Package ‘cforward’

October 12, 2022

Title Forward Selection using Concordance/C-Index
Version 0.1.0
Description Performs forward model selection, using the C-index/concordance
 in survival analysis models.
License GPL-3
Encoding UTF-8
LazyData true
RoxygenNote 7.1.1
Imports survival, dplyr, stats, magrittr, tibble
URL https://github.com/muschellij2/cforward
BugReports https://github.com/muschellij2/cforward/issues
Depends R (>= 2.10)
Suggests testthat
NeedsCompilation no
Author John Muschelli [aut, cre] (<https://orcid.org/0000-0001-6469-1750>),
 Andrew Leroux [aut]
Maintainer John Muschelli <muschellij2@gmail.com>
Repository CRAN
Date/Publication 2021-03-29 14:20:08 UTC

R topics documented:
cforward ... 2
estimate_concordance 4
nhanes_example 5

Index 6
Description

Forward Selection Based on C-Index/Concordance

Usage

```r
cforward(
  data,
  event_time = "event_time_years",
  event_status = "mortstat",
  weight_column = "WTMEC4YR_norm",
  variables = NULL,
  included_variables = NULL,
  n_folds = 10,
  seed = 1989,
  max_model_size = 50,
  c_threshold = NULL,
  verbose = TRUE,
  cfit_args = list(),
  save_memory = FALSE,
  ...
)

cforward_one(
  data,
  event_time = "event_time_years",
  event_status = "mortstat",
  weight_column = "WTMEC4YR_norm",
  variables,
  included_variables = NULL,
  verbose = TRUE,
  cfit_args = list(),
  save_memory = FALSE,
  ...
)

make_folds(data[, event_status = "mortstat", n_folds = 10, verbose = TRUE])
```

Arguments

- **data**
 A data set to perform model selection and cross-validation.

- **event_time**
 Character vector of length 1 with event times, passed to `Surv`

- **event_status**
 Character vector of length 1 with event status, passed to `Surv`
weight_column Character vector of length 1 with weights for model. If no weights are available, set to NULL.
variables Character vector of variables to perform selection. Must be in data.
included_variables Character vector of variables forced to have in the model. Must be in data.
n_folds Number of folds for Cross-validation. If you want to run on the full data, set to 1.
seed Seed set before folds are created.
max_model_size maximum number of variables in the model. Selection will stop if reached. Note, this does not correspond to the number of coefficients, due to categorical variables.
c_threshold threshold for concordance. If the difference in the best concordance and this one does not reach a certain threshold, break.
verbose print diagnostic messages

Value
A list of lists, with elements of:

full_concordance Concordance when fit on the full data
models Cox model from full data set fit, stripped of large memory elements
cv_concordance Cross-validated Concordance
included_variables Variables included in the model, other than those being selection upon

Examples
variables = c("gender",
 "age_years_interview", "education_adult")
res = cforward(nhanes_example,
 event_time = "event_time_years",
 event_status = "mortstat",
 weight_column = "WTMEC4YR_norm",
 variables = variables,
 included_variables = NULL,
 n_folds = 5,
 c_threshold = 0.02,
 seed = 1989,
 max_model_size = 50,
 verbose = TRUE)
conc = sapply(res, `[`, "best_concordance")
```r
res = cforward(nhanes_example,
    event_time = "event_time_years",
    event_status = "mortstat",
    weight_column = "WTMEC4YR_norm",
    variables = variables,
    included_variables = NULL,
    n_folds = 5,
    seed = 1989,
    max_model_size = 50,
    verbose = TRUE)
conc = sapply(res, 
  function(x) x[[1]], "best_concordance")
threshold = 0.01
included_variables = names(conc)[c(1, diff(conc)) > threshold]
new_variables = c("diabetes", "stroke")
second_level = cforward(nhanes_example,
    event_time = "event_time_years",
    event_status = "mortstat",
    weight_column = "WTMEC4YR_norm",
    variables = new_variables,
    included_variables = included_variables,
    n_folds = 5,
    seed = 1989,
    max_model_size = 50,
    verbose = TRUE)
second_conc = sapply(second_level, 
  function(x) x[[1]], "best_concordance")
result = second_level[[which.max(second_conc)]]
final_model = result$models[[which.max(result$cv_concordance)]]
```

estimate_concordance
Estimate Out-of-Sample Concordance

Description

Estimate Out-of-Sample Concordance

Usage

```r
estimate_concordance(
    train,
    test = train,
    event_time = "event_time_years",
    event_status = "mortstat",
    weight_column = "WTMEC4YR_norm",
    all_variables = NULL,
    cfit_args = list(),
    ...
)
```
Arguments

- **train**: A data set to perform model training.
- **test**: A data set to estimate concordance, from fit model with `train`. Set to `train` if estimating on the same data.
- **event_time**: Character vector of length 1 with event times, passed to `Surv`.
- **event_status**: Character vector of length 1 with event status, passed to `Surv`.
- **weight_column**: Character vector of length 1 with weights for model. If no weights are available, set to `NULL`.
- **all_variables**: Character vector of variables to put in the model. All must be in `data`.
- **cfit_args**: Arguments passed to `concordancefit`. If `strata` is to be passed, set `strata_column` in this list.
- **...**: Additional arguments to pass to `coxph`.

Value

A list of concordance and the model fit with the training data.

nhanes_example

Example Data from National Health and Nutrition Examination Survey ('NHANES')

Description

Example Data from National Health and Nutrition Examination Survey ('NHANES')

Usage

```
nhanes_example
```

Format

A data frame with 7 columns, which are:

- **SEQN**: ID of participant
- **mortstat**: Mortality status, 1-died, 0-censored
- **event_time_years**: Time observed
- **WTMEC4YR_norm**: Weights normalized for survey
- **gender**: Gender
- **age_years_interview**: Age in years at interview
- **education_adult**: Educational status
Index

* datasets
 nhanes_example, 5

cforward, 2

cforward_one (cforward), 2

concordancefit, 3, 5

coxph, 3, 5

estimate_concordance, 4

make_folds (cforward), 2

nhanes_example, 5

Surv, 2, 5