Package ‘cdom’

August 29, 2016

Type Package
Title R Functions to Model CDOM Spectra
Version 0.1.0
Date 2016-02-22
Description Wrapper functions to model and extract various quantitative information from absorption spectra of chromophoric dissolved organic matter (CDOM).
BugReports https://github.com/PMassicot/cdom/issues
URL https://github.com/PMassicot/cdom
License GPL (>= 2)
Depends R (>= 3.0)
LazyData TRUE
Imports minpack.lm, ggplot2, tidyr, broom
RoxygenNote 5.0.1
Suggests eemR
NeedsCompilation no
Author Philippe Massicotte [aut, cre]
Maintainer Philippe Massicotte <pm@bios.au.dk>
Repository CRAN
Date/Publication 2016-03-04 08:39:29

R topics documented:

 cdom_fit_exponential .. 2
 cdom_slope_ratio .. 3
 cdom_spectral_curve ... 4
 spectra ... 5

Index 6
cdom_fit_exponential
Fit an exponential model to CDOM data.

Description
Fit an exponential model to CDOM data.

Usage

cdom_fit_exponential(wl, absorbance, wl0 = 350, startwl, endwl)

Arguments

- **wl**
The wavelength vector.
- **absorbance**
The absorbance vector.
- **wl0**
The reference wavelength (ex.: 350).
- **startwl**
The starting wavelength (ex.: 240).
- **endwl**
The ending wavelength (ex.: 600).

Details

\[y = a_0 + e^{(-S(x-\lambda_0))} + K \]

Value

A list containing:

- **params** A data frame with values of fitted parameters.
- **r2** R2 of the nls model.
- **data** A data frame with fitted (predicted) values of the model.

The function will return NULL if the model did not converged.

Examples

Fit an exponential model using the reference wavelength 350 between 190 and 900 nm.
data(spectra)
fit <- cdom_fit_exponential(spectra$wavelength, spectra$spc1, 350, 190, 900)
str(fit)
plot(spectra$wavelength, spectra$spc1)
lines(spectra$wavelength, fit$data$fitted, col = "red")
cdom_slope_ratio

Calculate the slope ratio (SR) from an absorption spectra.

Description

Calculate the slope ratio (SR) from an absorption spectra.

Usage

```r
cdom_slope_ratio(wl, absorbance)
```

Arguments

- `wl`: The wavelength vector.
- `absorbance`: The absorbance vector.

Details

Calculate the slope ratio (SR) as defined by Helms et al. (2008).

\[
SR = \frac{S_{275-295}}{S_{350-400}}
\]

Value

The value of the slope ratio.

References

Examples

```r
data("spectra")

cdom_slope_ratio(spectra$wavelength, spectra$spc1)
```
cdom_spectral_curve

Calculate the spectral curve of CDOM spectra.

Description

Calculate the spectral curve of CDOM spectra has proposed by Loiselle et al. 2009.

Usage

cdom_spectral_curve(wl, absorbance, interval = 21, r2threshold = 0.8)

Arguments

wl The wavelength vector.
absorbance The absorbance vector.
interval The interval used to calculate each slope (default = 21 nm).
r2threshold The r2 threshold that determines if a slope is "valide". The default value is 0.8 meaning that the determination coefficient of the regression between log-transformed data and wavelength should be >= 0.8.

Value

A dataframe containing the centered wavelength, the calculated slope and the determination coefficient of the linear regression used to calculate the slope.

References

http://doi.wiley.com/10.4319/lo.2009.54.2.0590

Examples

data(spectra)
res <- cdom_spectral_curve(spectra$wavelength, spectra$spc2)
plot(reswl, ress, type = "l")
spectra

CDOM absorption data.

Description
Simple absorption spectra used to test package’s functions.

Usage
data(spectra)

Format
A data frame with 711 rows and 26 variables

Details
• wavelength. Wavelengths used for measurements (190-900 nm.)
• Absorption

Examples
library(ggplot2)
library(tidyr)
data("spectra")

spectra <- gather(spectra, sample, absorption, -wavelength)

ggplot(spectra, aes(x = wavelength, y = absorption, group = sample)) +
 geom_line(size = 0.1)
Index

*Topic datasets
 spectra, 5

cdom_fit_exponential, 2
cdom_slope_ratio, 3
cdom_spectral_curve, 4

spectra, 5