Package ‘cito’

October 6, 2023

Type Package
Title Building and Training Neural Networks
Version 1.0.2
Description Building and training custom neural networks in the typical R syntax. The ‘torch’ package is used for numerical calculations, which allows for training on CPU as well as on a graphics card.

Encoding UTF-8
RoxygenNote 7.2.3
Depends R (>= 3.5)
Imports coro, checkmate, torch, gridExtra, parabar, abind, progress, cli
License GPL (>= 3)
Suggests rmarkdown, testthat, plotly, ggraph, igraph, stats, ggplot2, knitr

VignetteBuilder knitr

BugReports https://github.com/citoverse/cito/issues

URL https://citoverse.github.io/cito/

NeedsCompilation no

Author Christian Amesöder [aut],
 Maximilian Pichler [aut, cre] (<https://orcid.org/0000-0003-2252-8327>),
 Florian Hartig [ctb] (<https://orcid.org/0000-0002-6255-9059>),
 Armin Schenk [ctb]

Maintainer Maximilian Pichler <maximilian.pichler@biologie.uni-regensburg.de>

Repository CRAN

Date/Publication 2023-10-06 14:40:02 UTC
R topics documented:

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALE</td>
<td>2</td>
</tr>
<tr>
<td>analyze_training</td>
<td>4</td>
</tr>
<tr>
<td>cito</td>
<td>5</td>
</tr>
<tr>
<td>coef.citodnn</td>
<td>8</td>
</tr>
<tr>
<td>conditionalEffects</td>
<td>9</td>
</tr>
<tr>
<td>config_lr_scheduler</td>
<td>11</td>
</tr>
<tr>
<td>config_optimizer</td>
<td>13</td>
</tr>
<tr>
<td>continue_training</td>
<td>14</td>
</tr>
<tr>
<td>dnn</td>
<td>15</td>
</tr>
<tr>
<td>PDP</td>
<td>23</td>
</tr>
<tr>
<td>plot.citodnn</td>
<td>26</td>
</tr>
<tr>
<td>predict.citodnn</td>
<td>27</td>
</tr>
<tr>
<td>print.citodnn</td>
<td>28</td>
</tr>
<tr>
<td>print.conditionalEffects</td>
<td>29</td>
</tr>
<tr>
<td>print.summary.citodnn</td>
<td>29</td>
</tr>
<tr>
<td>residuals.citodnn</td>
<td>30</td>
</tr>
<tr>
<td>summary.citodnn</td>
<td>30</td>
</tr>
</tbody>
</table>

Index 32

--

ALE

Accumulated Local Effect Plot (ALE)

Description

Performs an ALE for one or more features.

Usage

```r
ALE(
  model,
  variable = NULL,
  data = NULL,
  K = 10,
  ALE_type = c("equidistant", "quantile"),
  plot = TRUE,
  parallel = FALSE,
  ...
)
```

S3 method for class 'citodnn'

```r
ALE(
  model,
  variable = NULL,
  data = NULL,
  K = 10,
)```

---

ALE

**Accumulated Local Effect Plot (ALE)**

**Description**

Performs an ALE for one or more features.

**Usage**

```r
ALE(
 model,
 variable = NULL,
 data = NULL,
 K = 10,
 ALE_type = c("equidistant", "quantile"),
 plot = TRUE,
 parallel = FALSE,
 ...
)
```

## S3 method for class 'citodnn'

```r
ALE(
 model,
 variable = NULL,
 data = NULL,
 K = 10,
)```
S3 method for class 'citodnnBootstrap'

```r
ALE(
  model,
  variable = NULL,
  data = NULL,
  K = 10,
  ALE_type = c("equidistant", "quantile"),
  plot = TRUE,
  parallel = FALSE,
  ...
)
```

Arguments

- **model**: a model created by `dnn`
- **variable**: variable as string for which the PDP should be done
- **data**: data on which ALE is performed on, if NULL training data will be used.
- **K**: number of neighborhoods original feature space gets divided into
- **ALE_type**: method on how the feature space is divided into neighborhoods.
- **plot**: plot ALE or not
- **parallel**: parallelize over bootstrap models or not
- **...**: arguments passed to `predict`

Value

A list of plots made with `ggplot2` consisting of an individual plot for each defined variable.

Explanation

Accumulated Local Effect plots (ALE) quantify how the predictions change when the features change. They are similar to partial dependency plots but are more robust to feature collinearity.

Mathematical details

If the defined variable is a numeric feature, the ALE is performed. Here, the non centered effect for feature \(j \) with \(k \) equally distant neighborhoods is defined as:

\[
\hat{\tilde{f}}_{j, \text{ALE}}(x) = \sum_{k=1}^{K} \frac{1}{n_j(k)} \sum_{i: x_j(i) \in N_j(k)} \left[\hat{f}(z_{k,j}, x_j(i)) - \hat{f}(z_{k-1,j}, x_j(i)) \right]
\]

Where \(N_j(k) \) is the \(k \)-th neighborhood and \(n_j(k) \) is the number of observations in the \(k \)-th neighborhood.
The last part of the equation, \[\hat{f}(z_{k,j}, x_{k,j}^{(i)}) - \hat{f}(z_{k-1,j}, x_{k-1,j}^{(i)}) \] represents the difference in model prediction when the value of feature \(j \) is exchanged with the upper and lower border of the current neighborhood.

See Also

PDP

Examples

```r
if(torch::torch_is_installed()){
    library(cito)

    # Build and train Network
    nn.fit<- dnn(Sepal.Length~., data = datasets::iris)

    ALE(nn.fit, variable = "Petal.Length")
}
```

Description

After training a model with cito, this function helps to analyze the training process and decide on best performing model. Creates a 'plotly' figure which allows to zoom in and out on training graph

Usage

`analyze_training(object)`

Arguments

- `object` a model created by `dnn`

Details

The baseline loss is the most important reference. If the model was not able to achieve a better (lower) loss than the baseline (which is the loss for a intercept only model), the model probably did not converge. Possible reasons include an improper learning rate, too few epochs, or too much regularization. See the `?dnn` help or the vignette("B-Training_neural_networks").

Value

- a 'plotly' figure
cito

Examples

if(torch::torch_is_installed()){
 library(cito)
 set.seed(222)
 validation_set <- sample(c(1:nrow(datasets::iris)), 25)
 # Build and train Network
 nn.fit <- dnn(Sepal.Length~., data = datasets::iris[-validation_set,], validation = 0.1)
 # show zoomable plot of training and validation losses
 analyze_training(nn.fit)
 # Use model on validation set
 predictions <- predict(nn.fit, iris[validation_set,])
 # Scatterplot
 plot(iris[validation_set,]$Sepal.Length, predictions)
}

cito

'cito': Building and training neural networks

Description

'cito' simplifies the building and training of (deep) neural networks by relying on standard R syntax and familiar methods from statistical packages. Model creation and training can be done with a single line of code. Furthermore, all generic R methods such as print or plot can be used on the fitted model. At the same time, 'cito' is computationally efficient because it is based on the deep learning framework 'torch' (with optional GPU support). The 'torch' package is native to R, so no Python installation or other API is required for this package.

Details

Cito is built around its main function dnn, which creates and trains a deep neural network. Various tools for analyzing the trained neural network are available.

Installation

in order to install cito please follow these steps:
install.packages("cito")
library(torch)
install_torch(reinstall = TRUE)
library(cito)
cito functions and typical workflow

- **dnn**: train deep neural network
- **analyze_training**: check for convergence by comparing training loss with baseline loss
- **continue_training**: continues training of an existing cito dnn model for additional epochs
- **summary.citodnn**: extract xAI metrics/effects to understand how predictions are made
- **PDP**: plot the partial dependency plot for a specific feature
- **ALE**: plot the accumulated local effect plot for a specific feature

Check out the vignettes for more details on training NN and how a typical workflow with 'cito' could look like.

Examples

```r
if(torch::torch_is_installed()){
  library(cito)

  # Example workflow in cito
  ## Build and train Network
  ### softmax is used for multi-class responses (e.g., Species)
  nn.fit<- dnn(Species~., data = datasets::iris, loss = "softmax")

  ## The training loss is below the baseline loss but at the end of the
  ## training the loss was still decreasing, so continue training for another 50
  ## epochs
  nn.fit <- continue_training(nn.fit, epochs = 50L)

  # Structure of Neural Network
  print(nn.fit)

  # Plot Neural Network
  plot(nn.fit)
  ## 4 Input nodes (first layer) because of 4 features
  ## 3 Output nodes (last layer) because of 3 response species (one node for each
  ## level in the response variable).
  ## The layers between the input and output layer are called hidden layers (two
  ## of them)

  ## We now want to understand how the predictions are made, what are the
  ## important features? The summary function automatically calculates feature
  ## importance (the interpretation is similar to an anova) and calculates
  ## average conditional effects that are similar to linear effects:
  summary(nn.fit)

  ## To visualize the effect (response-feature effect), we can use the ALE and
  ## PDP functions

  # Partial dependencies
  PDP(nn.fit, variable = "Petal.Length")
```
Accumulated local effect plots
ALE(nn.fit, variable = "Petal.Length")

Per se, it is difficult to get confidence intervals for our xAI metrics (or # for the predictions). But we can use bootstrapping to obtain uncertainties # for all cito outputs:
Re-fit the neural network with bootstrapping
nn.fit<- dnn(Species~.,
 data = datasets::iris,
 loss = "softmax",
 epochs = 150L,
 verbose = FALSE,
 bootstrap = 20L)
convergence can be tested via the analyze_training function
analyze_training(nn.fit)
Summary for xAI metrics (can take some time):
summary(nn.fit)
Now with standard errors and p-values
Note: Take the p-values with a grain of salt! We do not know yet if they are ## correct (e.g. if you use regularization, they are likely conservative == too ## large)
Predictions with bootstrapping:
 dim(predict(nn.fit))
The first dim corresponds to the bootstrapping, if you want the average
predictions, you need to calculate the mean by your own:
 apply(predict(nn.fit), 2:3, mean)

Advanced: Custom loss functions and additional parameters
Normal Likelihood with sd parameter:
custom_loss = function(true, pred) {
 logLik = torch::distr_normal(pred,
 scale = torch::nnf_relu(scale)+
 0.001)$log_prob(true)
 return(-logLik$mean())
}
nn.fit<- dnn(Sepal.Length~.,
 data = datasets::iris,
 loss = custom_loss,
 verbose = FALSE,
 custom_parameters = list(scale = 1.0))
nn.fit$parameter$scale

Multivariate normal likelihood with parametrized covariance matrix
Sigma = \(L L^t + D\)
Helper function to build covariance matrix
create_cov = function(LU, Diag) {
 return(torch::torch_matmul(LU, LU$t()) + torch::torch_diag(Diag+0.01))
}

custom_loss_MVN = function(true, pred) {
 Sigma = create_cov(SigmaPar, SigmaDiag)
 logLik = torch::distr_multivariate_normal(pred,
 covariance_matrix = Sigma)$
 log_prob(true)
 return(-logLik$mean())
}

nn.fit <- dnn(cbind(Sepal.Length, Sepal.Width, Petal.Length)~.,
 data = datasets::iris,
 lr = 0.01,
 verbose = FALSE,
 loss = custom_loss_MVN,
 custom_parameters =
 list(SigmaDiag = rep(1, 3),
 SigmaPar = matrix(rnorm(6, sd = 0.001), 3, 2))
)

as.matrix(create_cov(nn.fit$loss$parameter$SigmaPar,
 nn.fit$loss$parameter$SigmaDiag))

coef.citodnn

Returns list of parameters the neural network model currently has in use

Description

Returns list of parameters the neural network model currently has in use

Usage

```r
## S3 method for class 'citodnn'
coef(object, ...)

## S3 method for class 'citodnnBootstrap'
coef(object, ...)
```

Arguments

- `object` a model created by `dnn`
- `...` nothing implemented yet
conditionalEffects

Value

list of weights of neural network

Examples

```r
if(torch::torch_is_installed()){
  library(cito)

  set.seed(222)
  validation_set<- sample(c(1:nrow(datasets::iris)),25)

  # Build and train Network
  nn.fit<- dnn(Sepal.Length~., data = datasets::iris[-validation_set,])

  # Structure of Neural Network
  print(nn.fit)

  # analyze weights of Neural Network
  coef(nn.fit)
}
```

conditionalEffects Calculate average conditional effects

Description

Average conditional effects calculate the local derivatives for each observation for each feature. They are similar to marginal effects. And the average of these conditional effects is an approximation of linear effects (see Pichler and Hartig, 2023 for more details). You can use this function to either calculate main effects (on the diagonal, take a look at the example) or interaction effects (off-diagonals) between features.

To obtain uncertainties for these effects, enable the bootstrapping option in the dnn(...) function (see example).

Usage

```r
conditionalEffects(
  object,
  interactions = FALSE,
  epsilon = 0.1,
  device = c("cpu", "cuda", "mps"),
  indices = NULL,
  data = NULL,
  type = "response",
  ...
)
```
S3 method for class 'citodnn'
conditionalEffects(
 object,
 interactions = FALSE,
 epsilon = 0.1,
 device = c("cpu", "cuda", "mps"),
 indices = NULL,
 data = NULL,
 type = "response",
 ...
)

S3 method for class 'citodnnBootstrap'
conditionalEffects(
 object,
 interactions = FALSE,
 epsilon = 0.1,
 device = c("cpu", "cuda", "mps"),
 indices = NULL,
 data = NULL,
 type = "response",
 ...
)

Arguments

- **object**: object of class `citodnn`
- **interactions**: calculate interactions or not (computationally expensive)
- **epsilon**: difference used to calculate derivatives
- **device**: which device
- **indices**: of variables for which the ACE are calculated
- **data**: data which is used to calculate the ACE
- **type**: ACE on which scale (response or link)
- **...**: additional arguments that are passed to the predict function

Value

An S3 object of class "conditionalEffects" is returned. The list consists of the following attributes:

- **result**: 3-dimensional array with the raw results
- **mean**: Matrix, average conditional effects
- **abs**: Matrix, summed absolute conditional effects
- **sd**: Matrix, standard deviation of the conditional effects
config_lr_scheduler

Author(s)
Maximilian Pichler

References

Examples

```r
if(torch::torch_is_installed()){  
  library(cito)

  # Build and train Network
  nn.fit = dnn(Sepal.Length~, data = datasets::iris)

  # Calculate average conditional effects
  ACE = conditionalEffects(nn.fit)

  ## Main effects (categorical features are not supported)
  ACE

  ## With interaction effects:
  ACE = conditionalEffects(nn.fit, interactions = TRUE)
  ## The off diagonal elements are the interaction effects
  ACE[[1]]$mean

  ## ACE is a list, elements correspond to the number of response classes
  ## Sepal.length == 1 Response so we have only one
  ## list element in the ACE object

  # Re-train NN with bootstrapping to obtain standard errors
  nn.fit = dnn(Sepal.Length~, data = datasets::iris, bootstrap = 30L)
  ## The summary method calculates also the conditional effects, and if
  ## bootstrapping was used, it will also report standard errors and p-values:
  summary(nn.fit)
}
```

config_lr_scheduler
Creation of customized learning rate scheduler objects

Description
Helps create custom learning rate schedulers for dnn.
Usage

```r
config_lr_scheduler(
  type = c("lambda", "multiplicative", "reduce_on_plateau", "one_cycle", "step"),
  verbose = FALSE,
  ...
)
```

Arguments

- **type**: String defining which type of scheduler should be used. See Details.
- **verbose**: If TRUE, additional information about scheduler will be printed to console.
- **...**: additional arguments to be passed to scheduler. See Details.

Details

different learning rate scheduler need different variables, these functions will tell you which variables can be set:

- lambda: `lr_lambda`
- multiplicative: `lr_multiplicative`
- reduce_on_plateau: `lr_reduce_on_plateau`
- one_cycle: `lr_one_cycle`
- step: `lr_step`

Value

Object of class cito_lr_scheduler to give to `dnn`

Examples

```r
if(torch::torch_is_installed()){
  library(cito)

  # create learning rate scheduler object
  scheduler <- config_lr_scheduler(type = "step",
                                   step_size = 30,
                                   gamma = 0.15,
                                   verbose = TRUE)

  # Build and train Network
  nn.fit<- dnn(Sepal.Length~., data = datasets::iris, lr_scheduler = scheduler)
}
```
config_optimizer

Creation of customized optimizer objects

Description

Helps you create custom optimizer for dnn. It is recommended to set learning rate in dnn.

Usage

config_optimizer(
 type = c("adam", "adadelta", "adagrad", "rmsprop", "rprop", "sgd"),
 verbose = FALSE,
 ...
)

Arguments

- **type**: character string defining which optimizer should be used. See Details.
- **verbose**: If TRUE, additional information about scheduler will be printed to console
- **...**: additional arguments to be passed to optimizer. See Details.

Details

different optimizer need different variables, this function will tell you how the variables are set. For more information see the corresponding functions:

- adam: optim_adam
- adadelta: optim_adadelta
- adagrad: optim_adagrad
- rmsprop: optim_rmsprop
- rprop: optim_rprop
- sgd: optim_sgd

Value

object of class cito_optim to give to dnn

Examples

```r
if(torch::torch_is_installed()){  
  library(cito)

  # create optimizer object
  opt <- config_optimizer(type = "adagrad",
                          lr_decay = 1e-04,
```
weight_decay = 0.1,
 verbose = TRUE)

Build and train Network
nn.fit<- dnn(Sepal.Length~., data = datasets::iris, optimizer = opt)
{

continue_training

Continues training of a model generated with dnn for additional epochs.

Description

If the training/validation loss is still decreasing at the end of the training, it is often a sign that the NN has not yet converged. You can use this function to continue training instead of re-training the entire model.

Usage

continue_training(
 model,
 epochs = 32,
 data = NULL,
 device = "cpu",
 verbose = TRUE,
 changed_params = NULL,
 parallel = FALSE
)

S3 method for class 'citodnn'
continue_training(
 model,
 epochs = 32,
 data = NULL,
 device = "cpu",
 verbose = TRUE,
 changed_params = NULL,
 parallel = FALSE
)

S3 method for class 'citodnnBootstrap'
continue_training(
 model,
 epochs = 32,
 data = NULL,
 device = "cpu",

dnn

verbose = TRUE,
changed_params = NULL,
parallel = FALSE
)

Arguments

model a model created by dnn
epochs additional epochs the training should continue for
data matrix or data.frame if not provided data from original training will be used
device device on which network should be trained on, either "cpu" or "cuda"
verbose print training and validation loss of epochs
changed_params list of arguments to change compared to original training setup, see dnn which parameter can be changed
parallel train bootstrapped model in parallel

Value

a model of class citodnn or citodnnBootstrap created by dnn

Examples

if(torch::torch_is_installed()){
library(cito)

set.seed(222)
validation_set<- sample(c(1:nrow(datasets::iris)),25)

Build and train Network
nn.fit<- dnn(Sepal.Length~., data = datasets::iris[-validation_set,], epochs = 32)

continue training for another 32 epochs
nn.fit<- continue_training(nn.fit,epochs = 32)

Use model on validation set
predictions <- predict(nn.fit, iris[validation_set,])
}

dnn DNN

Description

fits a custom deep neural network using the Multilayer Perceptron architecture. dnn() supports the formula syntax and allows to customize the neural network to a maximal degree.
Usage

dnn(
 formula,
 data = NULL,
 loss = c("mse", "mae", "softmax", "cross-entropy", "gaussian", "binomial", "poisson"),
 hidden = c(50L, 50L),
 activation = c("relu", "leaky_relu", "tanh", "elu", "rrelu", "prelu", "softplus",
 "celu", "elu", "gelu", "relu6", "sigmoid", "softsign", "hardtanh", "tanhshrink",
 "softshrink", "hardshrink", "log_sigmoid"),
 validation = 0,
 bias = TRUE,
 lambda = 0,
 alpha = 0.5,
 dropout = 0,
 optimizer = c("sgd", "adam", "adadelta", "adagrad", "rmsprop", "rprop"),
 lr = 0.01,
 batchsize = 32L,
 shuffle = TRUE,
 epochs = 100,
 bootstrap = NULL,
 bootstrap_parallel = FALSE,
 plot = TRUE,
 verbose = TRUE,
 lr_scheduler = NULL,
 custom_parameters = NULL,
 device = c("cpu", "cuda", "mps"),
 early_stopping = FALSE
)

Arguments

formula an object of class "formula": a description of the model that should be fitted
data matrix or data.frame with features/predictors and response variable
loss loss after which network should be optimized. Can also be distribution from the
 stats package or own function, see details
hidden hidden units in layers, length of hidden corresponds to number of layers
activation activation functions, can be of length one, or a vector of different activation
 functions for each layer
validation percentage of data set that should be taken as validation set (chosen randomly)
bias whether use biases in the layers, can be of length one, or a vector of different activation
 functions for each layer
lambda strength of regularization: lambda penalty, $\lambda \times (L_1 + L_2)$ (see alpha)
alpha add L1/L2 regularization to training $(1 - \alpha) \times |weights| + \alpha ||weights||^2$ will
 get added for each layer. Can be single integer between 0 and 1 or vector of
 alpha values if layers should be regularized differently.
dropout dropout rate, probability of a node getting left out during training (see nn_dropout)
optimizer which optimizer used for training the network, for more adjustments to optimizer see config_optimizer

lr learning rate given to optimizer

batchsize number of samples that are used to calculate one learning rate step

shuffle if TRUE, data in each batch gets reshuffled every epoch

epochs epochs the training goes on for

bootstrap bootstrap neural network or not, numeric corresponds to number of bootstrap samples

bootstrap_parallel parallelize (CPU) bootstrapping

plot plot training loss

verbose print training and validation loss of epochs

lr_scheduler learning rate scheduler created with config_lr_scheduler

custom_parameters List of parameters/variables to be optimized. Can be used in a custom loss function. See Vignette for example.

device device on which network should be trained on. mps correspond to M1/M2 GPU devices.

early_stopping if set to integer, training will stop if loss has gotten higher for defined number of epochs in a row, will use validation loss is available.

Value

an S3 object of class "cito.dnn" is returned. It is a list containing everything there is to know about the model and its training process. The list consists of the following attributes:

net An object of class "nn_sequential" "nn_module", originates from the torch package and represents the core object of this workflow.

call The original function call

loss A list which contains relevant information for the target variable and the used loss function

data Contains data used for training the model

weights List of weights for each training epoch

use_model_epoch Integer, which defines which model from which training epoch should be used for prediction. 1 = best model, 2 = last model

loaded_model_epoch Integer, shows which model from which epoch is loaded currently into model$net.

model_properties A list of properties of the neural network, contains number of input nodes, number of output nodes, size of hidden layers, activation functions, whether bias is included and if dropout layers are included.
training_properties
A list of all training parameters that were used the last time the model was trained. It consists of learning rate, information about an learning rate scheduler, information about the optimizer, number of epochs, whether early stopping was used, if plot was active, lambda and alpha for L1/L2 regularization, batchsize, shuffle, was the data set split into validation and training, which formula was used for training and at which epoch did the training stop.

losses
A data.frame containing training and validation losses of each epoch

Loss functions / Likelihoods
We support loss functions and likelihoods for different tasks:

<table>
<thead>
<tr>
<th>Name</th>
<th>Explanation</th>
<th>Example / Task</th>
</tr>
</thead>
<tbody>
<tr>
<td>mse</td>
<td>mean squared error</td>
<td>Regression, predicting continuous values</td>
</tr>
<tr>
<td>mae</td>
<td>mean absolute error</td>
<td>Regression, predicting continuous values</td>
</tr>
<tr>
<td>softmax</td>
<td>categorical cross entropy</td>
<td>Multi-class, species classification</td>
</tr>
<tr>
<td>cross-entropy</td>
<td>categorical cross entropy</td>
<td>Multi-class, species classification</td>
</tr>
<tr>
<td>gaussian</td>
<td>Normal likelihood</td>
<td>Regression, residual error is also estimated (similar to stats::lm())</td>
</tr>
<tr>
<td>binomial</td>
<td>Binomial likelihood</td>
<td>Classification/Logistic regression, mortality</td>
</tr>
<tr>
<td>poisson</td>
<td>Poisson likelihood</td>
<td>Regression, count data, e.g. species abundances</td>
</tr>
</tbody>
</table>

Training and convergence of neural networks
Ensuring convergence can be tricky when training neural networks. Their training is sensitive to a combination of the learning rate (how much the weights are updated in each optimization step), the batch size (a random subset of the data is used in each optimization step), and the number of epochs (number of optimization steps). Typically, the learning rate should be decreased with the size of the neural networks (depth of the network and width of the hidden layers). We provide a baseline loss (intercept only model) that can give hints about an appropriate learning rate:

If the training loss of the model doesn’t fall below the baseline loss, the learning rate is either too high or too low. If this happens, try higher and lower learning rates.

A common strategy is to try (manually) a few different learning rates to see if the learning rate is on the right scale.

See the troubleshooting vignette (vignette("B-Training_neural_networks")) for more help on training and debugging neural networks.
Finding the right architecture

As with the learning rate, there is no definitive guide to choosing the right architecture for the right task. However, there are some general rules/recommendations: In general, wider, and deeper neural networks can improve generalization - but this is a double-edged sword because it also increases the risk of overfitting. So, if you increase the width and depth of the network, you should also add regularization (e.g., by increasing the lambda parameter, which corresponds to the regularization strength). Furthermore, in Pichler & Hartig, 2023, we investigated the effects of the hyperparameters on the prediction performance as a function of the data size. For example, we found that the selu activation function outperforms relu for small data sizes (<100 observations).

We recommend starting with moderate sizes (like the defaults), and if the model doesn’t generalize/converge, try larger networks along with a regularization that helps minimize the risk of overfitting (see vignette("B-Training_neural_networks")).

Overfitting

Overfitting means that the model fits the training data well, but generalizes poorly to new observations. We can use the validation argument to detect overfitting. If the validation loss starts to increase again at a certain point, it often means that the models are starting to overfit your training data:

Solutions:

- Re-train with epochs = point where model started to overfit
- Early stopping, stop training when model starts to overfit, can be specified using the early_stopping=. . . argument
- Use regularization (dropout or elastic-net, see next section)
Regularization

Elastic Net regularization combines the strengths of L1 (Lasso) and L2 (Ridge) regularization. It introduces a penalty term that encourages sparse weight values while maintaining overall weight shrinkage. By controlling the sparsity of the learned model, Elastic Net regularization helps avoid overfitting while allowing for meaningful feature selection. We advise using elastic net (e.g. lambda = 0.001 and alpha = 0.2).

Dropout regularization helps prevent overfitting by randomly disabling a portion of neurons during training. This technique encourages the network to learn more robust and generalized representations, as it prevents individual neurons from relying too heavily on specific input patterns. Dropout has been widely adopted as a simple yet effective regularization method in deep learning.

By utilizing these regularization methods in your neural network training with the cito package, you can improve generalization performance and enhance the network’s ability to handle unseen data. These techniques act as valuable tools in mitigating overfitting and promoting more robust and reliable model performance.

Uncertainty

We can use bootstrapping to generate uncertainties for all outputs. Bootstrapping can be enabled by setting bootstrap = ... to the number of bootstrap samples to be used. Note, however, that the computational cost can be excessive.

In some cases it may be worthwhile to parallelize bootstrapping, for example if you have a GPU and the neural network is small. Parallelization for bootstrapping can be enabled by setting the bootstrap_parallel = ... argument to the desired number of calls to run in parallel.

Custom Optimizer and Learning Rate Schedulers

When training a network, you have the flexibility to customize the optimizer settings and learning rate scheduler to optimize the learning process. In the cito package, you can initialize these configurations using the config_lr_scheduler and config_optimizer functions.

config_lr_scheduler allows you to define a specific learning rate scheduler that controls how the learning rate changes over time during training. This is beneficial in scenarios where you want to adaptively adjust the learning rate to improve convergence or avoid getting stuck in local optima.

Similarly, the config_optimizer function enables you to specify the optimizer for your network. Different optimizers, such as stochastic gradient descent (SGD), Adam, or RMSprop, offer various strategies for updating the network’s weights and biases during training. Choosing the right optimizer can significantly impact the training process and the final performance of your neural network.

How neural networks work

In Multilayer Perceptron (MLP) networks, each neuron is connected to every neuron in the previous layer and every neuron in the subsequent layer. The value of each neuron is computed using a weighted sum of the outputs from the previous layer, followed by the application of an activation function. Specifically, the value of a neuron is calculated as the weighted sum of the outputs of the neurons in the previous layer, combined with a bias term. This sum is then passed through an activation function, which introduces non-linearity into the network. The calculated value of each neuron becomes the input for the neurons in the next layer, and the process continues until the
output layer is reached. The choice of activation function and the specific weight values determine
the network’s ability to learn and approximate complex relationships between inputs and outputs.
Therefore the value of each neuron can be calculated using: \(a(\sum_j w_j \ast a_j) \). Where \(w_j \) is the
weight and \(a_j \) is the value from neuron \(j \) to the current one. \(a() \) is the activation function, e.g.
\(\text{relu}(x) = \max(0, x) \)

Training on graphic cards
If you have an NVIDIA CUDA-enabled device and have installed the CUDA toolkit version 11.3
and cuDNN 8.4, you can take advantage of GPU acceleration for training your neural networks. It
is crucial to have these specific versions installed, as other versions may not be compatible. For
detailed installation instructions and more information on utilizing GPUs for training, please refer
to the mlverse: 'torch' documentation.
Note: GPU training is optional, and the package can still be used for training on CPU even without
CUDA and cuDNN installations.

Author(s)
Christian Amesoeder, Maximilian Pichler

See Also
predict.citodnn, plot.citodnn, coef.citodnn, print.citodnn, summary.citodnn, continue_training,
analyze_training, PDP, ALE.

Examples

```r
if(torch::torch_is_installed()){
  library(cito)

  # Example workflow in cito

  ## Build and train Network
  ### softmax is used for multi-class responses (e.g., Species)
  nn.fit<- dnn(Species~., data = datasets::iris, loss = "softmax")

  ## The training loss is below the baseline loss but at the end of the
  ## training the loss was still decreasing, so continue training for another 50
  ## epochs
  nn.fit <- continue_training(nn.fit, epochs = 50L)

  # Structure of Neural Network
  print(nn.fit)

  # Plot Neural Network
  plot(nn.fit)
  ## 4 Input nodes (first layer) because of 4 features
  ## 3 Output nodes (last layer) because of 3 response species (one node for each
  ## level in the response variable).
  ## The layers between the input and output layer are called hidden layers (two
```
of them

We now want to understand how the predictions are made, what are the
important features? The summary function automatically calculates feature
importance (the interpretation is similar to an anova) and calculates
average conditional effects that are similar to linear effects:

`summary(nn.fit)`

To visualize the effect (response-feature effect), we can use the ALE and
PDP functions

Partial dependencies

`PDP(nn.fit, variable = "Petal.Length")`

Accumulated local effect plots

`ALE(nn.fit, variable = "Petal.Length")`

Per se, it is difficult to get confidence intervals for our xAI metrics (or
for the predictions). But we can use bootstrapping to obtain uncertainties
for all cito outputs:

Re-fit the neural network with bootstrapping

`nn.fit <- dnn(Species~.,
 data = datasets::iris,
 loss = "softmax",
 epochs = 150L,
 verbose = FALSE,
 bootstrap = 20L)`

convergence can be tested via the analyze_training function

`analyze_training(nn.fit)`

Summary for xAI metrics (can take some time):

`summary(nn.fit)`

Now with standard errors and p-values

Note: Take the p-values with a grain of salt! We do not know yet if they are
correct (e.g. if you use regularization, they are likely conservative == too
large)

Predictions with bootstrapping:

`dim(predict(nn.fit))`

The first dim corresponds to the bootstrapping, if you want the average
predictions, you need to calculate the mean by your own:

`apply(predict(nn.fit), 2:3, mean)`

Advanced: Custom loss functions and additional parameters

Normal Likelihood with sd parameter:

`custom_loss = function(true, pred) {
 logLik = torch::distr_normal(pred,
 scale = torch::nnf_relu(scale)+
 0.001)$log_prob(true)
 return(-logLik$mean())
}`
PDP

Partial Dependence Plot (PDP)

Description

Calculates the Partial Dependency Plot for one feature, either numeric or categorical. Returns it as a plot.
PDP

Usage

PDP(
 model,
 variable = NULL,
 data = NULL,
 ice = FALSE,
 resolution.ice = 20,
 plot = TRUE,
 parallel = FALSE,
 ...
)

S3 method for class 'citodnn'
PDP(
 model,
 variable = NULL,
 data = NULL,
 ice = FALSE,
 resolution.ice = 20,
 plot = TRUE,
 parallel = FALSE,
 ...
)

S3 method for class 'citodnnBootstrap'
PDP(
 model,
 variable = NULL,
 data = NULL,
 ice = FALSE,
 resolution.ice = 20,
 plot = TRUE,
 parallel = FALSE,
 ...
)

Arguments

model a model created by dnn
variable variable as string for which the PDP should be done. If none is supplied it is done for all variables.
data specify new data PDP should be performed. If NULL, PDP is performed on the training data.
ice Individual Conditional Dependence will be shown if TRUE
resolution.ice resolution in which ice will be computed
plot plot PDP or not
parallel parallelize over bootstrap models or not
... arguments passed to \texttt{predict}

\textbf{Value}

A list of plots made with \texttt{ggplot2} consisting of an individual plot for each defined variable.

\textbf{Description}

Performs a Partial Dependency Plot (PDP) estimation to analyze the relationship between a selected feature and the target variable.

The PDP function estimates the partial function \hat{f}_S:

$\hat{f}_S(x_S) = \frac{1}{n} \sum_{i=1}^{n} \hat{f}(x_S, x_C^{(i)})$

with a Monte Carlo Estimation:

$\hat{f}_S(x_S) = \frac{1}{n} \sum_{i=1}^{n} \hat{f}(x_S, x_C^{(i)})$

using a Monte Carlo estimation method. It calculates the average prediction of the target variable for different values of the selected feature while keeping other features constant.

For categorical features, all data instances are used, and each instance is set to one level of the categorical feature. The average prediction per category is then calculated and visualized in a bar plot.

If the \texttt{ice} parameter is set to \texttt{TRUE}, the Individual Conditional Expectation (ICE) curves are also shown. These curves illustrate how each individual data sample reacts to changes in the feature value. Please note that this option is not available for categorical features. Unlike PDP, the ICE curves are computed using a value grid instead of utilizing every value of every data entry.

Note: The PDP analysis provides valuable insights into the relationship between a specific feature and the target variable, helping to understand the feature’s impact on the model’s predictions. If a categorical feature is analyzed, all data instances are used and set to each level. Then an average is calculated per category and put out in a bar plot.

If \texttt{ice} is set to \texttt{true} additional the individual conditional dependence will be shown and the original PDP will be colored yellow. These lines show, how each individual data sample reacts to changes in the feature. This option is not available for categorical features. Unlike PDP the ICE curves are computed with a value grid instead of utilizing every value of every data entry.

\textbf{See Also}

\texttt{ALE}

\textbf{Examples}

\begin{verbatim}
if(torch::torch_is_installed()){
library(cito)

Build and train Network
nn.fit<- dnn(Sepal.Length~., data = datasets::iris)

PDP(nn.fit, variable = "Petal.Length")
}
\end{verbatim}
plot.citodnn

Creates graph plot which gives an overview of the network architecture.

Description

Creates graph plot which gives an overview of the network architecture.

Usage

S3 method for class 'citodnn'
plot(x, node_size = 1, scale_edges = FALSE, ...)

S3 method for class 'citodnnBootstrap'
plot(x, node_size = 1, scale_edges = FALSE, which_model = 1, ...)

Arguments

- `x` a model created by `dnn`
- `node_size` size of node in plot
- `scale_edges` edge weight gets scaled according to other weights (layer specific)
- `...` no further functionality implemented yet
- `which_model` which model from the ensemble should be plotted

Value

A plot made with `ggraph` + `igraph` that represents the neural network

Examples

```r
if(torch::torch_is_installed()){  
library(cito)

set.seed(222)
validation_set<- sample(c(1:nrow(datasets::iris)),25)

# Build and train Network
nn.fit<- dnn(Sepal.Length~, data = datasets::iris[-validation_set,])

plot(nn.fit)
}
```
predict.citodnn

Description

Predict from a fitted dnn model

Usage

S3 method for class 'citodnn'
predict(
 object,
 newdata = NULL,
 type = c("link", "response", "class"),
 device = c("cpu", "cuda", "mps"),
 ...)

S3 method for class 'citodnnBootstrap'
predict(
 object,
 newdata = NULL,
 type = c("link", "response", "class"),
 device = c("cpu", "cuda", "mps"),
 ...)

Arguments

object a model created by dnn
newdata new data for predictions
type which value should be calculated, either raw response, output of link function or predicted class (in case of classification)
device device on which network should be trained on.
... additional arguments

Value

prediction matrix

Examples

if(torch::torch_is_installed()){
 library(cito)
```r
set.seed(222)
validation_set <- sample(c(1:nrow(datasets::iris)), 25)

# Build and train Network
nn.fit <- dnn(Sepal.Length ~ ., data = datasets::iris[-validation_set,])

# Use model on validation set
predictions <- predict(nn.fit, iris[validation_set,])

# Scatterplot
plot(iris[validation_set,]$Sepal.Length, predictions)

# MAE
mean(abs(predictions - iris[validation_set,]$Sepal.Length))
```

print.citodnn

Print class citodnn

Description
Print class citodnn

Usage

```r
## S3 method for class 'citodnn'
print(x, ...)

## S3 method for class 'citodnnBootstrap'
print(x, ...)
```

Arguments

- `x` a model created by `dnn`
- `...` additional arguments

Value
prediction matrix
original object `x` gets returned

Examples

```r
if(torch::torch_is_installed()){
library(cito)

set.seed(222)
validation_set <- sample(c(1:nrow(datasets::iris)), 25)
```
Build and train Network
nn.fit <- dnn(Sepal.Length ~ ., data = datasets::iris[-validation_set,])

Structure of Neural Network
print(nn.fit)
}

print.conditionalEffects

Print average conditional effects

Usage

```r
## S3 method for class 'conditionalEffects'
print(x, ...)
```

Arguments

- `x`: print ACE calculated by `conditionalEffects`
- `...`: optional arguments for compatibility with the generic function, no function implemented

Value

Matrix with average conditional effects

print.summary.citodnn

Print method for class `summary.citodnn`

Description

Print method for class `summary.citodnn`

Usage

```r
## S3 method for class 'summary.citodnn'
print(x, ...)
```

```r
## S3 method for class 'summary.citodnnBootstrap'
print(x, ...)
```
Arguments

- `x` a summary object created by `summary.citodnn`
- `...` additional arguments

Value

List with Matrices for importance, average CE, absolute sum of CE, and standard deviation of the CE

residuals.citodnn Extract Model Residuals

Description

Returns residuals of training set.

Usage

```r
## S3 method for class 'citodnn'
residuals(object, ...)
```

Arguments

- `object` a model created by `dnn`
- `...` no additional arguments implemented

Value

residuals of training set

summary.citodnn Summarize Neural Network of class citodnn

Description

Performs a Feature Importance calculation based on Permutations

Usage

```r
## S3 method for class 'citodnn'
summary(object, n_permute = NULL, device = NULL, ...)
```

```r
## S3 method for class 'citodnnBootstrap'
summary(object, n_permute = NULL, device = NULL, ...)
```
Arguments

object a model of class citodnn created by dnn
n_permute number of permutations performed. Default is $3 \times \sqrt{n}$, where n equals then number of samples in the training set
device for calculating variable importance and conditional effects
... additional arguments

Details

Performs the feature importance calculation as suggested by Fisher, Rudin, and Dominici (2018), and the mean and standard deviation of the average conditional Effects as suggested by Pichler & Hartig (2023).

Feature importances are in their interpretation similar to a ANOVA. Main and interaction effects are absorbed into the features. Also, feature importances are prone to collinearity between features, i.e. if two features are collinear, the importances might be overestimated.

Average conditional effects (ACE) are similar to marginal effects and approximate linear effects, i.e. their interpretation is similar to effects in a linear regression model.

The standard deviation of the ACE informs about the non-linearity of the feature effects. Higher values correlate with stronger non-linearities.

For each feature n permutation get done and original and permuted predictive mean squared error (e_{perm} & e_{orig}) get evaluated with $FI_j = e_{perm}/e_{orig}$. Based on Mean Squared Error.

Value

summary.citodnn returns an object of class "summary.citodnn", a list with components
Index

ALE, 2, 6, 21, 25
analyze_training, 4, 6, 21

cito, 5
cito-package (cito), 5
coeff.citodnn, 8, 21
coeff.citodnnBootstrap (coeff.citodnn), 8
conditionalEffects, 9, 29
config_lr_scheduler, 11, 17, 20
config_optimizer, 13, 17, 20
continue_training, 6, 14, 21
dnn, 3–6, 8, 11–15, 15, 24, 26–28, 30, 31

define_formula, 16

lr_lambda, 12
lr_multiplicative, 12
lr_one_cycle, 12
lr_reduce_on_plateau, 12
lr_step, 12

nn_dropout, 16

optim_adadelta, 13
optim_adagrad, 13
optim_adam, 13
optim_rmsprop, 13
optim_rprop, 13
optim_sgd, 13

PDP, 4, 6, 21, 23
plot.citodnn, 21, 26
plot.citodnnBootstrap (plot.citodnn), 26
predict, 3, 25
predict.citodnn, 21, 27
predict.citodnnBootstrap
 (predict.citodnn), 27
print.citodnn, 21, 28
print.citodnnBootstrap (print.citodnn), 28
print.conditionalEffects, 29
print.conditionalEffectsBootstrap
 (print.conditionalEffects), 29
print.summary.citodnn, 29
print.summary.citodnnBootstrap
 (print.summary.citodnn), 29
residuals.citodnn, 30
summary.citodnn, 6, 21, 30, 30
summary.citodnnBootstrap
 (summary.citodnn), 30