Package ‘cgAUC’

October 12, 2022

Type Package
Title Calculate AUC-type measure when gold standard is continuous and the corresponding optimal linear combination of variables with respect to it.
Version 1.2.1
Date 2014-08-24
Author Yuan-chin I. Chang, Yu-chia Chang, and Ling-wan Chen
Maintainer Yu-chia Chang <curare7177@gmail.com>
Description The cgAUC can calculate the AUC-type measure of Obuchowski(2006) when gold standard is continuous, and find the optimal linear combination of variables with respect to this measure.
License GPL (>= 2)
Imports Rcpp (>= 0.11.2)
LinkingTo Rcpp
NeedsCompilation yes
Repository CRAN
Date/Publication 2014-08-28 07:01:42

R topics documented:

cgAUC-package ... 2
cgAUC ... 3
c_cntin ... 6
c_dscrt ... 7
c_d_theta_sh_h_p .. 8
c_s_h ... 9
optimal.delta ... 10

Index 12
Calculate AUC when gold standard is continuous with large variables.

Description
In this package, the cgAUC is used to calculate the AUC-type measure raised in Obuchowski(2006) when gold standard is continuous.

Details

Package: cgAUC
Type: Package
Version: 1.2.1
Date: 2014-08-24
License: GPL (>=2)

Author(s)
Yuan-chin I. Chang, Yu-chia Chang, and Ling-wan Chen
Maintainer: Yu-chia Chang <curare7177@gmail.com>

References
Chang, YCI. Maximizing an ROC type measure via linear combination of markers when the gold reference is continuous. Statistics in Medicine 2012.

Examples

```r
# n = 100; p = 5;
# r.x = matrix(rnorm(n * p), , p) # raw data
# r.z = r.x[,1] + rnorm(n) # gold standard
# x = scale(r.x) # standardized of raw data
# z = scale(r.z) # standardized of gold standard
# h = n^(-1 / 2)
# t1 = cgAUC(r.x, r.z, h, delta = 1, auto = FALSE, tau = 1, scale = 1) # the delta be constant
# t1
```
t2 = cgAUC(r.x, r.z, h, delta = 1, auto = TRUE, tau = 1, scale = 1) # the delta be variable
t2

cgAUC

Calculate AUC when gold standard is continuous with large variables.

Description

The cgAUC can calculate the AUC-type measure of Obuchowski(2006) when gold standard is continuous, and find the optimal linear combination of variables with respect to this measure.

Usage

cgAUC(x, z, h, delta = 1, auto = FALSE, tau = 1, scale = 1)

Arguments

- **x**: The potential variables. It is a matrix with column of values of a variables. It should be standardized in this application.
- **z**: The gold standard variable. It should be standardized.
- **h**: The parameter controls the window width of smoothing function.
- **delta**: The parameter be used in TGDM. The default value is one.
- **auto**: Find the optimal delta in TGDN using cross-validation. If the auto is TRUE. The default is FALSE.
- **tau**: The parameter used in TGDM. The default value is one.
- **scale**: Scaling data when scale = 1, no scaling data when scale = 0. The default value is 1.

Details

In this package, we use the TGDM to find the optimal linear combination of variables in order to maximize the AUC-type measure. Before using this function, all of variables, including gold standard variable, should be standardized first. Below are parameters used in the algorithm:

Value

- **Rev**: When Rev = 0 means 1 * 1; otherwise, 1 * -1.
- **l**: The estimate of coefficients for the optimal linear combination of variables.
- **theta.sh.h.p**: The estimate of the theta of Chang(2012) for the optimal linear combination of variables.
- **theta.sh.h.p.var**: The estimate of variance for the theta of Chang(2012).
- **cntin.ri**: The estimate of the theta of Chang(2012) for each single variable.
- **theta.h.p**: The estimate of the theta of Obuchowski(2006) for the optimal linear combination of variables.
The estimate of variance for the theta of Obuchowski(2006).

The estimate of the theta of Obuchowski(2006) for each single variable.

The value of delta.

Author(s)

Yu-chia Chang

References

Chang, YCI. Maximizing an ROC type measure via linear combination of markers when the gold reference is continuous. Statistics in Medicine 2012.

Examples

```r
##---- Should be DIRECTLY executable !! ----
##-- ==> Define data, use random,
##--or do help(data=index) for the standard data sets.

# n = 100; p = 5;
# r.x = matrix(rnorm(n * p), n, p) # raw data
# r.z = r.x[,1] + rnorm(n) # gold standard
# x = scale(r.x) # standardized of raw data
# z = scale(r.z) # standardized of gold standard
# h = n^(-1 / 2)
# t1 = cgAUC(r.x, r.z, h, delta = 1, auto = FALSE, tau = 1, scale = 1) # the delta be constant
# t1
# t2 = cgAUC(r.x, r.z, h, delta = 1, auto = TRUE, tau = 1, scale = 1) # the delta be variable
# t2

## The function is currently defined as
function (x, z, h, delta = 1, auto = FALSE, tau = 1)
{
  x = scale(x)
  z = scale(z)
  conv = FALSE
  n = dim(x)[1]
  p = dim(x)[2]
  cntin.ri = dscrt.ri = rep(0, p)
  id = diag(p)
  for (i in 1:p) {
    dscrt.ri[i] = dscrt(x, z, id[i, ])$theta.h.p
    cntin.ri[i] = cntin(x, z, id[i, ], h)$theta.sh.h.p
  }
```

```
beta.i = ifelse(cntin.ri > 0.5, 1, -1)
dscrt.ri = ifelse(dscrt.ri > 0.5, dscrt.ri, (1 - dscrt.ri))
cntin.ri = ifelse(cntin.ri > 0.5, cntin.ri, (1 - cntin.ri))
y = x * matrix(beta.i, n, p, byrow = TRUE)
max.x = which(cntin.ri == max(cntin.ri))
theta.sh.h.p = 0
l = id[max.x, ]
while (conv == FALSE) {
  d.l = d.theta.sh.h.p(y, z, l, h)
  max.d.l = max(d.l)
  ind.d.l = ifelse(d.l >= (tau * max.d.l), 1, 0) * d.l
  if (auto == TRUE) {
    delta = optimal.delta(y, z, l, h, ind.d.l)
  }
  l = l + delta * ind.d.l
  l = l/max(l)
  theta.temp = cntin(y, z, l, h)$theta.sh.h.p
  ifelse(abs(theta.temp - theta.sh.h.p) < 1e-04, conv <- TRUE, conv <- FALSE)
  theta.sh.h.p = theta.temp
}

optimal.dscrt = dscrt(y, z, l)
theta.sh.h.p.var = cntin(y, z, l, h)$var
l = l * beta.i
return(list(l = l, theta.sh.h.p = theta.sh.h.p, theta.sh.h.p.var = theta.sh.h.p.var,
cntin.ri = dscrt.ri = rep(0, p)
  id = diag(p)
  for (i in 1:p) {
    dscrt.ri[i] = dscrt(x, z, id[i, ])$theta.h.p
    cntin.ri[i] = cntin(x, z, id[i, ], h)$theta.sh.h.p
  }
  beta.i = ifelse(cntin.ri > 0.5, 1, -1)
dscrt.ri = ifelse(dscrt.ri > 0.5, dscrt.ri, (1 - dscrt.ri))
cntin.ri = ifelse(cntin.ri > 0.5, cntin.ri, (1 - cntin.ri))
y = x * matrix(beta.i, n, p, byrow = TRUE)
max.x = which(cntin.ri == max(cntin.ri))
theta.sh.h.p = 0
l = id[max.x, ]
while (conv == FALSE) {
  d.l = d.theta.sh.h.p(y, z, l, h)
  max.d.l = max(d.l)
  ind.d.l = ifelse(d.l >= (tau * max.d.l), 1, 0) * d.l

if (auto == TRUE) {
  delta = optimal.delta(y, z, l, h, ind.d.l)
}
l = l + delta * ind.d.l
l = l / max(l)
theta.temp = cntin(y, z, l, h)$theta.sh.h.p
ifelse(abs(theta.temp - theta.sh.h.p) < 1e-04, conv <- TRUE,
  conv <- FALSE)
theta.sh.h.p = theta.temp
}

optimal.dscrt = dscrt(y, z, l)
theta.sh.h.p.var = cntin(y, z, l, h)$var
l = l * beta.l
return(list(l = l, theta.sh.h.p = theta.sh.h.p, theta.sh.h.p.var = theta.sh.h.p.var,
  cntin.ri = cntin.ri, theta.h.p = optimal.dscrt$theta.h.p,
  theta.h.p.var = optimal.dscrt$var, dscrt.ri = dscrt.ri,
  delta = delta))
}

---

**c_cntin**

**Description**

Continue function, when variable was continue.

**Usage**

c_cntin(y, z, l, h)

**Arguments**

- **y**
  - The potential variables. It is a matrix with column of values of a variables. It should be standardized in this application.

- **z**
  - The gold standard variable. It should be standardized.

- **l**
  - Linear combination. A vector.

- **h**
  - The value of h falls into (n^(-1/2), n^(-1/5)).

**Value**

- **theta.sh.h.p**
  - The estimate of the theta of Chang(2012).

- **var**
  - The variance of estimate of the theta of Chang(2012).

**Author(s)**

Yu-chia Chang
c_dscrt

References
Chang, YCI. Maximizing an ROC type measure via linear combination of markers when the gold reference is continuous. Statistics in Medicine 2012.

Examples
```r
##---- Should be DIRECTLY executable !! ----
##-- ==> Define data, use random,
##--or do help(data=index) for the standard data sets.

The function is currently defined as
function(y, z, l) {
 .Call('cgAUC_c_cntin', PACKAGE = 'cgAUC', y, z, l)
}
```

c_dscrt

description

discrete function, when variable is discrete.

Usage
c_dscrt(y, z, l)

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>y</td>
<td>The potential variables. It is a matrix with column of values of a variables. It should be standardized in this application.</td>
</tr>
<tr>
<td>z</td>
<td>The gold standard variable. It should be standardized.</td>
</tr>
<tr>
<td>l</td>
<td>Linear combination. A vector.</td>
</tr>
</tbody>
</table>

Details
Discrete function, when variable is discrete.

Value

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>theta.h.p</td>
<td>The estimate of theta when variable is discrete.</td>
</tr>
<tr>
<td>var</td>
<td>The variance of estimate of theta.</td>
</tr>
</tbody>
</table>
c_d_theta_sh_h_p

Author(s)

Yu-chia Chang

References

Chang, YCI. Maximizing an ROC type measure via linear combination of markers when the gold reference is continuous. Statistics in Medicine 2012.

Examples

```r
Should be DIRECTLY executable !! ----
##-- ==> Define data, use random,
##-- or do help(data=index) for the standard data sets.

The function is currently defined as
function(y, z, l) {
 .Call('cgAUC_c_dscrt', PACKAGE = 'cgAUC', y, z, l)
}
```

Description

Compute the \( c_d_theta_sh_h_p \).

Usage

\[ c_d_theta_sh_h_p(y, z, l, h) \]

Arguments

- **y**: The potential variables. It is a matrix with column of values of a variables. It should be standardized in this application.
- **z**: The gold standard variable. It should be standardized.
- **l**: Linear combination. A vector.
- **h**: The value of \( h \) falls into \((n^{(-1/2)}, n^{(-1/5)})\).

Details

Compute the \( c_d_theta_sh_h_p \) Come from differential.
Value

d.theta.sh.h.p Theta after differential.

Author(s)

Yu-chia Chang

References

Chang, YCI. Maximizing an ROC type measure via linear combination of markers when the gold reference is continuous. Statistics in Medicine 2012.

Examples

```r
The function is currently defined as
function(y, z, l, h) {
 Call("cgAUC_c_d_theta_sh_h_p", PACKAGE = "cgAUC", y, z, l, h)
}
```

Description

Smooth function.

Usage

c_s_h(t, h)

Arguments

- **t**: A value, the difference between any two subjects.
- **h**: The value of h falls into \(n^{-(1/2)}\), \(n^{-(1/5)}\).

Details

Smooth function.
Value

s_h  
The value of smooth function.

Author(s)

Yu-chia Chang

References

Chang, YCI. Maximizing an ROC type measure via linear combination of markers when the gold reference is continuous. Statistics in Medicine 2012.

Examples

```r
##---- Should be DIRECTLY executable !! ----
##-- ==> Define data, use random,
##--or do help(data=index) for the standard data sets.

The function is currently defined as
function(t, h) {
 .Call('cgAUC_c_s_h', PACKAGE = 'cgAUC', t, h)
}
```

Description

Find the optimal delta.

Usage

```r
optimal.delta(y, z, l, h, ind.d.l)
```

Arguments

- **y**  
The potential variables. It is a matrix with column of values of a variables. It should be standardized in this application.
- **z**  
The gold standard variable. It should be standardized.
- **l**  
Linear combination. A vector.
- **h**  
The value of h falls into \((n^{-1/2}, n^{-1/5})\).
- **ind.d.l**  
Void
optimal.delta

Value

delta.star Optimal delta.

Author(s)

Yu-chia Chang

References

Chang, YCI. Maximizing an ROC type measure via linear combination of markers when the gold reference is continuous. Statistics in Medicine 2012.

Examples

```r
##---- Should be DIRECTLY executable !! ----
##-- ==> Define data, use random,
##--or do help(data=index) for the standard data sets.
The function is currently defined as
function (y, z, l, h, ind.d.l)
{
 l.i = matrix(rep(l, times = 50), nrow = 50, byrow = TRUE)
 delta = seq(0, 5, length = 50)
 m = delta %*% t(ind.d.l)
 l.i = l.i + m
 l.i.max = apply(l.i, 1, max)
 l.i = l.i/l.i.max
 theta = rep(0, 50)
 for (i in 2:50) {
 theta[i] = cntin(y, z, l.i[i,], h)$theta.sh.h.p
 }
 delta.star = delta[which(theta == max(theta))]
 return(delta.star)
}
```
Index

* c_cntin
  c_cntin, 6
* c_d_theta_sh_h_p
  c_d_theta_sh_h_p, 8
* c_dscrt
  c_dscrt, 7
* c_s_h
  c_s_h, 9
* cgAUC
  cgAUC, 3
  cgAUC-package, 2
* optimal.delta
  optimal.delta, 10

c_cntin, 6
c_d_theta_sh_h_p, 8
c_dscrt, 7
c_s_h, 9
cgAUC, 3
cgAUC-package, 2
optimal.delta, 10