Package ‘chngpt’

February 27, 2020

LazyLoad yes
LazyData yes
Version 2020.2-26
Title Estimation and Hypothesis Testing for Threshold Regression
Maintainer Youyi Fong <youyifong@gmail.com>
Depends R (>= 3.5.0)
Suggests R.rsp, RUnit, mvtnorm
Imports survival, splines, kyotil, boot, MASS, methods
VignetteBuilder R.rsp

Description Threshold regression models are also called two-phase regression, broken-stick regression, split-point regression, structural change models, and regression kink models, with and without interaction terms. Methods for both continuous and discontinuous threshold models are included, but the support for the former is much greater. This package is described in Fong, Huang, Gilbert and Permar (2017) chngpt: threshold regression model estimation and inference, BMC Bioinformatics, in press, <DOI:10.1186/s12859-017-1863-x>.

License GPL (>= 2)

NeedsCompilation yes

Author Youyi Fong [cre],
 Adam Elder [aut],
 Hyunju Son [aut],
 Zonglin He [aut],
 Tao Yang [aut]

Repository CRAN
Date/Publication 2020-02-27 18:00:02 UTC

R topics documented:

 chngpt ... 2
 chngpt.test .. 2
 chngptm ... 5
 coef.0.ls ... 10
chngpt Package

Description

Please see the Index link below for a list of available functions. The main testing function is `chngpt.test()`. The main estimation function is `chngptm()`.

chngpt.test

Change Point Tests

Description

Hypothesis testing for change point covariate in logistic regression and linear regression.

Usage

```
chngpt.test(formula.null, formula.chngpt, family=c("binomial","gaussian"), data,
    type=c("step","hinge","segmented","stegmented"),
    test.statistic=c("lr","score"), # support for score is gradually descreasing
    chngpts=50, lb.quantile=.1, ub.quantile=.9,
    prec.weights=NULL,
    p.val.method=c("MC","param.boot"),
    mc.n=1e4, # 1e3 won't cut it, the p values estimated could be smaller than nominal
    boot.B=1e4,
    robust=FALSE,
    keep.fits=FALSE, verbose=FALSE
)```

### S3 method for class 'chnpt.test'

```r
plot(x, by.percentile=TRUE, both=FALSE, main=NULL, ...)
```

#### Arguments

- **formula.null**: formula for the null model.
- **formula.chngpt**: formula for the change point model. For example, suppose formula.null=y~z and we want to test whether I(x>cutoff) is a significant predictor, formula.chngpt=~x. If instead we are interested in testing the null that neither I(x>cutoff) nor z*I(x>cutoff) is a significant predictor, formula.chngpt=~x*z.
- **data**: data frame.
- **family**: Currently only linear and logistic regression are supported.
- **type**: step: flat before and after change point; hinge: flat before and slope after change point; segmented: slope before and after change point.
- **test.statistic**: method for testing main effects of some threshold model.
- **chngpts**: A grid of potential change points to maximize over. If not supplied, they will be set to a vector of length chngpt.cnt equally spaced between lb.quantile and ub.quantile.
- **robust**: Boolean.
- **lb.quantile**: number. The lower bound in the search for change point in the unit of quantile.
- **ub.quantile**: number. The upper bound in the search for change point in the unit of quantile.
- **chngpts.cnt**: integer. Number of potential change points to maximize over.
- **mc.n**: integer. Number of multivariate normal samples to generate in the Monte Carlo procedure to evaluate p-value.
- **verbose**: Boolean.
- **chngpt.var**: string. Name of the predictor to detect change point.
- **plot**: Boolean. Whether to make a plot.
- **formula**: formula.
- **x**: An object of type chngpt.test.
- **...**: arguments passed to or from methods.
- **by.percentile**, **both**, **main**, **prec.weights**, **p.val.method**, **boot.B**, **keep.fits**
Details

The model under the alternative is the model under the null plus terms involving the threshold. For example, when the type is segmented and formula.null=~z, formula.chngpt=~x, the model under the null is ~z+x and the model under the alternative is ~z+x+(x-e)_+.

If there are missing values in the chngpt formula, those rows will be removed from the whole dataset, including null model and chngpt model.

antoch.test is only implemented for main effect only and is based on Antoch et al. (2004). Also see Fong et al. (2014).

Value

A list of class htest and chngpt.test

p.value P-value
family Family from input
method Method from input

References


Examples

dat=sim.chngpt("thresholded", "step", n=200, seed=1, beta=1, alpha=-1, x.distr="norm", e.=4, family="binomial")
test=chngpt.test(formula.null=y~z, formula.chngpt=~x, dat, type="step", family="binomial", mc.n=10)
test
plot(test)

dat=sim.chngpt("thresholded", "segmented", n=200, seed=1, beta=1, alpha=-1, x.distr="norm", e.=4, family="binomial")
test=chngpt.test(formula.null=y~z, formula.chngpt=~x, dat, type="segmented", family="binomial", mc.n=10)
test
plot(test)

test = chngpt.test (formula.null=Volume~1, formula.chngpt=~Girth, family="gaussian", data=trees, type="segmented", mc.n=1e4, verbose=FALSE, chngpts.cnt=100, test.statistic="lr")
test
plot(test)
## Not run:
# not run because otherwise the examples take >5s and that is a problem for R CMD check
# has interaction
test = chngpt.test(formula.null=y~z, formula.chngpt=~x*z, dat, type="step", family="binomial")
test
plot(test)

## End(Not run)

chngptm

Estimate change point logistic model

### Description

Estimate change point logistic model

### Usage


chngptm.xy(x, y, type=c("step","hinge","segmented","segmented2","stegmented"), ...)

## S3 method for class 'chngptm'
coef(object, ...)

## S3 method for class 'chngptm'
residuals(object, ...)

## S3 method for class 'chngptm'


vcov(object, var.type=NULL, ...)  
## S3 method for class 'chngptm'  
print(x, ...)  
## S3 method for class 'chngptm'  
plot(x, which = NULL, xlim = NULL, lwd = 2, lcol = "red",  
lty = 1, add = FALSE, add.points = TRUE, add.ci =  
TRUE, breaks = 20, mark.chngpt = FALSE, xlab = NULL,  
ylab = NULL, ...)  
## S3 method for class 'chngptm'  
summary(object, var.type = NULL, expo = FALSE,  
show.slope.post.threshold = FALSE, verbose = FALSE,  
boot.type = "symm", ...)  
lincomb(object, comb, alpha=0.05)

Arguments

formula.1     The part of formula that is free of terms involving thresholded variables
formula.2     The part of formula that is only composed of thresholded variables
formula.strat stratification formula
family         string. coxph or any valid argument that can be passed to glm. But variance estimate is only available for binomial and gaussian (only model-based for latter)
data           data frame.
type           types of threshold effects. segmented2 differs from segmented in parameterization.
b.transition   Numeric. Controls whether threshold model or smooth transition model. Default to Inf, which corresponds to threshold model
est.method     default: estimation algorithm will be chosen optimally; fastgrid2: a super fast grid search algorithm, limited to linear regression; grid: plain grid search, works for almost all models; smoothapprox: approximates the likelihood function using a smooth function, only works for some models. fastgrid = fastgrid2, kept for backward compatibility
var.type       string. Different methods for estimating covariance matrix and constructing confidence intervals
aux.fit        a model fit object that is needed for model-robust estimation of covariance matrix
grid.search.max The maximum number of grid points used in grid search. When doing fast grid search, grid.search.max is set to Inf internally because it does not take more time to examine all potential thresholds.
test.inv.ci    Boolean, whether or not to find test-inversion confidence interval for threshold
ci.bootstrap.size integer, number of bootstrap
alpha       double, nominal type I error rate
save.boot   Boolean, whether to save bootstrap samples
lb.quantile lower bound of the search range for change point estimate
ub.quantile upper bound of the search range for change point estimate
tol         Numeric. Stopping criterion on the coefficient estimate.
maxit       integer. Maximum number of iterations in the outer loop of optimization.
chngpt.init numeric. Initial value for the change point.
weights     passed to glm
verbose     Boolean.
add.points  Boolean.
add.ci      Boolean.
add         Boolean.
breaks      integer.
cpus        Number of cores to use if the OS is not Windows.
keep.best.fit Boolean.
y           outcome
show.slope.post.threshold boolean
x            chngptm fit object.
object      chngptm fit object.
...         arguments passed to glm or coxph
m.out.of.n  whether to perform m out of n bootstrap
boot.test.inv.ci whether to get test inversion CI under bootstrap
search.bound bounds for search for sloping parameters
which       an integer
xlim        xlim
lwd          lwd
lcol         line col
mark.chngpt  mark.chngpt
xlab         xlab
ylab         ylab
offset       offset
lty          lty
boot.type    lty
comb         a vector of combination coefficients that will be used to form an inner product with the estimated slope
expo         If family is binomial and expo is TRUE, coefficients summary will be shown on the scale of odds ratio instead of slopes
Details

Without lb.quantile and ub.quantile, finite sample performance of estimator drops considerably! When est.method is smoothapprox, Newton-Raphson is done with initial values chosen by change point hypothesis testing. The testing procedure may be less subjective to finite sample volatility.

If var.method is bootstrap, summary of fitted model contains p values for each estimated slope. These p values are approximate p-values, obtained assuming that the bootstrap distributions are normal.

When var.method is bootstrap and the OS is not Windows, the boot package we use under the hood takes advantage of ncpus cores through parallel::mclapply.

Value

A an object of type chngptm with the following components

- converged: Boolean
- coefficients: vector. Estimated coefficients. The last element, named "chngpt", is the estimated change point
- test: htest. Max score test results
- iter: integer. Number of iterations

References


Examples

```r
threshold linear regression
types=c("hinge", "segmented", "M02", "M03")
for (type in types) {
 fit=chngptm(formula.1=logratio~1, formula.2=~range, lidar, type=type, family="gaussian",
 var.type="bootstrap")
 summary(fit)
 plot(fit)
}

with weights
dat.1=sim.chngpt("thresholded", "segmented", n=200, seed=1, beta=1, alpha=-1, x.distr="norm", e.=4,
 family="gaussian")
fit.1.a=chngptm(formula.1=y~z, formula.2=~x, family="gaussian", dat.1, type="segmented",
 est.method="fastgrid", var.type="bootstrap", weights=ifelse(dat.1$x<3.5,100,1)
```
chngptm

, ci.bootstrap.size=10)
summary(fit.1.a)
plot(fit.1.a)

# threshold logistic regression
dat.2=sim.chngpt("thresholded", "step", n=200, seed=1, beta=1, alpha=-1, x.distr="norm", e.=4,
family="binomial")
fit.2=chngptm(formula.1=y~z, formula.2=~x, family="binomial", dat.2, type="step", est.method="grid")
summary(fit.2)
# no variance estimates available for discontinuous threshold models such as step
# vcov(fit.2$best.fit) gives the variance estimates for the best model conditional on threshold est
# also supports cbind() formula on left hand side
set.seed(1)
dat.2$success=rbinom(nrow(dat.2), 10, 1/(1 + exp(-dat.2$eta)))
dat.2$failure=10-dat.2$success
fit.2a=chngptm(formula.1=cbind(success,failure)~z, formula.2=~x, family="binomial", dat.2,
type="step")

# Poisson example
counts <- c(18,17,15,20,10,20,25,13,12,33,35)
x <- 1:length(counts)
print(d.AD <- data.frame(x, counts))
fit.4=chngptm(formula.1=counts ~ 1, formula.2=~x, data=d.AD, family="poisson",
type="segmented", var.type="bootstrap", verbose=1, ci.bootstrap.size=1)
summary(fit.4)

## Not run:
## Not run because otherwise the examples take >5s and that is a problem for R CMD check

# coxph example
library(survival)
fit=chngptm(formula.1=Surv(time, status) ~ ph.ecog, formula.2=~age, data=lung, family="coxph",
type="segmented", var.type="bootstrap", ci.bootstrap.size=10)
summary(fit)

# one interaction term (mtcars is part of R default installation)
# est.method will be grid as fastgrid not available for models with interaction terms yet
fit=chngptm(formula.1=mpg ~ hp, formula.2=~hp*drat, mtcars, type="segmented",
family="gaussian", var.type="bootstrap", ci.bootstrap.size=10)
summary(fit)

# interaction, upperhinge model, bootstrap
fit=chngptm(formula.1=mpg ~ hp, formula.2=~hp*drat, mtcars, type="M10",
family="gaussian", var.type="bootstrap", ci.bootstrap.size=10)
summary(fit)
# more than one interaction term
# subsampling bootstrap confidence interval for step model
fit=chngptm(formula.1=mpg~hp+wt, formula.2=hp*drat+wt*drat, mtcars, type="step",
family="gaussian", var.type="bootstrap", ci.bootstrap.size=10)
summary(fit)

# step model, subsampling bootstrap confidence intervals
fit=chngptm(formula.1=mpg~hp, formula.2=~drat, mtcars, type="step",
family="gaussian", var.type="bootstrap", ci.bootstrap.size=10, verbose=TRUE)
summary(fit)

# higher order threshold models
dat=sim.chngpt(mean.model="thresholded", threshold.type="M22", n=500, seed=1,
beta=c(32,2,10,10), x.distr="norm", e.=6, b.transition=Inf, family="gaussian",
alpha=0, sd=0, coef.z=0)
fit.0=chngptm(formula.1=y~z, formula.2=~x, dat, type="M22", family="gaussian",
est.method="fastgrid2"); plot(fit.0)

dat=sim.chngpt(mean.model="thresholded", threshold.type="M22c", n=500, seed=1,
beta=c(32,2,32,10), x.distr="norm", e.=6, b.transition=Inf, family="gaussian",
alpha=0, sd=0, coef.z=0)
fit.0=chngptm(formula.1=y~z, formula.2=~x, dat, type="M22c", family="gaussian",
est.method="fastgrid2"); plot(fit.0)

# examples of aux.fit
fit.0=glm(yy~zz+ns(xx,df=3), data, family="binomial")
fit = chngptm (formula.1=yy~zz, formula.2=~xx, family="binomial", data, type="hinge",
est.method="smoothapprox", var.type="all", verbose=verbose, aux.fit=fit.0,
lb.quantile=0.1, ub.quantile=0.9, tol=1e-4, maxit=1e3)

## End(Not run)
Format

The format is: List of 3 $ segmented :List of 32 ..$ quadratic2b_norm : Named num [1:5] 0 1 0 0 0 .. ...
..- attr(*, "names")= chr [1:5] "(Intercept)" "z" "x" "(x-chngpt)+" ... ..$ cubic2b_norm : Named num [1:5] 0.170 0 0 0 .. ...
..- attr(*, "names")= chr [1:5] "(Intercept)" "z" "x" "(x-chngpt)+" ... ..$ sigmoid2b_norm : Named num [1:5] -0.170 0.336 0.4005 -0.1625 4.5 .. ...
..- attr(*, "names")= chr [1:5] "(Intercept)" "z" "x" "(x-chngpt)+" ... ..$ sigmoid2b1_norm : Named num [1:5] -0.170 0.336 0.4005 -0.2231 4.5 .. ...
..- attr(*, "names")= chr [1:5] "(Intercept)" "z" "x" "(x-chngpt)+" ... ..$ sigmoid2b2_norm : Named num [1:5] -0.170 0.336 0.4005 -0.5108 4.5 .. ...
..- attr(*, "names")= chr [1:5] "(Intercept)" "z" "x" "(x-chngpt)+" ... ..$ sigmoid2b3_norm : Named num [1:5] -0.170 0.336 0.4005 -0.0513 4.5 .. ...
..- attr(*, "names")= chr [1:5] "(Intercept)" "z" "x" "(x-chngpt)+" ... ..$ sigmoid2b4_norm : Named num [1:5] -0.170 0.336 0.4005 -0.1054 4.5 .. ...
..- attr(*, "names")= chr [1:5] "(Intercept)" "z" "x" "(x-chngpt)+" ... ..$ sigmoid2b5_norm : Named num [1:5] -0.170 0.336 0.4005 -0.1625 4.5 .. ...
..- attr(*, "names")= chr [1:5] "(Intercept)" "z" "x" "(x-chngpt)+" ... ..$ sigmoid2b6_norm : Named num [1:5] -0.170 0.336 0.4005 0.0198 4.5 .. ...
..- attr(*, "names")= chr [1:5] "(Intercept)" "z" "x" "(x-chngpt)+" ... ..$ sigmoid2b7_norm : Named num [1:5] -0.170 0.336 0.4005 0.0392 4.5 .. ...
..- attr(*, "names")= chr [1:5] "(Intercept)" "z" "x" "(x-chngpt)+" ... ..$ sigmoid2b8_norm : Named num [1:5] -0.170 0.336 0.4005 0.0583 4.5 .. ...
..- attr(*, "names")= chr [1:5] "(Intercept)" "z" "x" "(x-chngpt)+" ... ..$ sigmoid2b9_norm : Named num [1:5] -0.170 0.336 0.4005 0.9163 4.5 .. ...
..- attr(*, "names")= chr [1:5] "(Intercept)" "z" "x" "(x-chngpt)+" ... ..$ sigmoid2b10_norm : Named num [1:5] -0.170 0.336 0.4005 0.1054 4.5 .. ...
..- attr(*, "names")= chr [1:5] "(Intercept)" "z" "x" "(x-chngpt)+" ... ..$ sigmoid2b16_norm : Named num [1:5] -0.170 0.336 0.4005 0.0198 4.5 .. ...
..- attr(*, "names")= chr [1:5] "(Intercept)" "z" "x" "(x-chngpt)+" ... ..$ sigmoid2b17_norm : Named num [1:5] -0.170 0.336 0.4005 0.0392 4.5 .. ...
..- attr(*, "names")= chr [1:5] "(Intercept)" "z" "x" "(x-chngpt)+" ... ..$ sigmoid2b18_norm : Named num [1:5] -0.170 0.336 0.4005 0.0583 4.5 .. ...
..- attr(*, "names")= chr [1:5] "(Intercept)" "z" "x" "(x-chngpt)+" ... ..$ smooth2b_norm : Named num [1:5] 0.336 0.4 0.48 .. ...
..- attr(*, "names")= chr [1:5] "(Intercept)" "z" "x" "(x-chngpt)+" .. ...
..$ smooth2b1_norm : Named num [1:5] 0.336 0.4 0.005 4.8 .. ...
..- attr(*, "names")= chr [1:5] "(Intercept)" "z" "x" "(x-chngpt)+" .. ...
..$ smooth2b2_norm : Named num [1:5] 0.336 0.4 0.01 4.8 .. ...
..- attr(*, "names")= chr [1:5] "(Intercept)" "z" "x" "(x-chngpt)+" .. ...
..$ smooth2b3_norm : Named num [1:5] 0.336 0.4 0.02 4.8 .. ...
..- attr(*, "names")= chr [1:5] "(Intercept)" "z" "x" "(x-chngpt)+" .. ...
..$ smooth2b4_norm : Named num [1:5] 0.336 0.4 0.05 4.8 .. ...
..- attr(*, "names")= chr [1:5] "(Intercept)" "z" "x" "(x-chngpt)+" .. ...
..$ smooth2b5_norm : Named num [1:5] 0.336 0.4 0.1 4.8 .. ...
..- attr(*, "names")= chr [1:5] "(Intercept)" "z" "x" "(x-chngpt)+" .. ...
..$ sigmoid2p2_gam : Named num [1:5] -1.3 0.336 0.4 -0.916 2.2 .. ...
..- attr(*, "names")= chr [1:5] "(Intercept)" "z" "x" "(x-chngpt)+" .. ...
..$ sigmoid2p1_gam : Named num [1:5] -1.0 0.336 0.4 -0.916 1.5 .. ...
..- attr(*, "names")= chr [1:5] "(Intercept)" "z" "x" "(x-chngpt)+" .. ...
..$ sigmoid2p2_gam2 : Named num [1:5] 0.6 0.336 0.4 -0.916 1 .. ...
..- attr(*, "names")= chr [1:5] "(Intercept)" "z" "x" "(x-chngpt)+" .. ...
..$ sigmoid2p1_gam2 : Named num [1:5] -0.5 0.336 0 -0.916 2.2 .. ...
..- attr(*, "names")= chr [1:5] "(Intercept)" "z" "x" "(x-chngpt)+" .. ...
..$ quadratic_gam : Named num [1:5] 1.6355 0.336 0.0398 1.4869 2.8154 .. ...
..- attr(*, "names")= chr [1:5] "(Intercept)" "z" "x" "(x-chngpt)+" .. ...
..$ exp_gam : Named num [1:5] 2.753 0.336 0.513 0.936 3.607 .. ...
..- attr(*, "names")= chr [1:5] "(Intercept)" "z" "x" "(x-chngpt)+" .. ...
..$ quadratic_norm_gaussian: Named num [1:5] -3.735 0.336 0.898 1.845 4.7 .. ...
..- attr(*, "names")= chr [1:5] "(Intercept)" "z" "x" "(x-chngpt)+" .. ...
..$ quadratic_norm : Named num [1:5] -2.83 0.338 0.553 1.341 3.754 .. ...
..- attr(*, "names")= chr [1:5] "(Intercept)" "z" "x" "(x-chngpt)+" .. ...
..$ exp_norm : Named num [1:5] -6.235 0.337 1.012 1.325 5.057 .. ...
..- attr(*, "names")= chr [1:5] "(Intercept)" "z" "x" "(x-chngpt)+" ...
..$ hinge :List of 29 ..$ quadratic2b_norm : Named num [1:5] 0 1 0 0 0 .. ...
..- attr(*, "names")=
convert.coef

Helper functions

Description

Some helper functions.

Usage

```
convert.coef(coef.0, threshold.type)
predictx(fit, boot.type, alpha = 0.05, xx = NULL, verbose = FALSE, return.boot = FALSE, include.intercept=FALSE)
threshold.func(threshold.type, coef, xx, x.name, include.intercept=FALSE)
```

Arguments

include.intercept
dat.mtct

Description

A dataset from the immune correlates study of Maternal To Child Transmission of HIV-1

Usage

data("dat.mtct")

Format

A data frame with 236 observations on the following 3 variables.

y  a numeric vector
birth  a factor with levels C-section Vaginal
NAb_SF162LS  a numeric vector

References

**dat.mtct.2**

An Example Dataset

**Description**

A dataset from the immune correlates study of Maternal To Child Transmission of HIV-1

**Usage**

dat.mtct.2

**Format**

A data frame with 248 observations on the following 2 variables.

- NAb_score  a numeric vector
- V3_BioV3B  a numeric vector

**References**


**double.hinge**

Fit Double Hinge Models

**Description**

Fit double hinge models.

**Usage**

double.hinge(x, y, lower.y = NULL, upper.y = NULL,
             var.type = c("none", "bootstrap"), ci.bootstrap.size =
             1000, alpha = 0.05, save.boot = TRUE, ncpus = 1)

## S3 method for class 'double.hinge'
plot(x, which = NULL, xlim = NULL,
     lwd = 2, lcol = "red",
     lty = 1, add.points = TRUE, add.ci = TRUE, breaks =
     20, mark.chngpt = FALSE, xlab = NULL, ylab = NULL,
     ...)  

## S3 method for class 'double.hinge'
fitted(object, ...)

## S3 method for class 'double.hinge'
residuals(object, ...)
Arguments

object
x
y
lower.y
upper.y
var.type
ci.bootstrap.size

alpha
save.boot
ncpus
lcol
lwd
'which' 'xlim' 'lty' 'add.points' 'add.ci' 'breaks' 'mark.chngpt' 'xlab' 'ylab'

which
xlim
lty
add.points
add.ci
breaks
mark.chngpt
xlab
ylab

... arguments passed along

Details

If lower.y and upper.y are not supplied, min(y) is taken as the function value when x is less than or equal to the first threshold, and max(y) is taken as the function value when x is greater than or equal to the second threshold.

If the function is expected to be decreasing between the two thresholds, lower.y and upper.y should be supplied to ensure the correct fit.
hinge.test  A non-nested hypothesis testing problem for threshold regression models

Description
Test a hinge model against a linear model.

Usage
hinge.test(formula, cov.interest, family = c("binomial", "gaussian"), data, thres = NA,
1b.quantile = 0.1, ub.quantile = 0.9, chngpts.cnt = 10, method = c("FDB", "B", "DB"),
boot.B = 10000, B2 = NA, verbose = FALSE)

Arguments
formula
cov.interest
family
data
thres  If supplied, this will be the threshold value to use in the hinge model.
1b.quantile  lower bound of threshold candidates in quantile
ub.quantile  upper bound of threshold candidates in quantile
chngpts.cnt  number of candidate thresholds
method  type of test. FDB: false double bootstrap, B: parametric bootstrap, DB: double bootstrap.
boot.B  number of parametric bootstrap replicates for B and FDB
B2  number of inner bootstrap replicates for DB
verbose

Value
A list of class htest
p.value  P-value
chngpts  Vector of change points evaluated
TT  Standardized absolute score statistics
V.S.hat  Estimated variance-covariance matrix of the score statistics

Author(s)
Zonglin He
References

He, Fong, Fouda, Permar. A non-nested hypothesis testing problem for threshold regression model, under review

Examples

dat=sim.hinge(threshold.type = 'NA', family = 'binomial', thres = 'NA', X.ditr = 'norm', mu.X = c(0, 0, 0),
        coef.X = c(0.5, 0.5, 0.4), cov.X = diag(3), eps.sd = 1, seed = 1, n=100)
test=hinge.test(Y~X1+X2, "x", family="binomial", data=dat, 'method'='FDB', boot.B=10)
test

<table>
<thead>
<tr>
<th>lidar</th>
<th>Light Detection and Ranging Data</th>
</tr>
</thead>
</table>

Description

LIDAR

Usage

data("lidar")

Format

A data frame with 221 observations on the following 2 variables.

range  a numeric vector
logratio a numeric vector

Source

**Infant Nutrition Data**

**Description**

The infant nutrition dataset comprises data collected in a study on the nutrition of infants and preschool children in the north central region of the United States of America.

**Usage**

```r
data("nutrition")
```

**Format**

A data frame with 72 observations on the following 2 variables.

- `woh` weight/height ratio
- `age` a numeric vector

**Source**


---

**performance.unit.test**  *Perform unit testing for performance evaluation.*

**Description**

This function performs unit testing for performance validation.

**Usage**

```r
performance.unit.test(formula.1, formula.2, family, data, B, I)
```

**Arguments**

- `formula.1`
- `formula.2`
- `family`
- `data`
- `B`
- `I`
---

**sim.alphas**

*Simulation Parameters*

**Description**

Simulation Parameters

**Usage**

```r
data(sim.alphas)
```

**Format**

List of 6. Names: sigmoid2_norm, sigmoid2_norm3, sigmoid3_norm, sigmoid3_norm3, sigmoid4_norm, sigmoid4_norm3. Each element is a 5x4 matrix

---

**sim.chngpt**

*Simulation Function*

**Description**

Generate simulation datasets for change point Monte Carlo studies.

**Usage**

```r
```
Arguments

threshold.type  string. Types of threshold effect to simulate, only applicable when label does not start with sigmoid.

family  string. Glm family.

n
mu.z
seed
weighted
beta
coef.z  numeric. Coefficient for z.
beta.itxn  numeric. Coefficient for z.
alpha  numeric, intercept.
mu.x  numeric
sd.x  numeric
mean.model  numeric
x.distr  string. Possible values: norm (normal distribution), gam (gamma distribution). gam1 is a hack to allow e. be different

e.
verbose  Boolean
b.transition
sd
alpha.candidate
  Candidate values of alpha, used in code to determine alpha values
heteroscedastic  Boolean.

Details

mean.model, threshold.type and b.transition all affect mean models.

Value

A data frame with following columns:

y  0/1 outcome
x  observed covariate that we are interested in
x.star  unobserved covariate that underlies x
z  additional covariate

In addition, columns starting with 'w' are covariates that we also adjust in the model; columns starting with 'x' are covariates derived from x.
Examples

```r
seed=2
par(mfrow=c(2,2))
dat=sim.chngpt(mean.model="thresholded", threshold.type="hinge", family="gaussian", beta=0, n=200,
 seed=seed, alpha=-1, x.distr="norm", e.=4, heteroscedastic=FALSE)
plot(y~z, dat)
dat=sim.chngpt(mean.model="thresholded", threshold.type="hinge", family="gaussian", beta=0, n=200,
 seed=seed, alpha=-1, x.distr="norm", e.=4, heteroscedastic=TRUE)
plot(y~z, dat)
dat=sim.chngpt(mean.model="z2", threshold.type="hinge", family="gaussian", beta=1, n=200,
 seed=seed, alpha=1, x.distr="norm", e.=4, heteroscedastic=FALSE)
plot(y~z, dat)
dat=sim.chngpt(mean.model="z2", threshold.type="hinge", family="gaussian", beta=1, n=200,
 seed=seed, alpha=1, x.distr="norm", e.=4, heteroscedastic=TRUE)
plot(y~z, dat)
```

---

**sim.hinge**  
*Simulation function*

**Description**

Simulate data for Monte Carlo study.

**Usage**

```r
sim.hinge(threshold.type = c("NA", "hinge"), family = c("binomial", "gaussian"),
 thres = "NA", X.ditr = "norm", mu.X, coef.X, cov.X, eps.sd, seed, n)
```

**Arguments**

- `threshold.type`
- `family`
- `thres`
- `X.ditr`
- `mu.X`
- `coef.X`
- `cov.X`
- `eps.sd`
- `seed`
- `n`
sim.my

Simulate data

Usage

```
sim.my(n, seed, label, alpha, beta, e. = NULL, b. = NULL, tr. = NULL)
```

Arguments

- **n**: Sample size
- **seed**: Seed for random number generator
- **label**: A character string which specifies the simulation scenario. sigmoid4, sigmoidgam4, elbow4
- **alpha**: regression parameter
- **beta**: regression parameter
- **e.**: inflection point for the logistic transformation (the log scale)
- **b.**: slope for the logistic transformation
- **tr.**: threshold point

Details

When the label starts with elbow, the transformation on x.star is elbow shaped. When the label starts with sigmoid, the transformation on x.star is sigmoid shaped. Data simulated from logit(Pr(Y==1))=alpha + beta*(transformed x.star).

Value

A data frame with columns: y, x.star, x.star.expit (if label starts with sigmoid), x.star.tr (if label starts with elbow), x.bin.med (x.star dichotomized at median), x.tri (x.star trichotomized at tertiles).

Examples

```
alpha=-1; beta=log(0.2)
e.=5; b.=-30; t.=1
dat=sim.my(n=250, seed=1, label="sigmoid4", alpha, beta, e.=e., b.=b.)
```
sim.pastor

Simulate data according to one of the scenarios considered in Pastor-Barriuso et al 2003

**Description**

Simulate data according to one of the scenarios considered in Pastor-Barriuso et al 2003

**Usage**

sim.pastor(seed)

**Arguments**

seed 
Seed for the random number generator.

**Value**

A data frame with columns: y, x.star, x.star.expit, and x.bin.med (x.star dichotomized at median).

**Examples**

dat=sim.pastor(seed=1)
Index

*Topic distribution
  chngpt, 2
  antoch.test (chngpt.test), 2
  chngpt, 2
  chngpt.test, 2
  chngptm, 5
  coef.0.1s, 10
  coef.chngptm (chngptm), 5
  convert.coef, 13
  dat.mtct, 14
  dat.mtct.2, 15
  double.hinge, 15
  fitted.double.hinge (double.hinge), 15
  hinge.test, 17
  lidar, 18
  lincomb (chngptm), 5
  nutrition, 19
  performance.unit.test, 19
  plot.chngpt.test (chngpt.test), 2
  plot.chngptm (chngptm), 5
  plot.double.hinge (double.hinge), 15
  predictx (convert.coef), 13
  print.chngptm (chngptm), 5
  residuals.chngptm (chngptm), 5
  residuals.double.hinge (double.hinge), 15
  sim.alphas, 20
  sim.chngpt, 20
  sim.hinge, 22
  sim.my, 23
  sim.pastor, 24

sumary.chngptm (chngptm), 5
threshold.func (convert.coef), 13
vcov.chngptm (chngptm), 5