Package ‘ciccr’

October 29, 2020

Type Package
Title Causal Inference in Case-Control Studies
Version 0.2.0
License GPL-3
Encoding UTF-8
LazyData true
RoxygenNote 7.1.1
Imports stats
Suggests knitr, rmarkdown, testthat, MASS
VignetteBuilder knitr
Depends R (>= 2.10)
URL https://github.com/sokbae/ciccr/
BugReports https://github.com/sokbae/ciccr/issues
NeedsCompilation no
Author Sung Jae Jun [aut], Sokbae Lee [aut, cre]
Maintainer Sokbae Lee <sl3841@columbia.edu>
Repository CRAN
Date/Publication 2020-10-29 10:00:02 UTC
R topics documented:

ACS_CC 2
ACS_CP 3
avg_AR_logit 3
avg_RR_logit 5
ciccr 6
cicc_AR 6
cicc_plot 8
cicc_RR 9
trim_pr 10

Description

A case-control sample extracted from American Community Survey (ACS) 2018, restricted to white males residing in California with at least a bachelor’s degree. The original ACS dataset is not from case-control sampling, but this case-control sample is obtained by the following procedure. The case sample is composed of 921 individuals whose income is top-coded. The control sample of equal size is randomly drawn without replacement from the pool of individuals whose income is not top-coded. Age is restricted to be between 25 and 70.

Usage

ACS_CC

Format

A data frame with 1842 rows and 4 variables:

- age age, in years
- ind industry code, in four digits
- baplus 1 if BA or higher; 0 otherwise
- topincome 1 if income is top-coded; 0 otherwise

Source

https://usa.ipums.org/usa/
Description

A case-population sample extracted from American Community Survey (ACS) 2018, restricted to white males residing in California with at least a bachelor’s degree. The original ACS dataset is not from case-population sampling, but this case-population sample is obtained by the following procedure. The case sample is composed of 921 individuals whose income is top-coded. The control sample of equal size is randomly drawn with replacement from all observations and its top-coded status is coded missing. Age is restricted to be between 25 and 70.

Usage

ACS_CP

Format

A data frame with 1842 rows and 4 variables:

- **age** age, in years
- **ind** industry code, in four digits
- **baplus** 1 if BA or higher; 0 otherwise
- **topincome** 1 if an observation belongs to the case sample; NA otherwise

Source

https://usa.ipums.org/usa/

avg_AR_logit

An Average of the Upper Bound on Causal Attributable Risk

Description

Averages the upper bound on causal attributable risk using prospective and retrospective logistic regression models under the monotone treatment response (MTR) and monotone treatment selection (MTS) assumptions.
Usage

\[
\text{avg_AR_logit}(y, t, x, \text{sampling} = \text{"cc"}, p_upper = 1L, \text{length} = 21L, \text{interaction} = \text{TRUE}, \text{eps} = 1e-08)
\]

Arguments

- **y**: n-dimensional vector of binary outcomes
- **t**: n-dimensional vector of binary treatments
- **x**: n by d matrix of covariates
- **sampling**: 'cc' for case-control sampling; 'cp' for case-population sampling (default = 'cc')
- **p_upper**: specified upper bound for the unknown true case probability (default = 1)
- **length**: specified length of a sequence from 0 to p_upper (default = 21)
- **interaction**: TRUE if there are interaction terms in the retrospective logistic model; FALSE if not (default = TRUE)
- **eps**: a small constant that determines the trimming of the estimated probabilities. Specifically, the estimate probability is trimmed to be between eps and 1-eps (default = 1e-8).

Value

An S3 object of type "ciccr". The object has the following elements.

- **est**: (length)-dimensional vector of the average of the upper bound of causal attributable risk
- **pseq**: (length)-dimensional vector of a grid from 0 to p_upper

References

Examples

use the ACS_CC dataset included in the package.
y = ciccr::ACS_CC$topincome
t = ciccr::ACS_CC$baplus
x = ciccr::ACS_CC$age
results = avg_AR_logit(y, t, x, sampling = 'cc')

avg_RR_logit An Average of the Log Odds Ratio

Description

Averages the log odds ratio using retrospective logistic regression.

Usage

avg_RR_logit(y, t, x, w = "control")

Arguments

y n-dimensional vector of binary outcomes
t n-dimensional vector of binary treatments
x n by d matrix of covariates
w 'case' if the average is conditional on the case sample; 'control' if it is conditional on the control sample default w = 'control'

Value

An S3 object of type "ciccr". The object has the following elements.
est a scalar estimate of the weighted average of the log odds ratio using retrospective logistic regression
se standard error

References

Examples

use the ACS_CC dataset included in the package
y = ciccr::ACS_CC$topincome
t = ciccr::ACS_CC$baplus
x = ciccr::ACS_CC$age
use 'case' to condition on the distribution of covariates given y = 1
results = avg_RR_logit(y, t, x, 'case')
The ciccr package provides methods for causal inference in case-control and case-population studies under the monotone treatment response (MTR) and monotone treatment selection (MTS) assumptions.

Functions

The package includes the following:

- `cicc_plot`: plots upper bounds on relative and attributable risk.
- `cicc_RR`: carries out causal inference on relative risk.
- `avg_RR_logit`: averages the log odds ratio using retrospective logistic regression.
- `cicc_AR`: carries out causal inference on attributable risk.
- `avg_AR_logit`: averages the upper bound on causal attributable risk using prospective and retrospective logistic regression models.
- `ACS_CC`: provides an illustrative case-control sample.
- `ACS_CP`: provides an illustrative case-population sample.

References

Usage

cicc_AR(
 y,
 t,
 x,
 sampling = "cc",
 p_upper = 1L,
 cov_prob = 0.95,
 length = 21L,
 interaction = TRUE,
 no_boot = 0L,
 eps = 1e-08
)

Arguments

y n-dimensional vector of binary outcomes

t n-dimensional vector of binary treatments

x n by d matrix of covariates

sampling 'cc' for case-control sampling; 'cp' for case-population sampling (default = 'cc')

p_upper a specified upper bound for the unknown true case probability (default = 1)

cov_prob coverage probability of a confidence interval (default = 0.95)

length specified length of a sequence from 0 to p_upper (default = 21)

interaction TRUE if there are interaction terms in the retrospective logistic model; FALSE if not (default = TRUE)

no_boot number of bootstrap repetitions to compute the confidence intervals (default = 0)

eps a small constant that determines the trimming of the estimated probabilities. Specifically, the estimate probability is trimmed to be between eps and 1-eps (default = 1e-8).

Value

An S3 object of type "ciccr". The object has the following elements:

est (length)-dimensional vector of the upper bounds on the average of attributable risk

ci (length)-dimensional vector of the upper ends of pointwise one-sided confidence intervals

pseq (length)-dimensional vector of a grid from 0 to p_upper

cov_prob the nominal coverage probability

return_code status of existence of missing values in bootstrap replications
References

Examples

use the ACS_CC dataset included in the package.
y = ciccr::ACS_CC$topincome
t = ciccr::ACS_CC$baplus
x = ciccr::ACS_CC$age
results_AR = cicc_AR(y, t, x, sampling = 'cc', no_boot = 100)

cicc_plot

Plotting Upper Bounds on Relative and Attributable Risk

Description

Plots upper bounds on relative and attributable risk

Usage

cicc_plot(
 results,
 parameter = "RR",
 sampling = "cc",
 save_plots = FALSE,
 file_name = Sys.Date(),
 plots_ctl = 0.3,
 plots_dir = FALSE
)

Arguments

results estimation results from either cicc_RR or cicc_AR
parameter 'RR’ for relative risk; ‘AR’ for attributable risk (default = 'RR’)
sampling 'cc’ for case-control sampling; 'cp’ for case-population sampling (default = 'cc’)
save_plots TRUE if the plots are saved as pdf files; FALSE if not (default = FALSE)
file_name the pdf file name to save the plots (default = Sys.Date())
plots_ctl value to determine the topleft position of the legend in the figure a large value makes the legend far away from the confidence intervals (default = 0.3)
plots_dir a directory where the plots are saved (default = FALSE); plots will be saved under "(current working directory)/figures” by default.
Value

A X-Y plot where the X axis shows the range of p from 0 to p_upper and the Y axis depicts both point estimates and the upper end point of the one-sided confidence intervals.

References

Examples

```r
# use the ACS_CC dataset included in the package.
y = ciccr::ACS_CC$topincome
t = ciccr::ACS_CC$baplus
x = ciccr::ACS_CC$age
results = cicc_RR(y, t, x)
cicc_plot(results)
```

Description

Provides upper bounds on the average of log relative risk under the monotone treatment response (MTR) and monotone treatment selection (MTS) assumptions.

Usage

```r
cicc_RR(y, t, x, sampling = "cc", cov_prob = 0.95)
```

Arguments

- `y`: n-dimensional vector of binary outcomes
- `t`: n-dimensional vector of binary treatments
- `x`: n by d matrix of covariates
- `sampling`: 'cc' for case-control sampling; 'cp' for case-population sampling (default = 'cc')
- `cov_prob`: coverage probability of a uniform confidence band (default = 0.95)

Value

An S3 object of type "ciccr". The object has the following elements:

- `est`: estimates of the upper bounds on the average of log relative risk at p=0 and p=1
- `se`: pointwise standard errors at p=0 and p=1
- `ci`: the upper end points of the uniform confidence band at p=0 and p=1
- `pseq`: two end points: p=0 and p=1
References

Examples

```r
# use the ACS_CC dataset included in the package.
y = ciccr::ACS_CC$topincome
t = ciccr::ACS_CC$baplus
x = ciccr::ACS_CC$age
results_RR = cicc_RR(y, t, x, sampling = 'cc', cov_prob = 0.95)
```

trim_pr

Trimming the estimates to be strictly between 0 and 1

Description

Trimming the estimates to be strictly between 0 and 1

Usage

`trim_pr(ps, eps = 1e-08)`

Arguments

- `ps`: n-dimensional vector of estimated probabilities
- `eps`: a small constant that determines the trimming of the estimated probabilities. Specifically, the estimate probability is trimmed to be between eps and 1-eps (default = 1e-8).

Value

- `ps_tr`: n-dimensional trimmed estimates
Index

* datasets
 ACS_CC, 2
 ACS_CP, 3

ACS_CC, 2, 6
ACS_CP, 3, 6
avg_AR_logit, 3, 6
avg_RR_logit, 5, 6

cicc_AR, 6, 6
cicc_plot, 6, 8
cicc_RR, 6, 9
ciccr, 6

trim_pr, 10