Package ‘chronosphere’

April 18, 2021

Type Package

Title Earth System History Variables

Version 0.4.1

Author Adam T. Kocsis, Nussaibah B. Raja

 XArray-xattrib.R XArray-subset.R XArray-apply.R
 RasterArray-base.R RasterArray-cast.R RasterArray-combine.R
 RasterArray-groupgen.R RasterArray-raster.R
 RasterArray-subset.R RasterArray-xattrib.R SpatialStack-base.R
 SpatialArray-sp.R SpatialArray-cast.R SpatialArray-combine.R
 SpatialArray-subset.R inter.R plotting.R

Maintainer Adam T. Kocsis <adam.t.kocsis@gmail.com>

Description The purpose of the 'chronosphere' project is to facilitate spatially explicit analyses of (paleo)environmental/ecological research. The package serves as a gateway to plate tectonic reconstructions, deep time global climate model results as well as fossil occurrence datasets such as the Paleobiology Database <https://paleobiodb.org/> and the PaleoReefs Database <https://www.paleo-reefs.pal.uni-erlangen.de/>. Environmental data stored on a remote server can be downloaded and imported directly to the R environment. Query functions to the GPlates <https://www.gplates.org/> desktop application or the GPlates Web Service <https://gws.gplates.org/> allow users to reconstruct coordinates, static plates, and Spatial objects. A wrapper class 'RasterArray' is implemented around the 'RasterLayer' class, allowing the organization of spatially explicit raster data in n-dimensional arrays. The project is developed under the umbrella of the DFG (Deutsche Forschungsgemeinschaft) Research Unit TER-SANE2 (For 2332, TEMperature Related Stressors in ANcient Extinctions).

License CC BY 4.0

Date 2021-04-16

BugReports https://github.com/chronosphere-portal/r_package/issues

Encoding UTF-8

LazyData false
R topics documented:

Depends
R (>= 3.5.0), raster, sp

Imports
grapics, methods, grDevices, utils

NeedsCompilation
no

RoxygenNote
7.1.1

VignetteBuilder
knitr

Suggests
jpeg, knitr, ncdf4, rgdal, rmarkdown

Repository
CRAN

Date/Publication
2021-04-18 21:50:07 UTC

R topics documented:

aggregate .. 3
apply .. 4
as ... 5
as.data.frame.RasterArray 5
as.list,RasterArray-method 6
as.list,SpatialArray-method 7
as.RasterArray ... 7
as.SpatialArray .. 8
calc,RasterArray,function-method 9
cbind.RasterArray .. 10
cellStats,RasterArray-method 11
chronosphere .. 11
coasts ... 12
colnames,XArray-method 12
combine ... 13
crop,RasterArray-method 14
datasets .. 15
dems .. 16
dim,XArray-method .. 17
dimlayer .. 17
dimnames,XArray-method 18
disaggregate ... 19
extent .. 19
extract ... 20
fetch .. 21
info ... 22
is.na.RasterArray .. 23
is.na,SpatialArray ... 24
layers ... 24
length,XArray-method 25
mapedge ... 26
mapplot .. 27
mask,RasterArray,RasterLayer-method 28
matchtime .. 31
aggregate

Aggregate raster cells in a *RasterArray* object

Description

The method is inherited from the *RasterStack* class.
apply

Usage

S4 method for signature 'RasterArray'
aggregate(x, ...)

Arguments

x a RasterArray-class object.
...
arguments passed to the aggregate function.

Value

An aggregated RasterArray class object.

Examples

data(dems)
agg <- aggregate(dems, 5)

apply

Apply-type iterator for RasterArrays and SpatialArrays

Description

The function implements the apply-type iterators for the RasterArray class. Output values are constrained to RasterArrays, whenever possible. Not yet implemented for multidimensional MAR-GINS.

Arguments

X an array, including matrices and RasterArrays.
MARGIN a vector giving the subscripts which the function will be applied over. E.g., for a matrix 1 indicates rows, 2 indicates columns, c(1,2) indicates rows and columns. Where X has named dimnames, it can be a character vector selecting dimension names. For RasterArrays only single dimension margins are implemented. If it is NULL then the function is applied to every item.
FUN the function to be applied: see ‘Details’ of apply.
...
optional arguments passed to FUN.

Format

An object of class standardGeneric of length 1.

Value

Depending on the on the output of FUN, a list, a vector or RasterArray or SpatialArray object.
Examples

Null dimensional margin
data(coasts)
apply function to every element manually
memory taken by every layer
apply(coasts, MARGIN=NULL, object.size)
double of itself
data(dems)
a<- cbind(dems, dems)
same <- apply(a, 1, sum)

as Coerce RasterLayer, RasterStack and RasterBrick object to a RasterArray

Description

The function coerces RasterLayer, RasterStack and RasterBrick object to a RasterArray.

Arguments

from Object to be coerced.

Value

A RasterArray class object.

as.data.frame.RasterArray

S3-type method for RasterArray and SpatialArray

Description

Convert RasterArray class objects to data.frames allowing View(), head() and tail() to work.

Usage

S3 method for class 'RasterArray'
as.data.frame(x, row.names = NULL, optional = FALSE, ...)

S3 method for class 'SpatialArray'
as.data.frame(x, row.names = NULL, optional = FALSE, ...)
as.list,RasterArray-method

Arguments

x a RasterArray and SpatialArray class object.
row.names Argument to define the rownames of the resulting data.frame.
optional logical Flag to reset the rownames and colnaems attributes.
... additional arguments passed to and from methods.

Details

Formal conversion method transforming the proxy object to a data.frame.

Value

A data.frame class object.

Examples

data(dems)
df <- as.data.frame(dems)
as.list,SpatialArray-method

Coerce a SpatialArray class object to a list

Description

The function will return the items of the SpatialArray as a list (conserving the names of the elements in the stack).

Usage

S4 method for signature 'SpatialArray'
as.list(x, ...)

Arguments

x A SpatialArray class object.

... arguments passed to or from methods.

Value

A list of RasterLayers.

as.RasterArray Convert Raster* objects to RasterArrays

Description

The function converts RasterLayer, RasterStack and RasterBrick objects to RasterArray class objects.

Usage

as.RasterArray(from)

S4 method for signature 'RasterLayer'
as.RasterArray(from)

S4 method for signature 'RasterStack'
as.RasterArray(from)

S4 method for signature 'RasterBrick'
as.RasterArray(from)

S4 method for signature 'SpatialPoints'
as.SpatialArray(from)

S4 method for signature 'SpatialPointsDataFrame'
as.SpatialArray(from)

S4 method for signature 'SpatialLines'
as.SpatialArray(from)

S4 method for signature 'SpatialLinesDataFrame'
as.SpatialArray(from)

S4 method for signature 'SpatialPolygons'
as.SpatialArray(from)

S4 method for signature 'SpatialPolygonsDataFrame'
as.SpatialArray(from)

Arguments

from Object to be converted.

Value

A RasterArray class object.

Examples

data(dems)
recent <- dems[1]
convert RasterLayer to RasterArray
ra <- as.RasterArray(recent)

as.SpatialArray Convert Spatial* objects to SpatialArrays

Description

The function converts Spatial* objects to SpatialArray-class objects.

Usage

as.SpatialArray(from)

Arguments

from Object to be converted.
Description

Calculate values for a new RasterLayer/RasterArray object from another RasterArray object, using a formula.

Usage

```r
## S4 method for signature 'RasterArray,\'function\'
calc(x, fun, margin = NULL, na.rm = NULL, forcefun = FALSE, forceapply = FALSE)
```

Arguments

- `x`: A RasterArray class object.
- `fun`: function to be applied.
- `margin`: The MARGIN parameter of the `apply` function. If set to `NULL` then the `fun` will be applied to the entire stack, producing a single layer.
- `na.rm`: Remove NA values, if supported by `fun` (only relevant when summarizing a multilayer Raster object into a RasterLayer)
- `forcefun`: logical. Force calc to not use fun with `apply`; for use with ambiguous functions and for debugging (see Details)
- `forceapply`: logical. Force calc to use fun with `apply`; for use with ambiguous functions and for debugging (see Details)

Details

The method is an extension of the `calc` function. The structure expressed as the RasterArray’s dimensions allows the calculations to be iterated for different margins of the array, similarly to the `apply` function, controlled by the `margin` argument.

Value

A RasterLayer or RasterArray class object.
Examples

data(dems)

d2 <- cbind(dems, dems)
double <- calc(d2, margin=1, fun=sum)

Examples

data(dems)

create matrices out of vectors
colb <- cbind(dems, dems)
rowb <- rbind(dems, dems)

automatic name matching
dems2 <- dems[c(1:4, 6:10)]
matched <- suppressWarnings(cbind(dems, dems2))
cellStats, RasterArray-method

Statistics across cells in a RasterArray object

Description

The method is inherited from the RasterStack class. Positions of layers are conserved in the output. (including missing layers)

Usage

S4 method for signature 'RasterArray'
cellStats(x, stat, ...)

Arguments

- `x`: a RasterArray class object.
- `stat`: A function to be applied.
- `...`: arguments passed to the `cellStats` function.

Value

A set of the values matching the output of stat, organized the same way as the RasterArray.

Examples

data(dems)
cellStats(dems, stat=mean, na.rm=TRUE)

chronosphere

Earth System History Variables

Description

The purpose of the 'chronosphere' project is to facilitate spatially explicit analyses of (paleo)environmental/ecological research. The package serves as a gateway to plate tectonic reconstructions, deep time global climate model results as well as fossil occurrence datasets such as the Paleobiology Database https://paleobiodb.org/ and the PaleoReefs Database https://www.paleo-reefs.pal.uni-erlangen.de/. Environmental data stored on a remote server can be downloaded and imported directly to the R environment. Query functions to the GPlates (https://www.gplates.org/) desktop application or the GPlates Web Service (https://gws.gplates.org/) allow users to reconstruct coordinates, static plates, and Spatial objects. A wrapper class `RasterArray` is implemented around the `RasterLayer` class, allowing the organization of spatially explicit raster data in n-dimensional arrays. The project is developed under the umbrella of the DFG (Deutsche Forschungsgemeinschaft) Research Unit TERSANE2 (For 2332, TEmperature Related Stressors in ANcient Extinctions).
Details

This is still the Beta version. As is R, this is free software and comes with ABSOLUTELY NO WARRANTY. Nevertheless, notes about found bugs and suggestions are more than welcome.

Author(s)

Adam T. Kocsis (adam.t.kocsis@gmail.com) and Nussaibah B. Raja

casts

PaleoMAP PaleoCoastlines (demo)

Description

A dataset containing the coastline reconstructions based on the PaleoMAP PaleoDEMS (dems) and the Paleobiology Database https://paleobiodb.org for the time interval 0 - 25 Ma.

Usage

data(coasts)

Format

A SpatialArray with 5 continental margin and 5 paleocoastline layers.

Details

This is version v7. The article describing the entire set is under review. Once that is published, the entire dataset will be available.

Source

colnames, XArray-method

Column names of two-dimensional RasterArray or SpatialArray

Description

Get or set the column names of two-dimensional codeRasterArray or SpatialArray objects
Usage

```r
## S4 method for signature 'XArray'
colnames(x)
```

```r
## S4 replacement method for signature 'XArray'
colnames(x) <- value
```

Arguments

- `x` RasterArray or SpatialArray object.
- `value` character vector.

Value

A character vector of column names or NULL.

Examples

```r
data(coasts)
colnames(coasts)
colnames(coasts) <- c("a", "b")
```

combine

Combine RasterLayers and one-dimensional RasterArrays and Spatial* objects with one-dimensional SpatialArrays

Description

Methods sequences that start with an NA do not yet work.

Usage

```r
combine(x, ...)
```

```r
## S4 method for signature 'XArray'
combine(x, ...)
```

```r
## S4 method for signature 'RasterLayer'
combine(x, ...)
```

```r
## S4 method for signature 'VectorSpatialClasses'
combine(x, ...)
```

Arguments

- `x` RasterLayer or RasterArray objects or Spatial* and SpatialArray objects to combine.
- `...` additional objects to combine.
Value

A `RasterArray` or `SpatialArray` class object.

Examples

data(dems)
a <- combine(dems[1], dems[2])

S4 method for signature 'RasterArray'
crop(x, y, ...)

Arguments

- **x**: a `RasterArray` class object.
- **y**: an `xtent` object, or any object from which an Extent object can be extracted (see Details)
- **...**: arguments passed to the `crop` function.

Value

A cropped `RasterArray` class object.

Examples

data(dems)
crop to Australia
ext <- extent(c(
 xmin = 106.58,
 xmax = 157.82,
 ymin = -45.23,
 ymax = 1.14
))
cropping all DEMS (Australia drifted in)
au <- crop(dems, ext)
Description

The function will download a list of available data from the data repository.

Usage

```r
datasets(
  dat = NULL,
  datadir = NULL,
  verbose = FALSE,
  master = FALSE,
  greetings = TRUE
)
```

Arguments

- **dat** character. Database ID. If this is set to `NULL`, then a simplified list of available variables will be downloaded, including all `dat` and `var` combinations. If `dat` is a valid database ID, then all accessible resolutions and version of a dataset are shown.

- **datadir** character. Directory where the downloaded files are kept. Individual entries will be looked up from the directory if this is given, and will be downloaded if they are not found. The default `NULL` option will download data to a temporary directory that exists only until the R session ends.

- **verbose** logical. Should console feedback during download be displayed?

- **master** logical. When `dat` is `NULL`, should the function download the master records file?

- **greetings** logical. When the function is invoked without arguments, it displays a message to keep new users informed about different versions and resolutions (even with `verbose=FALSE`). This argument turns this message off on demand.

Details

The function will download a single `.csv` file and attach it as a `data.frame`.

Value

A `data.frame` class object.
dems

PaleoDEM rasters from the reconstructions Chris Scotese.

Description

A dataset containing the paleoDEM reconstructions of Chris Scotese for the time interval 0 - 45 Ma.

Usage

data(dems)

Format

A RasterArray with 10 layers.

Details

This is a subset of the total dataset, use fetch(dat="paleomap",var="dem",res=1,ver="20190719") to get the whole set.

Source

dim,XArray-method

Dimensions of SpatialArray or RasterArray objects

Description

The function returns the dimensions of the array in which RasterLayer(s) or Spatial* objects are organized.

Usage

```r
## S4 method for signature 'XArray'
dim(x)
```

Arguments

- `x` A SpatialArray or RasterArray class object.

Value

A numeric vector.

Examples

```r
data(dems)
dim(dems)
data(coasts)
dim(coasts)
```

dimlayer

Dimensions of RasterLayers in a RasterArray object

Description

The function will return the dimensions RasterLayers

Usage

```r
dimlayer(x, ...)
```

Arguments

- `x` A RasterArray class object.
- `...` additional arguments passed to class-specific methods.
Value

A numeric vector with the number of rows and columns in the RasterLayers.

Description

Get or set the dimnames of multidimensional RasterArray or SpatialArray objects

Usage

```r
## S4 method for signature 'XArray'
dimnames(x)
## S4 replacement method for signature 'XArray'
dimnames(x) <- value
```

Arguments

- `x` RasterArray or SpatialArray object.
- `value` character vector.

Value

A list of character vectors or NULL.

Examples

```r
data(dems)
dimnames(dems)
data(coasts)
dimnames(coasts)
dimnames(coasts)[[2]] <- c("first", "second")
```
Disaggregate raster cells in a RasterArray object

Description

The method is inherited from the `RasterStack` class.

Usage

```r
## S4 method for signature 'RasterArray'
disaggregate(x, ...)
```

Arguments

- `x`: a `RasterArray` class object.
- `...`: arguments passed to the `disaggregate` function.

Value

A disaggregated `RasterArray` class object.

Examples

```r
data(dems)
disagg <- disaggregate(dems, 3)
```

Extent of a RasterArray object

Description

The method is inherited from the `RasterStack` class.

Usage

```r
## S4 method for signature 'RasterArray'
extent(x, ...)
```

Arguments

- `x`: a `RasterArray`-class object.
- `...`: arguments passed to the `extent` function.

Value

An aggregated `RasterArray` class object.
extract

Extract values from multiple RasterLayers in a RasterArray object

Description

The function takes a set of time-dependent coordinates and extracts the value they point to from associated RasterLayers in a RasterArray.

Usage

extract

S4 method for signature 'RasterArray, matrix'
extract(x, y)

S4 method for signature 'RasterArray, data.frame'
extract(x, y, by = NULL, margin = 1, lng = "plng", lat = "plat", force = NULL)

Arguments

x (RasterArray). A set of RasterLayers that are associated with entries (one dimension) or the rows of x.

y (matrix or data.frame). The data table containing the coordinates and (optionally) the indices or names of the associated RasterLayers in x.

by (character or vector) In case of a data.frame input, the link between x and y. If by is a character string then it is expected to be column of x and should contain the names or the indices of the associated RasterLayers in x. If it is a vector its length should match the number of rows in x and it will be used as if it were a column of x.

margin (numeric) A single value describing which margin (dimension of x) by is referring to (1: rows, 2: columns, etc.).

lng (character) A column of x that includes the paleolongitudes.

lat (character) A column of x that includes the paleolatitudes.

force (character) If set to "numeric" the by argument or the column it points to will be converted to numeric values, and x will be subsetted with numeric subscripts of the x RasterArray. If set to "character", the by column (or vector) will be forced to character values and will be used as character subscripts.

Format

An object of class standardGeneric of length 1.
Value

A numeric vector, matrix or array of values.

Examples

one pair of random coordinates from Africa
mat <- matrix(c(-1.34, 42.96), ncol=2, byrow=TRUE)

repeat four times
mat<- mat[rep(1,4),]

assign default names and age
df<- data.frame(plng=mat[, 1],plat=mat[, 2], age=c(1,3,5, 1))
rownames(df) <- paste("point", 1:nrow(df))

first coordinate pair will be extracted from RasterLayer 1 ["0"]
second coordinate pair will be extracted from RasterLayer 3 ["10"]
third coordinate pair will be extracted from RasterLayer 5 ["20"]
fourth coordinate pair will be extracted from RasterLayer 1 ["0"]
data(dems)
extract(dems, df, by="age")

by=NULL will be implemented in the next update
(all coordinates extracted from all layers)

fetch

Data fetching

Description

Function to download and attach variables in the chronosphere package

Usage

fetch(
 dat,
 var = NULL,
 ver = NULL,
 res = NULL,
 datadir = NULL,
 verbose = TRUE,
 call = FALSE,
 call.expr = FALSE,
 ...
)
Arguments

dat (character) The dataset to get variables from.
var (character) Vector of variable names to get.
ver (character) The version of the variable. Defaults to NULL, which will download
 the latest available version. We have to create a data table, which should be part
 of the package. This has to be searched for valid argument combinations. Right
 this is just a folder with a date.
res (character or numeric) The resolution of raster layers. This has to be the same
 for all RasterLayers that make up the variable.
datadir (character) Directory where downloaded files are kept. Individual layers will
 be looked up from the directory if this is given, and will be downloaded if they
 are not found. The default NULL option will download data to a temporary direc-
 tory that exists only until the R session ends.
verbose (logical) Should console feedback during download be displayed?
call (logical) If set to TRUE the function call is returned instead of the object.
call.expr (logical) If call is set to TRUE, then should the call be returned as an expression
 (TRUE) or a message (FALSE)?
... Arguments passed to variable-specific loading functions.

Details

Use the function datasets to find available variables.

Value

An object that matches the 'type' field of the variables in the output of the datasets function.

Examples

An actual download call
a <- fetch(dat="paleomap", var="dem")
call repetition
fetch(dat="paleomap", var="dem", call=TRUE)
A locally-present object, in package's directory
a <- fetch(dat="paleomap", var="model",
 datadir=system.file("extdata", package="chronosphere"))

info Documentation page of a variable

Description

This is a temporary function that takes the user to the Evolv-ED blog.
is.na.RasterArray

Usage

 info(dat, var)

Arguments

 dat (character) Object downloaded with fetch or the database identifier string.
 var (character) In case dat is character, the variable identifier.

is.na.RasterArray Positions of missing values in a RasterArray object

Description

 The function behaves similar to the regular is.na() function applied to the proxy object of a RasterArray.

Usage

 ## S3 method for class 'RasterArray'
 is.na(x)

Arguments

 x A RasterArray class object.

Value

 A logical vector, matrix or array matching the structure of the RasterArray.

Examples

 data(dems)
 dems[2] <- NA
 is.na(dems)
is.na.SpatialArray Positions of missing values in a SpatialArray object

Description

The function behaves similar to the regular is.na() function applied to the proxy object of a RasterArray.

Usage

```r
## S3 method for class 'SpatialArray'
is.na(x)
```

Arguments

x A RasterArray class object.

Value

A logical vector, matrix or array matching the structure of the RasterArray.

Examples

```r
data(coasts)
coasts[2,1] <- NA
is.na(coasts)
```

layers Names of RasterArray or SpatialArray Layers in the stack

Description

Names of RasterArray or SpatialArray Layers in the stack

Usage

```r
layers(x, ...)
```

S4 method for signature 'XArray'
layers(x)

Arguments

x A RasterArray or SpatialArray class object.

... additional arguments passed to class-specific methods.
Value

A character vector of names.

Examples

```R
# names of layers in the stack
data(dems)
layers(dems)
```

Description

Function to return the length of the array in which RasterLayers are organized.

Usage

```R
## S4 method for signature 'XArray'
length(x)

## S4 method for signature 'XArray'
nlayers(x)

## S4 method for signature 'SpatialStack'
nlayers(x)
```

Arguments

- `x` a `RasterArray` or `SpatialArray` class object.

Details

The `length()` function returns the number elements that should be present based on the array structure itself, and not the total number of values stored in the object (such as the length method of RasterStacks). As the object can contain missing values, the number of actual layers can be queried with `nlayers`.

Value

A numeric value.
Examples

```r
data(dems)
# omit third element
dems[3] <- NA
# number of elements in the RasterArray
length(dems)
# remaining number values in the stack
length(dems@stack)
# the number of remaining layers in the RasterArray
nlayers(dems)
```

mapedge
Function to quickly draft the edge of the equirectangular projection

Description

Function to plot the edge of a map with different projections.

Usage

```r
mapedge(x = 360, y = 180, xmin = -180, xmax = 180, ymin = -90, ymax = 90)
```

Arguments

- `x` (numeric) Number of segments in the x (longitude) dimension.
- `y` (numeric) Number of segments in the y (latitude) dimension.
- `xmin` (numeric) Minimum value of x (longitude).
- `xmax` (numeric) Minimum value of x (longitude).
- `ymin` (numeric) Maximum value of y (latitude).
- `ymax` (numeric) Maximum value of y (latitude).

Value

A SpatialPolygons class object.

Examples

```r
# requires rgdal
data(edge) <- mapedge()
molledge <- spTransform(edge, CRS("+proj=moll"))
```
mapplot

Wrapper function to plot maps of different classes

Description

This function plots Raster and sp-type objects.

Usage

mapplot(x, ...)

S4 method for signature 'RasterLayer'
mapplot(
 x,
 col = "gradinv",
 axes = FALSE,
 box = FALSE,
 legend = FALSE,
 legend.title = NULL,
 ...
)

S4 method for signature 'RasterStack'
mapplot(x, col = gradinv(255), ...)

S4 method for signature 'RasterArray'
mapplot(
 x,
 col = "gradinv",
 rgb = FALSE,
 legend = FALSE,
 axes = FALSE,
 box = FALSE,
 ncol = 3,
 legend.title = NULL,
 plot.title = NULL,
 rowlabels = rownames(x),
 multi = FALSE,
 ask = FALSE,
 ...
)

S4 method for signature 'SpatialPolygonsDataFrame'
mapplot(x, col = "lightgrey", ...)

S4 method for signature 'SpatialPolygons'
mapplot(x, col = "lightgrey", ...)
Arguments

- **x**: Object to be plotted
- **...**: arguments passed to class-specific methods.
- **col**: (character) Color or color scheme of the plot. See `ramps` for available palettes (ipccLine and ipccRCP are not available).
- **axes**: (logical) Should axes be displayed?
- **box**: (logical) Should bounding boxes be displayed?
- **legend**: (logical) Triggers whether the legend of a `RasterLayer` would be plotted.
- **legend.title**: (character) Title for the legend, if `legend = TRUE`.
- **rgb**: set to (TRUE) to make a red-green-blue plot based on three layers or bands.
- **ncol**: numeric) Set number of columns in a multi-plot for a single variable. For a `RasterArray` with multiple variables, this number is automatically set to the number of variables.
- **plot.title**: (character) The title for each individual plot. Only available for a single variable at the moment.
- **rowlabels**: (character) label for each row of the overall plot. Uses the rownames of the `RasterArray` by default. Only available for multivariate `RasterArrays`.
- **multi**: (logical) Should the plots be printed on multiple pages?
- **ask**: (logical or NULL) If `multi.page = TRUE` and `ask = TRUE`, then the user will be prompted before a new page of output is started

Value

None.

Examples

```r
# single variable
data(dems)
mapplot(dems, ncol=4)
```

Description

Additional functions to `mask` generic function involving the `RasterArray` class. The following methods are implemented:
Usage

S4 method for signature 'RasterArray,RasterLayer'
mask(
 x,
 mask,
 inverse = FALSE,
 maskvalue = NA,
 updatevalue = NA,
 updateNA = FALSE,
 ...
)

S4 method for signature 'RasterArray,RasterArray'
mask(
 x,
 mask,
 inverse = FALSE,
 maskvalue = NA,
 updatevalue = NA,
 updateNA = FALSE,
 ...
)

S4 method for signature 'RasterArray,Spatial'
mask(x, mask, inverse = FALSE, updatevalue = NA, updateNA = FALSE, ...)

S4 method for signature 'RasterArray,RasterStackBrick'
mask(
 x,
 mask,
 inverse = FALSE,
 maskvalue = NA,
 updatevalue = NA,
 updateNA = FALSE,
 ...
)

S4 method for signature 'RasterLayer,RasterArray'
mask(
 x,
 mask,
 filename = "",
 inverse = FALSE,
 maskvalue = NA,
 updatevalue = NA,
 updateNA = FALSE,
 ...
)
S4 method for signature 'RasterStackBrick,RasterArray'
mask(
 x,
 mask,
 filename = "",
 inverse = FALSE,
 maskvalue = NA,
 updatevalue = NA,
 updateNA = FALSE,
 ...
)

Arguments

- **x**: Raster* object
- **mask**: Raster* object or a Spatial* object
- **inverse**: logical. If TRUE, areas on mask that are _not_ the maskvalue are masked
- **maskvalue**: numeric. The value in mask that indicates the cells of x that should become updatevalue (default = NA)
- **updatevalue**: numeric. The value that cells of x should become if they are not covered by mask (and not NA)
- **updateNA**: logical. If TRUE, NA values outside the masked area are also updated to the updatevalue (only relevant if the updatevalue is not NA).
- **filename**: character. Optional output filename (only if x is a RasterLayer and RasterStack-Brick)

Details

- RasterArray masked with RasterLayer: every RasterLayer in the stack masked.
- RasterArray masked with another RasterArray: one-to-one match between RasterLayers.
- RasterArray masked with RasterStack: one-to-one match between RasterLayers.
- RasterArray masked with Spatial: all layers masked with an Sp object
- RasterArray masked with Spatial: all layers masked with an Sp object
- RasterLayer masked with RasterArray: layer is masked out iteratively with every member of RasterArray.

Value

A RasterArray or RasterLayer class object (see details above).
Examples

data(dems)

land
lands <- dems
for(i in 1:length(lands)){
 values(lands[i])[values(lands[i])<0] <- NA
 values(lands[i])[!is.na(values(lands[i])]) <- 1
}

land topographies
landTopo<- mask(dems, lands)

matchtime

Match the dates of a time-dependent variable with a predefined vector

Description

The function takes a variable \(x \) (e.g. a vector or a \texttt{RasterArray} object), and reorders it to best match the dates provided in a vector \(y \).

Usage

\begin{verbatim}
matchtime(x, y, ...)

S4 method for signature 'numeric'
matchtime(x, y, index = FALSE, ...)

S4 method for signature 'character'
matchtime(x, y, index = FALSE, ...)

S4 method for signature 'RasterArray'
matchtime(x, y, index = FALSE, time = 1, ...)
\end{verbatim}

Arguments

\begin{itemize}
 \item \texttt{x} Object to be reordered to match \(y \).
 \item \texttt{y} (numeric) The vector of dates (numeric values) to order to.
 \item \texttt{...} Additional arguments passed to class-specific methods.
 \item \texttt{index} (logical) If this argument is \texttt{TRUE}, only the indices will be returned that refer to the new order, rather than the reordered \texttt{x} variable.
 \item \texttt{time} numeric. Single value referring to that dimension of \(x \) where the time-coding names are (time=1 is the default for RasterArrays in chronosphere).
\end{itemize}
Value

An object of the class as x or a numeric vector.

Examples

```r
# original vector
orig <- 1:10
# target values
targ <- c(5.1, 4.2, 3.4, 2.7, 2.3)
# how do the two series match the best?
matchtime(orig, targ)
```

Description

The method is inherited from the RasterStack class. Positions of layers are conserved in the output. (including missing layers)

Usage

```r
## S4 method for signature 'RasterArray'
minValue(x, vec = FALSE)
## S4 method for signature 'RasterArray'
maxValue(x, vec = FALSE)
```

Arguments

- `x`: a RasterArray class object.
- `vec`: Should the dimensions of the RasterArray be omitted?

Value

A numeric vector.

Examples

```r
data(dems)
rangeVals <- cbind(
    minValue(dems),
    maxValue(dems)
)
```
names,XArray-method

Names of one-dimensional RasterArray, SpatialStack or SpatialArray objects.

Description

Get or set the names of one-dimensional RasterArray or SpatialArray objects

Usage

S4 method for signature 'XArray'
names(x)

S4 replacement method for signature 'XArray'
names(x) <- value

S4 method for signature 'SpatialStack'
names(x)

S4 replacement method for signature 'SpatialStack'
names(x) <- value

Arguments

x RasterArray, SpatialStack or SpatialArray object.
value character vector.

Value

A character vector of names or NULL.

Examples

data(dems)
names(dems)
names(dems)[4] <- "weirdo"
NULL
data(coasts)
names(coasts)
ncell,RasterArray-method

Number of cells in a RasterArray object

Description
The method is inherited from the RasterStack class.

Usage
```r
## S4 method for signature 'RasterArray'
ncell(x)
```

Arguments

- `x` | a RasterArray class object.

Value
A numeric value.

Examples
```r
data(dems)
ncell(dems)
```

ncol,XArray-method

Number of columns and rows of a RasterArray or SpatialArray

Description
Unlike the `ncol` and `nrow` functions of the raster package (`ncell`), this function returns the number of columns and rows of the RasterArray container, rather than the dimensions of the contained RasterLayers.

Usage
```r
## S4 method for signature 'XArray'
ncol(x)
```

Arguments

- `x` | A RasterArray or SpatialArray class object.

```r
## S4 method for signature 'XArray'
nrow(x)
```
newbounds

Value

A numeric value of the number of columns and rows.

Examples

data(coasts)
ncol(coasts)
nrow(coasts)

newbounds

Redefine bounds of a named matrix

Description

The function restructures a matrix and extends its current limits to a range defined by a names attribute.

Usage

newbounds(x, cols = NULL, rows = NULL)

Arguments

x
 The matrix to be restructured.

cols
 Column names guiding the restructuring.

rows
 Row names guiding the restructuring.

Details

This is essentially a subsetting function that allows you to subset even when the rownames or colnames vector extends beyond the bounds of a matrix and traditional subsetting methods result in the notorious ‘out of bounds’ error.

Value

A matrix with extended bounds.

Examples

a<-matrix(1:9, ncol=3)
rownames(a) <- c("a", "c", "d")
newbounds(a, rows=letters[1:5])
nums

Names as numerics

Description

The set of functions return names of objects directly transformed to numeric values.

Usage

```r
ums(x)
colnums(x)
rownnums(x)
```

Arguments

- `x`: Object with names, colnames or rownames attributes.

Value

Numeric vector.

Examples

```r
data(dems)
# ages as numerics
nums(dems)
# younger than 20Ma
dems[nums(dems)<20]
```

nvalues

The total number of values in a RasterArray object

Description

The total number of values in a RasterArray object

Usage

```r
nvalues(x, ...)
```

S4 method for signature 'RasterArray'
nvalues(x)
Arguments

- `x` A RasterArray class object.
- ... additional arguments passed to class-specific methods.

Value

A numeric value.

Examples

```r
data(dems)
nvalues(dems)
```

platemodel-class

Class of objects representing plate tectonic models

Description

Meta-object containing paths to a unique plate tectonic model

Usage

```r
## S4 method for signature 'platemodel'
initialize(.Object, path = NULL, rotation = NULL, polygons = NULL)
```

Arguments

- `.Object` Constructor argument (not needed).
- `path` (character) Path to a .mod unique plate model object.
- `rotation` (character) If `path` is `NULL`, the path to the rotation file-part of the model.
- `polygons` (character) If `path` is `NULL`, the path to the plate polygon file-part of the model.

Value

A platemodel class object.

Examples

```r
# extract provided archive
a <- fetch(dat="paleomap", var="model",
   datadir=system.file("extdata", package="chronosphere"))
# manually attach
model <- platemodel(file.path(tempdir(),
   "paleomap_model_v19o_r1c/paleomap_model_v19o_r1c.mod"))
model
```
Description

This plot, method executes the `mapplot` function on the `RasterArray` or `SpatialArray` object.

Usage

```r
## S4 method for signature 'RasterArray,missing'
plot(x, y, ...)

## S4 method for signature 'SpatialArray,missing'
plot(x, y, ...)
```

Arguments

- **x**: A (`RasterArray` or `SpatialArray`) Object to be plotted.
- **y**: Not implemented yet.
- **...**: Arguments passed to the `mapplot` function.

Value

None.

Examples

```r
data(dems)
plot(dems)
```

projectRaster

Project a RasterArray object

Description

The method implements the `projectRaster` function for `RasterArray` class objects.
projectRaster

Usage

projectRaster(
 from,
 to,
 res,
 crs,
 method = "bilinear",
 alignOnly = FALSE,
 over = FALSE,
 filename = "",
 ...
)

S4 method for signature 'RasterArray'
projectRaster(
 from,
 to,
 res,
 crs,
 method = "bilinear",
 alignOnly = FALSE,
 over = FALSE
)

Arguments

from A Raster* RasterArray object to project.
to Raster* object with the parameters to which `from` should be projected
res single or (vector of) two numerics. To, optionally, set the output resolution if
 `to` is missing
crs character or object of class 'CRS'. PROJ.4 description of the coordinate reference system. In projectRaster this is used to set the output CRS if `to` is missing, or if `to` has no valid CRS
method method used to compute values for the new RasterLayer. Either 'ngb' (nearest neighbor), which is useful for categorical variables, or 'bilinear' (bilinear interpolation; the default value), which is appropriate for continuous variables.
alignOnly logical. Use to or other parameters only to align the output (i.e. same origin and resolution), but use the projected extent from from
over logical. If TRUE wrapping around the date-line is turned off. This can be desirable for global data (to avoid mapping the same areas twice) but it is not desirable in other cases
filename character output filename. Not applicable for RasterArray class objects.
... additional arguments as for `writeRaster`.

Value

A projected RasterArray class object.
Examples

project first three to mollweide
data(dems)
suppressWarnings(
 mollDem <- projectRaster(dems[1:3], crs=CRS("+proj=moll"))
)

Example of a RasterArray or SpatialArray object

Description

This function returns an object that symbolizes the structure of layers in the RasterArray and SpatialArray.

Usage

proxy(x, ...)

S4 method for signature 'XArray'
proxy(x)

Arguments

x RasterArray or SpatialArray object.
... additional arguments passed to class-specific methods.

Details

The proxy method wraps the names of layers in the stack using the index slot of the RasterArray.

Value

A vector, matrix or array of characters representing the RasterArray and SpatialArray structure.

Examples

data(dems)
proxy(dems)
data(coasts)
proxy(coasts)
Colour gradient ramps

Description
The object contains functions produced by the `colorRampPalette` function.

Usage
```r
gradinv(n)
ocean(n)
terra(n)
ipccTemp(n, force = 11)
ipccPrec(n, force = 11)
wet(n)
ipccLine(n = 6)
ipccRCP(n = 4)
showPal(pal = "all")
```

Arguments
- `n` (numeric) Number of different colors to generate from the palette
- `force` (logical) Specify `pal` when multiple are available. More details to come.
- `pal` (character) A palette name from the lists below

Details
`showPal` can be used to display the available palettes. You can use `pal = "all"` or `pal = ""` if you want to look at all the available palettes. You can also view single palettes individually. The following colour palettes are implemented:

- `gradinv()`: inverse heatmap.
- `ocean()`: ocean bathymetrical colours.
- `terra()`: terrestrial topographical colours.
- `ipccTemp()`: gradient from blue to red according to the official IPCC AR6 WG2 colour palette.
- `ipccPrec()`: gradient from brown to green according to the official IPCC AR6 WG2 colour palette.
- `wet()`: gradient from white to green to blue.
- `ipccLine()`: discrete colours for line graphs according to the official IPCC AR6 WG2 colour palette.
- `ipccRCP()`: discrete colours for climate scenarios according to the official IPCC AR6 WG2 colour palette.

Value

A function producing a colour gradient ramp.

RasterArray-class

Virtual Array of RasterLayers

Description

Array template for RasterLayers

Arguments

- `stack` A RasterStack class object.
- `index` A vector, matrix or array type object. Includes either the indices of layers in the stack, or their names.
- `dim` A numeric vector. Same as for `array`, creates proxy procedurally.

Details

The class implements structures to organize RasterLayers that have the same dimensions. Subsetting rules were defined using the proxy object in the `index` slot. See examples for implementations.

The class has two slots: stack: RasterStack, the actual data. index: A proxy object that represents the organization of the layers.

Value

A RasterArray class object.

Examples

```r
# data import
data(dems)
st <- dems@stack
ind <- 1:nlayers(st)
names(ind) <- letters[1:length(ind)]
ra <- RasterArray(stack = st, index = ind)
```
Description

Reconstruct the geographic locations from present day coordinates and spatial objects back to their paleo-positions. Each location will be assigned a plate id and moved back in time using the chosen reconstruction model.

Usage

reconstruct(x, ...)

S4 method for signature 'matrix'
reconstruct(
x,
age,
model = "PALEOMAP",
listout = TRUE,
verbose = FALSE,
enumerate = TRUE,
chunk = 200,
reverse = FALSE,
path.gplates = NULL,
cleanup = TRUE,
dir = NULL,
plateperiod = FALSE
)

S4 method for signature 'data.frame'
reconstruct(x, ...)

S4 method for signature 'numeric'
reconstruct(x, ...)

S4 method for signature 'character'
reconstruct(
x,
age,
model = "PALEOMAP",
listout = TRUE,
verbose = FALSE,
path.gplates = NULL,
cleanup = TRUE,
dir = NULL,
plateperiod = FALSE
)
S4 method for signature 'SpatialPolygonsDataFrame'

```r
reconstruct(
  x,
  age,
  model = "PALEOMAP",
  listout = TRUE,
  verbose = FALSE,
  path.gplates = NULL,
  cleanup = TRUE,
  dir = NULL,
  plateperiod = FALSE
)
```

S4 method for signature 'SpatialLinesDataFrame'

```r
reconstruct(
  x,
  age,
  model = "PALEOMAP",
  listout = TRUE,
  verbose = FALSE,
  path.gplates = NULL,
  cleanup = TRUE,
  dir = NULL,
  plateperiod = FALSE
)
```

Arguments

- **x** are the features to be reconstructed. Can be a vector with longitude and latitude representing a single point or a matrix/dataframe with the first column as longitude and second column as latitude, or a `SpatialPolygonsDataFrame` class object. The character strings "plates" and "coastlines" return static plates and rotated present-day coastlines, respectively.

- **...** arguments passed to class-specific methods.

- **age** (numeric) is the age in Ma at which the points will be reconstructed

- **model** (character or `platemodel`) The reconstruction model. The class of this argument selects the submodule used for reconstruction, a character value will invoke the remote reconstruction submodule and will submit `x` to the GPlates Web Service. A `platemodel` class object will call the local-reconstruction submodule. The default is "PALEOMAP". See details for available models.

- **listout** (logical) If multiple ages are given, the output can be returned as a list if `listout = TRUE`.

- **verbose** (logical) Should call URLs (remote submodule) or console feedback (local-submodule) be printed?

- **enumerate** (logical) Should be all coordinate/age combinations be enumerated and reconstructed (set to TRUE by default)? FALSE is applicable only if the number of rows

in \(x \) is equal to the number elements in \(age \). Then a point will be reconstructed to the age that has the same index in \(age \) as the row of the coordinates in \(x \). List output is not available in this case.

chunk

(numeric) Argument of the remote reconstruction submodule. Single integer, the number of coordinates that will be queried from the GPlates in a single go.

reverse

(logical) Argument of the remote reconstruction submodule. The flag to control the direction of reconstruction. If \(\text{reverse} = \text{TRUE} \), the function will calculate the present-day coordinates of the given paleo-coordinates.

path.gplates

(character) Argument of the local reconstruction submodule. In case the GPlates executable file is not found at the coded default location, the full path to the executable (gplates-<ver>.exe on Windows) can be entered here.

cleanup

(logical) Argument of the local reconstruction submodule. Should the temporary files be deleted immediately after reconstructions?

dir

(character) Argument of the local reconstruction submodule. Directory where the temporary files of the reconstruction are stored (defaults to a temporary directory created by R). Remember to toggle cleanup if you want to see the files.

plateperiod

(logical) Argument of the local reconstruction submodule. Should the durations of the plates be forced on the partitioned feature? If these are set to \(\text{TRUE} \) and the plate duration estimates are long, then you might lose some data.

Details

The function implements two reconstruction submodules, which are selected with the `model` argument:

If `model` is a character entry, then the `reconstruct()` function uses the GPlates Web Service (https://gws.gplates.org/, remote reconstruction submodule). The available reconstruction models for this submodule are:

- **"SETON2012"** (Seton et al., 2012) for coastlines and plate polygons.
- **"MULLER2016"** (Muller et al., 2016) for coastlines and plate polygons.
- **"GOLONKA"** (Wright et al. 2013) for coastlines only.
- **"PALEOMAP"** (Scotese and Wright, 2018) for coastlines and plate polygons.
- **"MATTHEWS2016"** (Matthews et al., 2016) for coastlines and plate polygons.

If `model` is a `platemodel` class object, then the function will try to use the GPlates desktop application (https://www.gplates.org/) to reconstruct the coordinates (local reconstruction submodule). Plate models are available in chronosphere with the `fetch` function. See `datasets` for the available models. The function will try to find the main GPlates executable in its default installation directory. If this does not succeed, use `path.gplates` to enter the full path to the GPlates executable as a character string.

Value

A numeric matrix if \(x \) is a numeric, matrix or data.frame, or Spatial* class objects, depending on input.
References

Examples

With the web service (GPlates Web Service was offline at submission)
simple matrices
reconstruct(matrix(c(95, 54), nrow=1), 140)

points reconstruction
xy <-cbind(long=c(95,142), lat=c(54, -33))
reconstruct(xy, 140)

coastlines/plates
coast <- reconstruct("coastlines", 140)
plate <- reconstruct("plates", 139)

reference

Retrieve citation of data object

Description

The function prints or returns the citation string of a chosen object/item.

Usage

reference(dat, var = NULL, ver = NULL, print = TRUE, prefix = "")
Arguments

dat (character) Object downloaded with `fetch` or the database identifier string.
var (character) In case `dat` is character, the variable identifier.
ver (character) In case `dat` is character, the version identifier.
print (logical) Should the citations be printed to the console, or returned as a character vector.
prefix (character) In case the output is printed on the console. Use this to include a prefix before every entry.

Details

The function is intended to be updated to handle BibTEX entries.

resample, RasterArray, ANY-method

Resample a RasterArray object

Description

The method is inherited from the RasterStack class.

Usage

```r
## S4 method for signature 'RasterArray,ANY'
resample(x, y, ...)
```

Arguments

- `x` a RasterArray class object.
- `y` The y argument of the `resample` function.
- `...` arguments passed to the `resample` function.

Value

A resampled RasterArray class object.

Examples

```r
data(dems)
template <- raster(res=5)
resampled <- resample(dems, template)
```
\underline{rotate} \hspace{2cm} \textit{Rotate a RasterArray object}

\section*{Description}

The method is inherited from the \texttt{RasterStack} class.

\section*{Usage}

\begin{verbatim}
S4 method for signature 'RasterArray'
rotate(x, …)
\end{verbatim}

\section*{Arguments}

\begin{itemize}
\item \texttt{x} (\texttt{RasterArray}) Object.
\item \texttt{…} Additional arguments passed to the \texttt{rotate} function.
\end{itemize}

\section*{Value}

A \texttt{RasterArray}-class object.

\underline{rownames,XArray-method} \hspace{1cm} \textit{Row names of two-dimensional RasterArray or SpatialArray objects}

\section*{Description}

Get or set the row names of two-dimensional \texttt{RasterArray} or \texttt{SpatialArray} objects

\section*{Usage}

\begin{verbatim}
S4 method for signature 'XArray'
rownames(x)

S4 replacement method for signature 'XArray'
rownames(x) <- value
\end{verbatim}

\section*{Arguments}

\begin{itemize}
\item \texttt{x} \texttt{RasterArray} or \texttt{SpatialArray} object.
\item \texttt{value} character vector.
\end{itemize}

\section*{Value}

A character vector of row names or \texttt{NULL}.
Description

The function returns snippets of code that you can paste in your script after you select points on a plot. Useful for defining areas on a map. The default methods assume that you will first click in the bottom left and then in the bottom right corner.

Usage

```r
shaper(f = "p", n = 2, round = 2, ...)
```

Arguments

- `f` (character) A single letter value specifying for which function’s argument format you want to get parameters. "p" is for `plot`, "r" is for `rect`, "s" is for `segments`. "e" returns a call to create an `extent` class object from the package `raster`. "m" will return code to define a 2 column matrix.
- `n` (integer) The number of points to request.
- `round` (integer) Number of digits to round to, can be two values, first is for `x` second for `y`.
- `...` arguments passed to the `locator` function

Value

For certain methods ("m" and "e") the function returns a matrix or extent class object if the function output is assigned to a name.

Examples

```r
# plot something
data(dems)
mapplot(dems[1], col="earth")
# click 5 times to get the long-lat coords of 5 points
# shaper("m",5)
# example output:
mat <- matrix(c(
    -2.89, 31.55,
    3.32, 26.99,
    21.17, 17.87,
```
SpatialArray-class
Virtual Array of Vector Spatial data

Description

Array template for Spatial object

Arguments

- stack: A SpatialStack class object.
- index: A vector, matrix or array type object. Includes either the indices of layers in the stack, or their names.
- dim: A numeric vector. Same as for array, creates proxy procedurally.

Details

The class implements structures to organize Spatial objects that have the same CRS. Subsetting rules were defined using the proxy object in the index slot. See examples for implementations.

The class has two slots: stack: SpatialStack, the actual data. index: A proxy object that represents the organization of the layers.

Value

A SpatialStack class object.

Examples

data import
data(dems)
st <- dems@stack
ind <- 1:nlayers(st)
names(ind) <- letters[1:length(ind)]
ra <- RasterArray(stack=st, index=ind)
SpatialStack-class

Stack of Spatial Objects

Description

Vector data in the same CRS organized into a vector.

Arguments

- **Spatials**
 A list of Spatial objects or a character vector of file names identifying items for readOGR, in case the rgdal package is installed.

- **proj4string**
 A CRS-class object.

- **verbose**
 A logical value. Same as for array, creates proxy procedurally.

Details

The class implements a stack of vector data that mimic `RasterStack`-class objects, only with vector data. Classes such as `SpatialPoints`, `SpatialPointsDataFrame`, `SpatialLines`, `SpatialLinesDataFrame`, `SpatialPolygons`, and `SpatialPolygonsDataFrame` can be concatenated to a vector/list, where elements can be accessed using list-type subsetting. The only restriction is that the items must share the same CRS.

The class has two slots: Spatials: List of Spatial items. CRS: The coordinate reference system (CRS). bbox: The bounding box of all items.

Value

A `SpatialStack` class object.

spTransform, SpatialStack, ANY-method

Function to transform the coordinate reference system of an entire SpatialStack or SpatialArray

Description

Joint reprojection of entire sets of vector data.

Usage

```r
# S4 method for signature 'SpatialStack, ANY'
spTransform(x, CRSobj, ...)

# S4 method for signature 'SpatialArray, ANY'
spTransform(x, CRSobj, ...)
```
Arguments

x The `SpatialStack` or `SpatialArray` object.
CRSobj A `CRS` class or character object defining a coordinate reference system.
...
Additional arguments.

Details

The function requires the rgdal package to run.

Value

A `SpatialStack` or `SpatialArray` object.

Examples

```r
# load example data
data(coasts)
mollCoast <- spTransform(coasts, "+proj=moll")
```

Description

The function allows a `RasterArray`-like stacking of Spatial* objects and `SpatialStacks`.

Usage

```r
## S4 method for signature 'VectorSpatialClasses'
stack(x, ...)

## S4 method for signature 'SpatialStack'
stack(x, ...)
```

Arguments

x `SpatialPoints`, `SpatialPointsDataFrame`, `SpatialLines`, `SpatialLinesDataFrame`, `SpatialPolygons`, `SpatialPolygonsDataFrame` object.
...
Additional Spatial* objects.

Value

A `RasterArray` class object.
A `RasterArray` class object.
Examples

data(coasts)
create a SpatialStack similar to a RasterStacknspStack <- stack(one, two, three)

subset,SpatialStack-method

Subset a SpatialStack object

Description

Extract subsets of SpatialStack class object similarly to a RasterStack

Usage

S4 method for signature 'SpatialStack'
subset(x, i, drop = TRUE)

Arguments

x SpatialStack object.
i subscript of vector-like subsetting.
drop logical in case the result of subsetting is a single element, should the SpatialStack wrapper be dropped and the element be reduced to a single RasterLayer?

Value

A Spatial or SpatialStack class object.

Examples

stack of the paleomap paleocoastlinesndata(coasts)nspStack <- coasts@stacknsubset(spStack, "X5Ma_CS_v7")
subset,XArray-method
Subset a RasterArray or SpatialArray object

Description

Extract subsets of `RasterArray` or `SpatialArray` class object similarly to a regular array.

Usage

```r
## S4 method for signature 'XArray'
subset(x, i, j, ..., oneDim = FALSE, drop = TRUE)
```

Arguments

- `x`: `RasterArray` or `SpatialArray` object.
- `i`: subscript of the first dimension (rows) or vector-like subsetting.
- `j`: subscript of the second dimension (columns).
- `...`: subscript of additional dimensions.
- `oneDim`: logical. In case of multidimensional `RasterArrays` or `SpatialArrays`, setting `oneDim` to `TRUE` allows the application of one dimensional subscripts.
- `drop`: logical. In case the result of subsetting is a single element, should the `RasterArray` or `SpatialArray` wrapper be dropped and the element be reduced to a single `RasterLayer`/`Spatial*` object?

Value

A `RasterLayer`, `RasterArray`, `Spatial*` or `SpatialArray` class object.

Examples

```r
data(dems)
# first 4
subset(dems, i=1:4)
# missing at the end
subset(dems, i=1:12)
# character subscript
subset(dems, i=c("5", "25"))
# logical subscript
subs <- rep(TRUE, length(dems))
subs[1] <- FALSE # remove first
subset(dems, i= subs)
# no drop
subset(dems, i=1, drop=FALSE)
data(coasts)
subset(coasts, i=2, j=1:2)
```
t

Description
Transpose a `RasterArray` or `SpatialArray` object

Usage
```
t
```

```r
## S4 method for signature 'XArray'
t(x)
```

Arguments
- `x` A `RasterArray` or `SpatialArray` class object.

Format
An object of class `standardGeneric` of length 1.

Value
A `RasterArray` or `SpatialArray` class object.

Examples
```r
data(dems)
t(dems)
data(coasts)
t(coasts)
```

types

Description
Return types of objects in a `SpatialStack` or `SpatialArray` object

Usage
```
types(x)
```

```r
## S4 method for signature 'SpatialStack'
types(x)
## S4 method for signature 'SpatialArray'
types(x)
```

Methods sequences that start with an NA do not yet work.
Arguments

x SpatialStack or SpatialArray object.

Value

A character class object.

Examples

data(coasts)
types(coasts)

xres,RasterArray-method

Resolution of a RasterArray object

Description

The methods are inherited from the RasterStack class, see resolution. Replacement is not allowed.

Usage

S4 method for signature 'RasterArray'
xres(x)

S4 method for signature 'RasterArray'
yres(x)

S4 method for signature 'RasterArray'
res(x)

Arguments

x a RasterArray class object.

Value

A numeric vector.

Examples

data(dems)
res(dems)
yres(dems)
xres(dems)
Indexing to extract subsets of a SpatialStack object

Description

The single and double bracket subsetting is identical in the case of SpatialStacks.

Usage

```r
## S4 method for signature 'SpatialStack,ANY,ANY'
x[i, drop = TRUE]
```

Arguments

- `x`: SpatialStack object.
- `i`: subscript of vector-like subsetting.
- `drop`: logical in case the result of subsetting is a single element, should the SpatialStack wrapper be dropped and the element be reduced to a single Spatial?

Value

A SpatialStack or Spatial class object.

Examples

```r
# stack of the paleomap paleocoastlines
data(coasts)
spstack <- coasts@stack
spstack[1]
```

Indexing to extract subsets of a codeRasterArray or SpatialArray object

Description

Single bracket `[]` refers to indices and names within the `RasterArray`. Use double brackets to extract layers based on their names (in the stack).

Usage

```r
## S4 method for signature 'XArray,ANY,ANY'
x[i, j, ..., drop = TRUE]
```
Arguments

- **x**: RasterArray or SpatialArray object.
- **i**: subscript of the first dimension (rows) or vector-like subsetting.
- **j**: subscript of the second dimension (columns).
- **drop**: logical in case the result of subsetting is a single element, should the RasterArray or SpatialArray wrapper be dropped and the element be reduced to a single RasterLayer or Spatial*?

Value

A RasterLayer, RasterArray, Spatial* or SpatialArray class object.

Examples

```r
data(dems)
# numeric subsetting
firstThree <- dems[1:3]
# character subsetting
second <- dems["10"]
# logical subsetting
subscript <- rep(FALSE, length(dems))
subscript[2] <- TRUE
second2 <- dems[subscript]
data(coasts)
present <- coasts["0", ]
allMargin <- coasts[, "margin"]
```

Replace layers of a SpatialStack object

Description

The single and double bracket subsetting is identical in the case of SpatialStacks.

Usage

```r
## S4 replacement method for signature 'SpatialStack,character,ANY,VectorSpatialClasses'-method
x[i, j = NULL, ...] <- value

## S4 replacement method for signature 'SpatialStack,logical,ANY,VectorSpatialClasses'-method
x[i, j = NULL, ...] <- value

## S4 replacement method for signature 'SpatialStack,numeric,ANY,VectorSpatialClasses'-method
x[i, j = NULL, ...] <- value
```
S4 replacement method for signature 'SpatialStack,character,ANY,SpatialStack'
x[i, j = NULL, ...] <- value

S4 replacement method for signature 'SpatialStack,logical,ANY,SpatialStack'
x[i, j = NULL, ...] <- value

S4 replacement method for signature 'SpatialStack,numeric,ANY,SpatialStack'
x[i, j = NULL, ...] <- value

S4 replacement method for signature 'SpatialStack,character,ANY,ANY'
x[[i, j, ...]] <- value

S4 replacement method for signature 'SpatialStack,logical,ANY,ANY'
x[[i, j, ...]] <- value

S4 replacement method for signature 'SpatialStack,numeric,ANY,VectorSpatialClasses'
x[[i, j = NULL, ...]] <- value

Arguments

- **x**: SpatialStack object.
- **i**: subscript of vector-like subsetting.
- **j**: unused.
- **...**: unused.
- **value**: A single Spatial object.

Value

None.

Examples

```r
data(coasts)
spstack <- coasts@stack[1:2]
spstack[1] <- mapedge()
```

[<-,XArray,ANY,ANY,logical-method

Replace layers of a RasterArray or SpatialArray object

Description

Single bracket `['` refers to indices and names within the `codeRasterArray` or `SpatialArray`. Use double brackets to replace layers based on their names (in the stack). `RasterLayers` and `RasterArray` entries can be used to replace values in `RasterArrays`. Spatial* objects and `SpatialArrays` can be used with `SpatialArrays`.
Usage

```r
## S4 replacement method for signature 'XArray,ANY,ANY,logical'
x[i, j, ...] <- value

## S4 replacement method for signature 'RasterArray,ANY,ANY,RasterLayer'
x[i, j, ...] <- value

## S4 replacement method for signature 'SpatialArray,ANY,ANY,SpatialPoints'
x[i, j, ...] <- value

## S4 replacement method for signature 'SpatialArray,ANY,ANY,SpatialPointsDataFrame'
x[i, j, ...] <- value

## S4 replacement method for signature 'SpatialArray,ANY,ANY,SpatialLines'
x[i, j, ...] <- value

## S4 replacement method for signature 'SpatialArray,ANY,ANY,SpatialLinesDataFrame'
x[i, j, ...] <- value

## S4 replacement method for signature 'SpatialArray,ANY,ANY,SpatialPolygons'
x[i, j, ...] <- value

## S4 replacement method for signature 'SpatialArray,ANY,ANY,SpatialPolygonsDataFrame'
x[i, j, ...] <- value
```

Arguments

- `x` RasterArray or SpatialArray object.
- `i` subscript of the first dimension (rows) or vector-like subsetting.
- `j` subscript of the second dimension (columns).
- `...` subscript of additional dimensions.
- `value` A same class object as `x`.

Value

None.

Examples

```r
data(dems)
# replace third element with missing value
dems[3] <- NA
# duplicate first element and make it the second too
```
[[, SpatialStack, ANY, ANY-method

Indexing to extract Spatial items from a SpatialStack object

Description

The single and double bracket subsetting is identical in the case of SpatialStacks.

Usage

S4 method for signature 'SpatialStack,ANY,ANY'
x[[i, drop = TRUE]]

Arguments

- `x` SpatialStack object.
- `i` subscript of vector-like subsetting.
- `drop` logical should the SpatialStack be dropped and the element be reduced to a single Spatial object?

Value

A Spatial or SpatialStack class object.

[[, XArray, ANY, ANY-method

Indexing to extract RasterLayers of a RasterArray or Spatial* of a SpatialArray object

Description

Double bracket `[[` refers to layers’ name in the RasterStack of the RasterArray or the SpatialStack of the SpatialArray. Use single brackets to extract elements based on their position in the RasterArray or SpatialArray

Usage

S4 method for signature 'XArray,ANY,ANY'
x[[i, drop = TRUE]]

Arguments

- `x` RasterArray or SpatialArray object.
- `i` subscript of the first dimension(rows) or vector-like subsetting.
- `drop` logical should the RasterStack be dropped and the element be reduced to a single RasterLayer?
Value

A RasterLayer or RasterArray class object.

Examples

data(dems)
finds a layer
dems["dem_30"]
returns a stack
dems[c("dem_0", "dem_15")]
replaces a layer values, but not the attributes of the layer
dem2 <- dems
dem2["dem_0"] <- dem2["dem_5"]
compare every value in the 0 and 5 map maps, they are all the same
mean(values(dem2["dem_0"] == dem2["dem_5"]))

[[<-,XArray,ANY,ANY,ANY-method

Replace RasterLayers in a RasterArray object and Spatial* objects in a SpatialArray object.

Description

Double bracket '[[refers to layers’ name in the RasterStack of the RasterArray and the SpatialStack of the SpatialArray. Use single brackets to replace elements based on their position in the RasterArray/SpatialArray.

Usage

S4 replacement method for signature 'XArray,ANY,ANY,ANY'
x[[i]] <- value

S4 replacement method for signature 'SpatialArray,ANY,missing,SpatialStack'
x[[i]] <- value

Arguments

x RasterArray or SpatialArray object.
i subscript of layers to replace.
value character vector.

Value

None.
Index

* datasets
 apply, 4
casts, 12
dems, 16
extract, 20
t, 55
[, SpatialStack, ANY, ANY-method, 57
[, XArray, ANY, ANY-method, 57
[<-, SpatialStack, character, ANY, VectorSpatialClasses-method, 58
[<-, XArray, ANY, ANY-method, 59
[<-, RasterArray, ANY, ANY, RasterLayer-method, aggregate, 3, 4
[<-, XArray, ANY, ANY, logical-method, 59
[<-, SpatialArray, ANY, ANY, SpatialLines-method
[<-, XArray, ANY, ANY, logical-method, 59
[<-, SpatialArray, ANY, ANY, SpatialLinesDataFrame-method
[<-, XArray, ANY, ANY, logical-method, 59
[<-, SpatialArray, ANY, ANY, SpatialPoints-method
[<-, XArray, ANY, ANY, logical-method, 59
[<-, SpatialArray, ANY, ANY, SpatialPointsDataFrame-method
[<-, XArray, ANY, ANY, logical-method, 59
[<-, SpatialArray, ANY, ANY, SpatialPolygons-method
[<-, XArray, ANY, ANY, logical-method, 59
[<-, SpatialArray, ANY, ANY, SpatialPolygonsDataFrame-method
[<-, XArray, ANY, ANY, logical-method, 59
[<-, SpatialStack, character, ANY, SpatialStack-method
[<-, SpatialStack, character, ANY, VectorSpatialClasses-method, 58
[<-, SpatialStack, numeric, ANY, SpatialStack-method
[<-, SpatialStack, character, ANY, VectorSpatialClasses-method, 58
[<-, SpatialStack, numeric, ANY, VectorSpatialClasses-method
[<-, SpatialStack, character, ANY, VectorSpatialClasses-method, 58
[<-, SpatialStack, ANY, ANY-method, 61
[<-, XArray, ANY, ANY-method, 61
[<-, XArray, ANY, ANY-method, 62
[<-, SpatialArray, ANY, missing, SpatialStack-method
[<-, XArray, ANY, ANY-method, 62
[<-, SpatialStack, ANY, ANY-method, 61
[<-, SpatialStack, character, ANY, VectorSpatialClasses-method, 58
[<-, SpatialStack, logical, ANY, ANY-method, 58
[<-, SpatialStack, numeric, ANY, VectorSpatialClasses-method
[<-, SpatialStack, character, ANY, VectorSpatialClasses-method, 58
aggregate, 3, 4
aggregate, RasterArray-method
apply, 4, 4
apply, RasterArray-method (apply), 4
apply, SpatialArray-method (apply), 4
as, 5
as.data.frame.RasterArray, 5
as.data.frame.SpatialArray
as.list, RasterArray-method, 6
as.RasterArray, RasterBrick-method
as.SpatialArray
INDEX

mask, RasterArray, RasterStackBrick-method
 (mask, RasterArray, RasterLayer-method), platemodel (platemodel-class), 37
 28

mask, RasterArray, Spatial-method
 (mask, RasterArray, RasterLayer-method), plot, RasterArray, missing-method, 38
 (plot, SpatialArray, missing-method), plot, RasterArray, missing-method, 38

mask, RasterLayer, RasterArray-method
 (mask, RasterArray, RasterLayer-method), projectRaster, 38, 38
 (projectRaster, 38)

mask, RasterStackBrick, RasterArray-method
 (mask, RasterArray, RasterLayer-method), proxy, 40
 proxy, XArray-method (proxy), 40
 28

matchtime, 31
matchtime, character-method (matchtime), 31
matchtime, numeric-method (matchtime), 31
matchtime, RasterArray-method (matchtime), 31

matrix, 35

maxValue, RasterArray-method
 (minValue, RasterArray-method), 32

minValue, RasterArray-method, 32

names, SpatialStack-method
 (names, XArray-method), 33
names, XArray-method, 33
names<-, SpatialStack-method
 (names, XArray-method), 33
names<-, XArray-method
 (names, XArray-method), 33
ncell, 34
ncell, RasterArray-method, 34
ncol, XArray-method, 34

newbounds, 35

nlayers, 25
nlayers, SpatialStack-method
 (length, XArray-method), 25

nlayers, XArray-method
 (length, XArray-method), 25

nrow, XArray-method
 (ncol, XArray-method), 34

nums, 36
nvalues, 36
nvalues, RasterArray-method (nvalues), 36

ocean (ramps), 41

platemodel, 44, 45

ramps, 28, 41
RasterArray, 3–6, 10–14, 16–19, 24, 25, 28, 31, 33, 34, 38, 48, 52, 54, 55, 57–62
RasterArray (RasterArray-class), 42
RasterArray-class, 42
RasterLayer, 11, 28
RasterStack, 3, 19, 48, 51

rbind.RasterArray (cbind.RasterArray), 10
rbind.SpatialArray (cbind.RasterArray), 10

reconstruct, 43
reconstruct, character-method
 (reconstruct), 43
reconstruct, data.frame-method
 (reconstruct), 43
reconstruct, matrix-method
 (reconstruct), 43
reconstruct, numeric-method
 (reconstruct), 43
reconstruct, SpatialLinesDataFrame-method
 (reconstruct), 43
reconstruct, SpatialPolygonsDataFrame-method
 (reconstruct), 43

rect, 49
reference, 46

res, RasterArray-method
 (xres, RasterArray-method), 56
resample, 47
resample, RasterArray, ANY-method, 47
resolution, 56
rotate, 48, 48
rotate, RasterArray-method (rotate), 48
rownames, XArray-method, 48
rownames<-, XArray-method
 (rownames, XArray-method), 48
rownums (nums), 36
INDEX

segments, 49
shaper, 49
showPal (ramps), 41
SpatialArray, 5–8, 10, 12–14, 17, 18, 24, 25, 33, 34, 38, 48, 52, 54–62
SpatialArray (SpatialArray-class), 50
SpatialArray-class, 50
SpatialStack, 33, 35, 56, 62
SpatialStack (SpatialStack-class), 51
SpatialStack-class, 51
spTransform, SpatialArray, ANY-method
(spTransform, SpatialStack, ANY-method), 51
spTransform, SpatialStack, ANY-method,
stack, SpatialStack-method
(stack, VectorSpatialClasses-method), 52
stack, VectorSpatialClasses-method, 52
subset, SpatialStack-method, 53
subset, XArray-method, 54

t, 55
t, XArray-method (t), 55
terra (ramps), 41
types, 55
types, SpatialArray-method (types), 55
types, SpatialStack-method (types), 55

wet (ramps), 41
writeRaster, 30, 39

xres, RasterArray-method, 56

yres, RasterArray-method
(xres, RasterArray-method), 56