1 Introduction

The Cheddar R package provides a flexible, extendable representation of an ecological community and a range of functions for analysis and visualisation, focusing on food web, body mass and numerical abundance data. It also allows inter-web comparisons such as examining changes in community structure over environmental, temporal or spatial gradients. This vignette is a brief introduction to some different areas of Cheddar. Each area is discussed in detail in its own vignette, listed in Section 5.

2 Community basics

The examples below use the pelagic epilimnion community of Tuesday Lake, Michigan, USA sampled in 1984 (Carpenter and Kitchell, 1996; Cohen et al., 2003; Jonsson et al., 2005), available in Cheddar as the TL84 dataset.

> data(TL84) # Load the dataset
> print(TL84) # A description of the data

Tuesday Lake sampled in 1984 containing 56 nodes and 269 trophic links

> NumberOfNodes(TL84)
[1] 56

> NumberOfTrophicLinks(TL84)
[1] 269
NPS assembles node properties in to an \texttt{R data.frame}. Let’s look at the first 10 rows of such a table.

```r
> head(NPS(TL84, c('category',
                    'Log10MNBiomass',
                    'TS='TrophicSpecies',
                    'TL='PreyAveragedTrophicLevel')), 10)

          category Log10M  Log10N Log10Biomass TS TL
Nostoc sp.  producer  -12.098542 6.301030  -5.797512 1 1
Arthrodesmus sp. producer  -11.818156 7.690196  -4.127960 2 1
Asterionella formosa producer  -11.950782 6.698970  -5.251802 3 1
Cryptomonas sp. 1 producer  -12.692504 7.806180  -4.886324 4 1
Cryptomonas sp. 2 producer  -11.821023 7.477121  -4.373865 5 1
Chroococcus dispersus producer  -12.621602 7.301030  -5.320572 4 1
Clostieriopsis longissimus producer  -12.625252 8.000000  -4.625252 6 1
Chrysosphaerella longispina producer  -9.080399 6.602060  -2.478339 3 1
Dinobryon bavaricum producer  -11.612610 7.477121  -4.135489 7 1
Dinobryon cylindricum producer  -11.804100 6.477121  -5.326979 1 1
```

3 Community plots

NPS has a corresponding plot function \texttt{PlotNPS}, which plots one node property against another. \texttt{PlotNPS} takes the names of node properties to plot on the x and y axes. Just as with NPS, node properties can be either ‘first-class’ or computed. The example below plots log\(_{10}\)-transformed numerical abundance against log\(_{10}\)-transformed body mass.

```r
> PlotNPS(TL84, 'Log10M', 'Log10N')
```

![PlotNPS(TL84, 'Log10M', 'Log10N')](image)

Producers are shown by green circles, invertebrates by blue squares and vertebrate ectotherms by purple diamonds, cannibals shown by lighter-coloured circles and trophic links shown by grey lines. The
NvMLinearRegressions and PlotLinearModels functions can be used to add regression lines through each of the three categories.

```r
> PlotNvM(TL84)
> models <- NvMLinearRegressions(TL84)
> colours <- PlotLinearModels(models)
> legend("topright", sapply(models, FormatLM), lty=1, col=colours)
```

The following example shows trophic level against log_{10}-transformed body mass.

```r
> PlotNPS(TL84, 'Log10M', 'PreyAveragedTrophicLevel')
```
Similarly, `PlotTLPS` plots one trophic-link property against another. Names prefixed with either ‘resource.’ or ‘consumer.’ are taken to be node properties. The following example therefore plots the log$_{10}$-transformed body mass of the consumer against that of the resource for every trophic link in the community.

```r
> PlotTLPS(TL84, 'resource.Log10M', 'consumer.Log10M')
```

![PlotTLPS Example](image)

Colours in this plot are the same as in the `PlotNPS` examples and denote the resource’s category. The example below shows the food web as a predation matrix: a binary matrix with species shown in node order, starting at the top-left. Points on the dashed line indicate cannibals.

```r
> PlotPredationMatrix(TL84)
```

![Predation Matrix Example](image)
4 Collections of communities

Cheddar’s pHWebs dataset contains ten of the 20 webs sampled across a wide pH gradient by Laye r et al. (2010). This example assembles a table of properties for this collection.

```r
> data(pHWebs)
> CollectionCPS(pHWebs,
  c('lat',
    'long',
    'pH',
    S='NumberOfNodes',
    L='NumberOfTrophicLinks',
    'L/S'= 'LinkageDensity',
    C='DirectedConnectance',
    Slope='NvMSlope',
    B='FractionBasalNodes',
    I='FractionIntermediateNodes',
    T='FractionTopLevelNodes'))
```

<table>
<thead>
<tr>
<th></th>
<th>lat</th>
<th>long</th>
<th>pH</th>
<th>S</th>
<th>L</th>
<th>L/S</th>
<th>C</th>
<th>Slope</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>Old Lodge</td>
<td>51.04</td>
<td>0.080</td>
<td>5.0</td>
<td>23</td>
<td>137</td>
<td>0.2589792</td>
<td>-0.65616</td>
<td>0.5217391</td>
<td></td>
</tr>
<tr>
<td>Afon Hafren</td>
<td>52.47</td>
<td>-3.700</td>
<td>5.3</td>
<td>25</td>
<td>135</td>
<td>0.2160000</td>
<td>-0.7078312</td>
<td>0.4000000</td>
<td></td>
</tr>
<tr>
<td>Broadstone</td>
<td>51.08</td>
<td>0.053</td>
<td>5.5</td>
<td>25</td>
<td>178</td>
<td>0.2848000</td>
<td>-0.5853852</td>
<td>0.3200000</td>
<td></td>
</tr>
<tr>
<td>Dargall Lane</td>
<td>55.08</td>
<td>-4.430</td>
<td>5.8</td>
<td>21</td>
<td>99</td>
<td>0.714286</td>
<td>0.2244898</td>
<td>-0.7379515</td>
<td></td>
</tr>
<tr>
<td>Mosedal Beck</td>
<td>54.41</td>
<td>-3.140</td>
<td>5.9</td>
<td>21</td>
<td>108</td>
<td>0.2448980</td>
<td>-0.7026522</td>
<td>0.4761905</td>
<td></td>
</tr>
<tr>
<td>Duddon Pike Beck</td>
<td>54.41</td>
<td>-3.170</td>
<td>6.1</td>
<td>35</td>
<td>286</td>
<td>0.8171429</td>
<td>0.2334694</td>
<td>-0.5673022</td>
<td></td>
</tr>
<tr>
<td>Allt a'Mharcaidh</td>
<td>57.12</td>
<td>-3.850</td>
<td>6.5</td>
<td>40</td>
<td>334</td>
<td>0.8350000</td>
<td>0.2087500</td>
<td>-0.7655290</td>
<td></td>
</tr>
<tr>
<td>Hardknott Gill</td>
<td>54.40</td>
<td>-3.170</td>
<td>7.0</td>
<td>44</td>
<td>386</td>
<td>0.7727277</td>
<td>0.1993802</td>
<td>-0.7548597</td>
<td></td>
</tr>
<tr>
<td>Bere Stream</td>
<td>50.73</td>
<td>-2.210</td>
<td>7.5</td>
<td>66</td>
<td>943</td>
<td>1.287879</td>
<td>0.2164830</td>
<td>-0.6501359</td>
<td></td>
</tr>
<tr>
<td>Mill Stream</td>
<td>50.68</td>
<td>-2.180</td>
<td>8.4</td>
<td>87</td>
<td>1654</td>
<td>1.011494</td>
<td>0.2185229</td>
<td>-0.912528</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>I</th>
<th>T</th>
</tr>
</thead>
<tbody>
<tr>
<td>Old Lodge</td>
<td>0.3913043</td>
<td>0.08695652</td>
</tr>
<tr>
<td>Afon Hafren</td>
<td>0.4800000</td>
<td>0.12000000</td>
</tr>
<tr>
<td>Broadstone</td>
<td>0.6000000</td>
<td>0.08000000</td>
</tr>
<tr>
<td>Dargall Lane</td>
<td>0.5238095</td>
<td>0.04761905</td>
</tr>
<tr>
<td>Mosedal Beck</td>
<td>0.4285714</td>
<td>0.09523810</td>
</tr>
<tr>
<td>Duddon Pike Beck</td>
<td>0.4857143</td>
<td>0.14285714</td>
</tr>
<tr>
<td>Allt a'Mharcaidh</td>
<td>0.5250000</td>
<td>0.12500000</td>
</tr>
<tr>
<td>Hardknott Gill</td>
<td>0.6136364</td>
<td>0.04545455</td>
</tr>
<tr>
<td>Bere Stream</td>
<td>0.4393939</td>
<td>0.15151515</td>
</tr>
<tr>
<td>Mill Stream</td>
<td>0.5172414</td>
<td>0.10344828</td>
</tr>
</tbody>
</table>

5 Further reading

You should read the ‘Community’ vignette. Plotting and analysis of communities is covered in the ‘PlotsAndStats’ vignette. The ‘ImportExport’ vignette shows how to get your community data in to and out of Cheddar. If you have data from several communities and are interested in seeing how community structure changes among them, read the ‘Collections’ vignette.
References

