
sug.Q <- mcK$usedQ[[paste0("K", mcK$sug.K["AIC")]]] # Suggested Q-matrix by AIC
sug.Q <- orderQ(sug.Q, Q)$order.Q # Reorder Q-matrix attributes
mean(sug.Q == Q) # Check similarity with the generating Q-matrix

#--------------------------------------------------
# Automatic fit comparison of competing Q-matrices
#--------------------------------------------------
```
trueQ <- Q
missQ1 <- missQ(Q, .10, seed = 123)$miss.Q
missQ2 <- missQ(Q, .20, seed = 456)$miss.Q
missQ3 <- missQ(Q, .30, seed = 789)$miss.Q
Qs <- list(trueQ, missQ1, missQ2, missQ3)
mc <- modelcompK(dat = dat, Qs = Qs, verbose = TRUE)
mc$sel.Q # Best-fitting Q-matrix for each fit index
mc$fit # Check fit indices for each Q explored

`orderQ`
Reorder Q-matrix columns

Description

Reorders Q-matrix columns according to a target matrix (e.g., another Q-matrix). Specifically, it provides a reordered Q-matrix which columns show the lowest possible average Tucker index congruent coefficient with the target columns. Reordering a Q-matrix is alike relabeling the attributes and it does not change the model. Useful for simulation studies (e.g., comparing a validated Q-matrix with the generating Q-matrix).

Usage

`orderQ(Q, target)`

Arguments

- **Q**
 A J items x K attributes Q-matrix (matrix or data.frame). This is the Q-matrix that will be reordered.

- **target**
 A J items x K attributes Q-matrix (matrix or data.frame). This could be the "true", generating Q-matrix.

Value

`orderQ` returns an object of class `orderQ`.

- order.Q The reordered Q-matrix (matrix).

- configs Comparison information between the different column configurations of the Q-matrix and the target Q-matrix, including the average absolute difference and the average Tucker index of factor congruence (matrix). The function will not look for all possible specifications if a perfect match is found.

- specifications Function call specifications (list).

Author(s)

Francisco J. Abad, Universidad Autónoma de Madrid
Pablo Nájera, Universidad Autónoma de Madrid
Examples

```r
library(GDINA)
dat <- sim30GDINA$simdat
Q <- sim30GDINA$simQ
sugQ1 <- estQ(r = dat, K = 5) # Estimate Q-matrix
sugQ1$est.Q <- orderQ(sugQ1$est.Q, Q)$order.Q # Reorder Q-matrix attributes
mean(sugQ1$est.Q == Q) # Check similarity with the generating Q-matrix
```

paK Parallel analysis - dimensionality assessment method

Description

Parallel analysis with column permutation (i.e., resampling) as used in Nájera, Abad, & Sorrel (2021). It is recommended to use principal components, Pearson correlations, and mean criterion (Garrido, Abad, & Ponsoda, 2013; Nájera, Abad, & Sorrel, 2021). The parallel analysis based on principal axis factor analysis is conducted using the `fa.parallel` function of the `psych` R package (Revelle, 2020). The tetrachoric correlations are efficiently estimated using the `sirt` R package (Robitzsch, 2020). The graph is made with the `ggplot2` package (Wickham et al., 2020).

Usage

```r
paK(
  dat,
  R = 100,
  fa = "pc",
  cor = "both",
  cutoff = "mean",
  fm = "uls",
  plot = TRUE,
  verbose = TRUE,
  seed = NULL
)
```

Arguments

- `dat` A N individuals x J items (matrix or data.frame). Missing values need to be coded as NA.
- `R` Number of resampled datasets (i.e., replications) to generate. The default is 100.
- `fa` Extraction method to use. It includes "pc" (for principal components analysis), "fa" (for principal axis factor analysis), and "both". The default is "pc".
- `cor` What type of correlations to use. It includes "cor" (for Pearson correlations), "tet" (for tetrachoric/polychoric correlations), and "both". The default is "both".
- `cutoff` What criterion to use as the cutoff. It can be "mean" (for the average generated eigenvalues) or a value between 0 and 100 (for a percentile). A vector with several criteria can be used. The default is "mean".
Factoring method to use. It includes "uls" (for unweighted least squares), "ml" (for maximum likelihood), and "wls" (for weighted least squares), among others. The default is "uls".

Print the parallel analysis plot? Note that the plot might be messy if many variants are requested. The default is TRUE.

progress. The default is TRUE.

A seed for obtaining consistent results. If NULL, no seed is used. The default is NULL.

Value

paK returns an object of class paK.

The suggested number of attributes for each variant (vector).

The sample and reference eigenvalues (matrix).

The parallel analysis plot. Only if plot = TRUE (plot).

Function call specifications (list).

Author(s)

Pablo Nájera, Universidad Autónoma de Madrid
Miguel A. Sorrel, Universidad Autónoma de Madrid
Francisco J. Abad, Universidad Autónoma de Madrid

References

Examples

library(GDINA)
dat <- sim30GDINA$simdat
Q <- sim30GDINA$simQ
In paK, R = 100 is recommended (R = 30 is here used for illustration purposes)
pa.K <- paK(dat = dat, R = 30, fa = "pc", cutoff = c("mean", 95), plot = TRUE, seed = 123)
pa.K$sug.K # Check suggested number of attributes by each parallel analysis variant
pa.K$e.values # Check eigenvalues
pa.K$plot # Show parallel analysis plot
Empirical Q-matrix validation

Description

Empirical Q-matrix validation using the Hull method (Nájera, Sorrel, de la Torre, & Abad, 2020a). The procedure can be used either with the PVAF (de la Torre & Chiu, 2016) or McFadden’s pseudo R-squared (McFadden, 1974). The PVAF is recommended (Nájera, Sorrel, de la Torre, & Abad, 2020a). Note that the pseudo R-squared might not be computationally feasible for highly dimensional Q-matrices, say more than 10 attributes. Different iterative implementations are available, such as the test-level implementation (see Terzi & de la Torre, 2018), attribute-test-level implementation (Nájera, Sorrel, de la Torre, & Abad, 2020a), and item-level implementation (Nájera, Sorrel, de la Torre, & Abad, 2020b). If an iterative implementation is used, the GDINA R package (Ma & de la Torre, 2020) is used for the calibration of the CDMs.

Usage

valQ(fit, index = "PVAF", iterative = "test.att", emptyatt = TRUE, maxitr = 100, CDMconv = 1e-04, verbose = TRUE)

Arguments

- **fit**: A G-DINA model fit object from the GDINA package (Ma & de la Torre, 2020).
- **index**: What index to use. It includes "PVAF" or "R2". The default is "PVAF".
- **iterative** (Iterative) implementation procedure. It includes "none" (for non-iterative), "test" (for test-level iterations), "test.att" (for attribute-test-level), and "item" (for item-level iterations). The default is "test.att".
- **emptyatt**: Is it possible for the suggested Q-matrix to have an empty attribute (i.e., an attribute not measured by any item)? Although rarely, it is possible for iterative procedures to provide a suggested Q-matrix in which one or more attributes are empty. This might indicate that the original Q-matrix had more attributes than necessary. If FALSE, then at least one item (i.e., the one that is most likely) will measure each attribute in the suggested Q-matrix. The default is TRUE.
- **maxitr**: Maximum number of iterations if an iterative procedure has been selected. The default is 100.
- **CDMconv**: Convergence criteria for the CDM estimations between iterations (only if an iterative procedure has been selected). The default is 0.0001.
- **verbose**: Print information after each iteration if an iterative procedure is used. The default is TRUE.
Value

`valQ` returns an object of class `valQ`.

- `sug.Q` Suggested Q-matrix (matrix).
- `Q` Original Q-matrix (matrix).
- `sug.Q.fit` Several fit indices from the model obtained with the suggested Q-matrix (vector).
- `index` PVAF or pseudo R-squared (depending on which one was used) for each item (matrix).
- `iter.Q` Q-matrices used in each iteration (list). Provided only if an iterative procedure has been used.
- `iter.index` PVAF or pseudo R-squared (depending on which one was used) for each item in each iteration (list). Provided only if an iterative procedure has been used.
- `n.iter` Number of iterations used (double). Provided only if an iterative procedure has been used.
- `convergence` Convergence information (double). It can be 1 (convergence), 2 (lack of convergence: maximum number of iterations achieved), 3 (lack of convergence: empty attribute obtained), and 4 (lack of convergence: loop Q-matrices). Provided only if an iterative procedure has been used.
- `time` Initial and finish time (vector).
- `time.used` Total computation time (difftime).
- `specifications` Function call specifications (list).

Author(s)

Pablo Nájera, Universidad Autónoma de Madrid
Miguel A. Sorrel, Universidad Autónoma de Madrid
Francisco J. Abad, Universidad Autónoma de Madrid

References

Examples

```r
library(GDINA)
dat <- sim30GDINA$simdat
Q <- sim30GDINA$simQ # Generating Q-matrix
miss.Q <- missQ(Q = Q, qjk = .30, retainJ = 5, seed = 123)$miss.Q # Misspecified Q-matrix
fit <- GDINA(dat, miss.Q) # GDINA object
sug.Q <- valQ(fit = fit, verbose = TRUE) # Hull method for Q-matrix validation
mean(sug.Q$sug.Q == Q) # Check similarity with the generating Q-matrix
```
Index

estQ, 2

genQ, 4
GNPC, 6

is.Qid, 8

missQ, 9
modelcompK, 10

orderQ, 13

paK, 14

valQ, 16