Package ‘cgAUC’

February 19, 2015

Type Package

Title Calculate AUC-type measure when gold standard is continuous and the corresponding optimal linear combination of variables with respect to it.

Version 1.2.1

Date 2014-08-24

Author Yuan-chin I. Chang, Yu-chia Chang, and Ling-wan Chen

Maintainer Yu-chia Chang <curare7177@gmail.com>

Description The cgAUC can calculate the AUC-type measure of Obuchowski(2006) when gold standard is continuous, and find the optimal linear combination of variables with respect to this measure.

License GPL (>= 2)

Imports Rcpp (>= 0.11.2)

LinkingTo Rcpp

NeedsCompilation yes

Repository CRAN

Date/Publication 2014-08-28 07:01:42

R topics documented:

 cgAUC-package .. 2
cgAUC ... 3
c_cntin ... 6
c_dscrt ... 7
c_d_theta_sh_h_p ... 8
c_s_h .. 9
optimal.delta ... 10

Index 12
Description

In this package, the cgAUC is used to calculate the AUC-type measure raised in Obuchowski (2006) when gold standard is continuous.

Details

<table>
<thead>
<tr>
<th>Package:</th>
<th>cgAUC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type:</td>
<td>Package</td>
</tr>
<tr>
<td>Version:</td>
<td>1.2.1</td>
</tr>
<tr>
<td>Date:</td>
<td>2014-08-24</td>
</tr>
<tr>
<td>License:</td>
<td>GPL (>=2)</td>
</tr>
</tbody>
</table>

Author(s)

Yuan-chin I. Chang, Yu-chia Chang, and Ling-wan Chen
Maintainer: Yu-chia Chang <curare7177@gmail.com>

References

Chang, YCI. Maximizing an ROC type measure via linear combination of markers when the gold reference is continuous. Statistics in Medicine 2012.

Examples

```r
# n = 100; p = 5;
# r.x = matrix(rnorm(n * p), , p) # raw data
# r.z = r.x[,1] + rnorm(n) # gold standard
# x = scale(r.x) # standardized of raw data
# z = scale(r.z) # standardized of gold standard
# h = n^(-1 / 2)
# t1 = cgAUC(r.x, r.z, h, delta = 1, auto = FALSE, tau = 1, scale = 1) # the delta be constant
# t1
```
cgAUC

Calculate AUC when gold standard is continuous with large variables.

Description

The cgAUC can calculate the AUC-type measure of Obuchowski(2006) when gold standard is continuous, and find the optimal linear combination of variables with respect to this measure.

Usage

cgAUC(x, z, h, delta = 1, auto = FALSE, tau = 1, scale = 1)

Arguments

x
 The potential variables. It is a matrix with column of values of a variables. It should be standardized in this application.

z
 The gold standard variable. It should be standardized.

h
 The parameter controls the window width of smoothing function.

delta
 The parameter be used in TGDM. The default value is one.

auto
 Find the optimal delta in TGDN using cross-validation. If the auto is TRUE. The default is FALSE.

tau
 The parameter used in TGDM. The default value is one.

scale
 Scaling data when scale = 1, no scaling data when scale = 0. The default value is 1.

Details

In this package, we use the TGDM to find the optimal linear combination of variables in order to maximize the AUC-type measure. Before using this function, all of variables, including gold standard variable, should be standardized first. Below are parameters used in the algorithm:

Value

Rev
 When Rev = 0 means 1 * 1; otherwise, 1 * -1.

l
 The estimate of coefficients for the optimal linear combination of variables.

theta.sh.h.p
 The estimate of the theta of Chang(2012) for the optimal linear combination of variables.

theta.sh.h.p.var
 The estimate of variance for the theta of Chang(2012).

cntin.ri
 The estimate of the theta of Chang(2012) for each single variable.

theta.h.p
 The estimate of the theta of Obuchowski(2006) for the optimal linear combination of variables.
The estimate of variance for the theta of Obuchowski(2006).

The estimate of the theta of Obuchowski(2006) for each single variable.

The value of delta.

Author(s)
Yu-chia Chang

References
Chang, YCI. Maximizing an ROC type measure via linear combination of markers when the gold reference is continuous. Statistics in Medicine 2012.

Examples
```r
# n = 100; p = 5;
# r.x = matrix(rnorm(n * p), , p) # raw data
# r.z = r.x[,1] + rnorm(n) # gold standard
# x = scale(r.x) # standardized of raw data
# z = scale(r.z) # standardized of gold standard
# h = n^(-1 / 2)
# t1 = cgAUC(r.x, r.z, h, delta = 1, auto = FALSE, tau = 1, scale = 1) # the delta be constant
# t1
# t2 = cgAUC(r.x, r.z, h, delta = 1, auto = TRUE, tau = 1, scale = 1) # the delta be variable
# t2
```

```r
def function (x, z, h, delta = 1, auto = FALSE, tau = 1) {
  x = scale(x)
z = scale(z)
conv = FALSE
n = dim(x)[1]
p = dim(x)[2]
cntin.ri = dscrt.ri = rep(0, p)
id = diag(p)
for (i in 1:p) {
dscrt.ri[i] = dscrt(x, z, id[i,1])*theta.h.p
cntin.ri[i] = cntin(x, z, id[i,1], h)*theta.sh.h.p
}
```
beta.i = ifelse(cntin.ri > 0.5, 1, -1)
dscrt.ri = ifelse(dscrt.ri > 0.5, dscrt.ri, (1 - dscrt.ri))
cntin.ri = ifelse(cntin.ri > 0.5, cntin.ri, (1 - cntin.ri))
y = x * matrix(beta.i, n, p, byrow = TRUE)
max.x = which(cntin.ri == max(cntin.ri))
theta.sh.h.p = 0
l = id[max.x,]
while (conv == FALSE) {
d.l = d.theta.sh.h.p(y, z, l, h)
max.d.l = max(d.l)
ind.d.l = ifelse(d.l >= (tau * max.d.l), 1, 0) * d.l
if (auto == TRUE) {
delta = optimal.delta(y, z, l, h, ind.d.l)
l = l + delta * ind.d.l
l = l/max(l)
theta.temp = cntin(y, z, l, h)$theta.sh.h.p
ifelse(abs(theta.temp - theta.sh.h.p) < 1e-04, conv <- TRUE, conv <- FALSE)
theta.sh.h.p = theta.temp
}
optimal.dscrt = dscrt(y, z, l)
theta.sh.h.p.var = cntin(y, z, l, h)$theta.sh.h.p
l = 1 * beta.i
return(list(l = l, theta.sh.h.p = theta.sh.h.p, theta.sh.h.p.var = theta.sh.h.p.var,
cntin.ri = cntin.ri, theta.h.p = optimal.dscrt$theta.h.p,
theta.h.p.var = optimal.dscrt$var, dscrt.ri = dscrt.ri, delta = delta))
}
The function is currently defined as
function (x, z, h, delta = 1, auto = FALSE, tau = 1)
{
 x = scale(x)
z = scale(z)
conv = FALSE
n = dim(x)[1]
p = dim(x)[2]
cntin.ri = dscrt.ri = rep(0, p)
id = diag(p)
for (i in 1:p) {
 dscrt.ri[i] = dscrt(x, z, id[i,], h)$theta.h.p
 cntin.ri[i] = cntin(x, z, id[i,], h)$theta.sh.h.p
}
beta.i = ifelse(cntin.ri > 0.5, 1, -1)
dscrt.ri = ifelse(dscrt.ri > 0.5, dscrt.ri, (1 - dscrt.ri))
cntin.ri = ifelse(cntin.ri > 0.5, cntin.ri, (1 - cntin.ri))
y = x * matrix(beta.i, n, p, byrow = TRUE)
max.x = which(cntin.ri == max(cntin.ri))
theta.sh.h.p = 0
l = id[max.x,]
while (conv == FALSE) {
d.l = d.theta.sh.h.p(y, z, l, h)
max.d.l = max(d.l)
ind.d.l = ifelse(d.l >= (tau * max.d.l), 1, 0) * d.l
if (auto == TRUE) {
 delta = optimal.delta(y, z, l, h, ind.d.l)
}

l = l + delta * ind.d.l
l = l/max(l)
theta.temp = cntin(y, z, l, h)$theta.sh.h.p
ifelse(abs(theta.temp - theta.sh.h.p) < 1e-04, conv <- TRUE,
 conv <- FALSE)
theta.sh.h.p = theta.temp
}

optimal.dscrt = dscrt(y, z, l)
theta.sh.h.p.var = cntin(y, z, l, h)$var
l = l * beta.l
return(list(l = l, theta.sh.h.p = theta.sh.h.p, theta.sh.h.p.var = theta.sh.h.p.var,
 cntin.ri = cntin.ri, theta.h.p = optimal.dscrt$theta.h.p,
 theta.h.p.var = optimal.dscrt$var, dscrt.ri = dscrt.ri,
 delta = delta))

Description

Continue function, when variable was continue.

Usage

```r
c_cntin(y, z, l, h)
```

Arguments

- **y**

The potential variables. It is a matrix with column of values of a variables. It should be standardized in this application.

- **z**

The gold standard variable. It should be standardized.

- **l**

Linear combination. A vector.

- **h**

The value of h falls into \((n^{-1/2}, n^{-1/5})\).

Value

- **theta.sh.h.p**

The estimate of the theta of Chang(2012).

- **var**

The variance of estimate of the theta of Chang(2012).

Author(s)

Yu-chia Chang
c_dscrt

References

Chang, YCI. Maximizing an ROC type measure via linear combination of markers when the gold reference is continuous. Statistics in Medicine 2012.

Examples

```r
##---- Should be DIRECTLY executable !! ----
##--  Define data, use random, 
##--or do help(data=index) for the standard data sets.

## The function is currently defined as
function(y, z, l, h) {
  .Call('cgAUC_c_cntin', PACKAGE = 'cgAUC', y, z, l, h)
}
```

c_dscrt

Description
discrete function, when variable is discrete.

Usage
c_dscrt(y, z, l)

Arguments

y The potential variables. It is a matrix with column of values of a variables. It should be standardized in this application.
z The gold standard variable. It should be standardized.
l Linear combination. A vector.

Details
Discrete function, when variable is discrete.

Value

theta.h.p The estimate of theta when variable is discrete.
var The variance of estimate of theta.
Author(s)

Yu-chia Chang

References

Chang, YCI. Maximizing an ROC type measure via linear combination of markers when the gold reference is continuous. Statistics in Medicine 2012.

Examples

```r
###---- Should be DIRECTLY executable !! ----
###-- Define data, use random,
###-- or do help(data=index) for the standard data sets.

### The function is currently defined as
function(y, z, l) {
    Call('cgAUC_c_dscrt', PACKAGE = 'cgAUC', y, z, l)
}
```

c_d_theta_sh_h_p
c_d_theta_sh_h_p

Description

Compute the c_d_theta_sh_h_p.

Usage

```r
c_d_theta_sh_h_p(y, z, l, h)
```

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>y</code></td>
<td>The potential variables. It is a matrix with column of values of a variables. It should be standardized in this application.</td>
</tr>
<tr>
<td><code>z</code></td>
<td>The gold standard variable. It should be standardized.</td>
</tr>
<tr>
<td><code>l</code></td>
<td>Linear combination. A vector.</td>
</tr>
<tr>
<td><code>h</code></td>
<td>The value of h falls into (n^{-1/2}) and (n^{-1/5}).</td>
</tr>
</tbody>
</table>

Details

Compute the c_d_theta_sh_h_p Come from differential.
Value

\(\text{d. theta.sh.h.p} \) Theta after differential.

Author(s)

Yu-chia Chang

References

Chang, YCI. Maximizing an ROC type measure via linear combination of markers when the gold reference is continuous. Statistics in Medicine 2012.

Examples

```r
### Should be DIRECTLY executable !! ----
### => Define data, use random,
###---or do help(data=index) for the standard data sets.

### The function is currently defined as
function(yL zL lL hI {
  .call('cgauc_c_d_theta_sh_h_p', PACKAGE = 'cgauc', y, z, l, h)
})
```

\text{c_s_h}

\text{c_s_h}

Description

Smooth function.

Usage

c_s_h(t, h)

Arguments

t A value, the difference between any two subjects.
h The value of h falls into \((n^{(-1/2)}, n^{(-1/5)})\).

Details

Smooth function.
optimal.delta

Value

s_h The value of smooth function.

Author(s)

Yu-chia Chang

References

Chang, YCI. Maximizing an ROC type measure via linear combination of markers when the gold reference is continuous. Statistics in Medicine 2012.

Examples

```r
## Should be DIRECTLY executable !! ----
## Define data, use random,
## or do help(data=index) for the standard data sets.

## The function is currently defined as
function(t, h) {
  .Call('cgAUC_c_s_h', PACKAGE = 'cgAUC', t, h)
}
```

optimal.delta

Description

Find the optimal delta.

Usage

`optimal.delta(y, z, l, h, ind.d.1)`

Arguments

- `y` The potential variables. It is a matrix with column of values of a variables. It should be standardized in this application.
- `z` The gold standard variable. It should be standardized.
- `l` Linear combination. A vector.
- `h` The value of h falls into (n^(-1/2), n^(-1/5)).
- `ind.d.1` Void
Value

delta.star Optimal delta.

Author(s)

Yu-chia Chang

References

Chang, YCI. Maximizing an ROC type measure via linear combination of markers when the gold reference is continuous. Statistics in Medicine 2012.

Examples

```r
##---- Should be DIRECTLY executable !! ----
##-- ==> Define data, use random,
##-- or do help(data=index) for the standard data sets.

## The function is currently defined as
function (y, z, l, h, ind.d.l) {
  l.i = matrix(rep(l, times = 50), nrow = 50, byrow = TRUE)
  delta = seq(0, 5, length = 50)
  m = delta %% t(ind.d.l)
  l.i = l.i + m
  l.i.max = apply(l.i, 1, max)
  l.i = l.i/l.i.max
  theta = rep(0, 50)
  for (i in 2:50) {
    theta[i] = cntin(y, z, l.i[i], h)$theta.sh.h.p
  }
  delta.star = delta[which(theta == max(theta))]
  return(delta.star)
}
```
Index

*Topic c_cntin
 c_cntin, 6
*Topic c_d_theta_sh_h_p
 c_d_theta_sh_h_p, 8
*Topic c_dscrt
 c_dscrt, 7
*Topic c_s_h
 c_s_h, 9
*Topic cgAUC
 cgAUC, 3
 cgAUC-package, 2
*Topic optimal.delta
 optimal.delta, 10

c_cntin, 6
c_d_theta_sh_h_p, 8
c_dscrt, 7
c_s_h, 9
cgAUC, 3
cgAUC-package, 2

optimal.delta, 10