Package ‘classyfire’

February 19, 2015

Type Package

Title Robust multivariate classification using highly optimised SVM ensembles

Version 0.1-2

Date 2015-01-11

Author Eleni Chatzimichali <ea.chatzimichali@gmail.com> and Conrad Bessant <c.bessant@qmul.ac.uk>

Maintainer Eleni Chatzimichali <ea.chatzimichali@gmail.com>

Description A collection of functions for the creation and application of highly optimised, robustly evaluated ensembles of support vector machines (SVMs). The package takes care of training individual SVM classifiers using a fast parallel heuristic algorithm, and combines individual classifiers into ensembles. Robust metrics of classification performance are offered by bootstrap resampling and permutation testing.

License GPL (>= 2)

Depends R (>= 3.0.0), snowfall (>= 1.84-6), e1071 (>= 1.6-3), boot (>= 1.3-11), neldermead (>= 1.0-9)

Imports ggplot2 (>= 1.0-0), optimbase (>= 1.0-9)

Suggests RUnit, knitr

VignetteBuilder knitr

BugReports https://github.com/eaHat/classyfire/issues

NeedsCompilation no

Repository CRAN

Date/Publication 2015-01-12 01:08:41

R topics documented:

classyfire-package .. 2
cfBuild ... 4
cfPermute ... 8
cfPredict .. 10
classyfire-package

Description

The aim of the *classyfire* package is to improve the quality of multivariate classification projects by making a state-of-the-art multivariate classification workflow available to everyone. Classyfire achieves this by providing powerful functions which automate as much of the classifier building and testing as possible. However, to avoid these functions becoming impenetrable black boxes, detailed information is provided about how these functions work, and full access is provided to the internals of all classifiers that are produced.

Details

<table>
<thead>
<tr>
<th>Package</th>
<th>classyfire</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type</td>
<td>Package</td>
</tr>
<tr>
<td>Version</td>
<td>0.1-2</td>
</tr>
<tr>
<td>Date</td>
<td>2015-01-11</td>
</tr>
<tr>
<td>License</td>
<td>GPL (>= 2)</td>
</tr>
</tbody>
</table>

Author(s)

Adapted functionality by Eleni Chatzimichali (ea.chatzmichali@gmail.com)

Author of the SVM functions: David Meyer (<David.Meyer@R-project.org>)
(based on C/C++-code by Chih-Chung Chang and Chih-Jen Lin)

Author of Scilab neldermead module: Michael Baudin (INRIA - Digiteo)

Author of Scilab R adaptation: Sebastien Bihorel (<sb.pmlab@gmail.com>)

Authors of bootstrap functions: Angelo Canty and Brian Ripley (originally by Angelo Canty for S)
References

There are many references explaining the concepts behind the functionality of this package. Among them are:

Chang, Chih-Chung and Lin, Chih-Jen:
LIBSVM: a library for Support Vector Machines
http://www.csie.ntu.edu.tw/~cjlin/libsvm

Exact formulations of models, algorithms, etc. can be found in the document:
Chang, Chih-Chung and Lin, Chih-Jen:
LIBSVM: a library for Support Vector Machines
http://www.csie.ntu.edu.tw/~cjlin/papers/libsvm.ps.gz

More implementation details and speed benchmarks can be found on:
Rong-En Fan and Pai-Hsune Chen and Chih-Jen Lin:
Working Set Selection Using the Second Order Information for Training SVM

Spendley, W. and Hext, G. R. and Himsworth, F. R.
Sequential Application of Simplex Designs in Optimisation and Evolutionary Operation
American Statistical Association and American Society for Quality, 1962

Nelder, J. A. and Mead, R.
A Simplex Method for Function Minimization
The Computer Journal, 1965

C. T. Kelley
Iterative Methods for Optimization
SIAM Frontiers in Applied Mathematics, 1999

A. C. Davison and D. V. Hinkley
Bootstrap Methods and Their Applications
CUP, 1997

Booth, J.G., Hall, P. and Wood, A.T.A.
Balanced importance resampling for the bootstrap.

Davison, A.C. and Hinkley, D.V.
Bootstrap Methods and Their Application
Cambridge University Press, 1997

Efron, B. and Tibshirani, R.
An Introduction to the Bootstrap
Chapman & Hall, 1993
The `cfBuild` function creates a highly optimised ensemble of radial basis function (RBF) support vector machines (SVMs). The `cfBuild` function takes care of all aspects of the SVM optimisation, internally splitting the supplied data into separate training and testing subsets using a bootstrapping approach coupled with a heuristic optimisation algorithm and parallel processing to minimise computation time. The ensemble object can then be used to classify newly acquired data using the `cfPredict` function.

Usage

```r
cfBuild(inputData, inputClass, ...)```

**Arguments**

- `inputData` — The input data matrix as provided by the user (mandatory field).
- `inputClass` — The input class vector as provided by the user (mandatory field).
- `bootNum` — The number of bootstrap iterations in the optimisation process. By default, the `bootNum` value is set to 100.
- `ensNum` — The number of classifiers that form the classification ensemble. By default, the `ensNum` value is set to 100.
- `parallel` — Boolean value that determines parallel or sequential execution. By default set to `TRUE`. For more details, see `sfInit`.
- `cpus` — Numeric value that provides the number of CPUs requested for the cluster. For more details, see `sfInit`.
- `type` — The type of cluster. It can take the values `‘SOCK’`, `‘MPI’`, `‘PVM’` or `‘NWS’`. By default, type is equal to `‘SOCK’`. For more details, see `sfInit`.
- `socketHosts` — Host list for socket clusters. Only needed for socketmode (SOCK) and if using more than one machines (if using only your local machine (localhost) no list is needed). For more details, see `sfInit`.
- `scaling` — Boolean value that determines whether scaling should be applied (by default set to `TRUE`). Data are scaled internally, usually yielding better results. The parameters of SVM-models usually must be tuned to yield sensible results. For more information, see function `svm`.
- `...` — The remaining optional fields.
Details

For a given input dataset $D$, a random fraction of samples is removed and kept aside as an independent test set during the training process of the model. This selection of samples forms the dataset $D_{test}$. This test set typically comprises a third of the original samples. Using a stratified holdout approach, the test set consists of the same balance of sample classes as the initial dataset $D$. The remaining samples that are not selected, form the training set $D_{train}$. Since the test set is kept aside during the whole training process, the risk of overfitting is minimised.

In the case of bootstrapping, a bootstrap training set $D_{bootTrain}$ is created by randomly picking $n$ samples with replacement from the training dataset $D_{train}$. The total size of $D_{bootTrain}$ is equal to the size of $D_{train}$. Since bootstrapping is based on sampling with replacement, any given sample could be present multiple times within the same bootstrap training set. The remaining samples not found in the bootstrap training set make up the bootstrap test set $D_{bootTest}$. To avoid reliance on one specific bootstrapping split, bootstrapping is repeated at least $bootNum$ times until a clear winning parameter combination emerges.

Ultimately, the optimal parameters are used to train a new classifier with the full $D_{train}$ dataset and test it on the independent test set $D_{test}$, which has been left aside during the entire optimisation process. Even though the approach described thus far generates an excellent classifier, the random selection of test samples in the initial split may have been fortunate. For a more accurate and reliable overview, the whole process should be repeated a minimum of 100 times (default value of $ensNum$) or until a stable average classification rate emerges. The output of this repetition consists of at least $ensNum$ individual classification models built using the optimum parameter settings. Rather than isolating a single classifier, all individual classification models are fused into a classification ensemble.

Value

The cfBuild function returns an object in the form of an R list. The attributes of the list can be accessed by executing the `attributes` command. More specifically, the list of attributes includes:

- `testAcc`: A vector of the test accuracies (%CC) of the single classifiers in the ensemble.
- `trainAcc`: A vector of the train accuracies of the single classifiers in the ensemble.
- `optGamma`: A vector of the optimal gamma values.
- `optCost`: A vector of the optimal cost values.
- `totalTime`: The overall execution time of the ensemble in seconds.
- `runTime`: The individual execution times of the classifiers within the ensemble in seconds.
- `confMatr`: A list featuring the confusion matrices of the classifiers in the ensemble.
- `predClasses`: A list with the vectors of predicted classes as predicted by each classifier.
- `testClasses`: A list with the vectors of true classes of the test class.
- `missNames`: In case that the names of the samples (rows) are supplied in the input data matrix, the `missNames` attribute returns the names of the misclassified samples.
- `accNames`: In case that the names of the samples (rows) are supplied in the input data matrix, the `accNames` attribute returns the names of the correctly classified samples.
- `testIndx`: The randomly selected samples (rows) that were used in this instance to create the train and test data.
A list containing the generated SVM models in the ensemble.

Note

- By default data are scaled internally, usually yielding better results. The parameters of SVM-models usually must be tuned to yield sensible results! For more information, see function \texttt{svm}.
- The \texttt{cfBuild} function does not force an upper limit for the bootNum, ensNum and cpus parameters to the users. However, it is advisable not to use extremely high values for these parameters.

Author(s)

Adapted functionality by Eleni Chatzimichali (ea.chatzimichali@gmail.com)
Author of the SVM functions: David Meyer (<David.Meyer@R-project.org>)
(based on C/C++-code by Chih-Chung Chang and Chih-Jen Lin)
Author of Scilab neldermead module: Michael Baudin (INRIA - Digiteo)
Author of Scilab R adaptation: Sebastien Bihorel (<sb.pmlab@gmail.com>)
Authors of bootstrap functions: Angelo Canty and Brian Ripley (originally by Angelo Canty for S)

References

There are many references explaining the concepts behind the functionality of this function. Among them are:

Chang, Chih-Chung and Lin, Chih-Jen:
\textit{LIBSVM: a library for Support Vector Machines}
\url{http://www.csie.ntu.edu.tw/~cjlin/libsvm}

Exact formulations of models, algorithms, etc. can be found in the document:
Chang, Chih-Chung and Lin, Chih-Jen:
\textit{LIBSVM: a library for Support Vector Machines}
\url{http://www.csie.ntu.edu.tw/~cjlin/papers/libsvm.ps.gz}

More implementation details and speed benchmarks can be found on:
Rong-En Fan and Pai-Hsune Chen and Chih-Jen Lin:
\textit{Working Set Selection Using the Second Order Information for Training SVM}
\url{http://www.csie.ntu.edu.tw/~cjlin/papers/quadworkset.pdf}

Spendley, W. and Hext, G. R. and Himsworth, F. R.
\textit{Sequential Application of Simplex Designs in Optimisation and Evolutionary Operation}
American Statistical Association and American Society for Quality, 1962

Nelder, J. A. and Mead, R.
\textit{A Simplex Method for Function Minimization}
The Computer Journal, 1965

C. T. Kelley
\textit{Iterative Methods for Optimization}
SIAM Frontiers in Applied Mathematics, 1999
A. C. Davison and D. V. Hinkley  
*Bootstrap Methods and Their Applications*  
CUP, 1997

Booth, J.G., Hall, P. and Wood, A.T.A.  
*Balanced importance resampling for the bootstrap.*  

Davison, A.C. and Hinkley, D.V.  
*Bootstrap Methods and Their Application*  
Cambridge University Press, 1997

Efron, B. and Tibshirani, R.  
*An Introduction to the Bootstrap*  
Chapman & Hall, 1993

See Also  
  
```
cfpredict, cfPermute
```

Examples

```r
Not run:
data(iris)

irisClass <- iris[,5]
irisData <- iris[,-5]

Construct a classification ensemble with 100 classifiers and 100 bootstrap
iterations during optimisation
ens <- cfBuild(inputData = irisData, inputClass = irisClass, bootNum = 100,
 ensNum = 100, parallel = TRUE, cpus = 4, type = "SOCK")

List of attributes available for each classifier in the ensemble
attributes(ens)

Get the overall average test and train accuracy
getAvgAcc(ens)$Test
getAvgAcc(ens)$Train

Get all the individual test and train accuracies in the ensemble
ens$testAcc # alternatively, getAcc(ens)$Test
ens$trainAcc # alternatively, getAcc(ens)$Train

End(Not run)
```
cfPermute

Permutation testing to indicate statistical significance of performance

Description

The cfPermute function performs permutation testing on a classification ensemble produced by cfBuild. This is essentially a comparison between the classification performance achieved for a given dataset and the performance that would be achieved by random chance. It therefore provides an indication of significance of the performance of a classifier.

Usage

\[
\text{cfPermute}(\text{inputData, inputClass, bootNum = 100, ensNum = 100, permNum = 100, parallel = TRUE, cpus = NULL, type = "SOCK", socketHosts = NULL, progressBar = TRUE, scaling = TRUE})
\]

Arguments

- **inputData**: The input data matrix as provided by the user (mandatory field).
- **inputClass**: The input class vector as provided by the user (mandatory field).
- **bootNum**: The number of bootstrap iterations during the optimisation process. By default, the value is set to 100.
- **ensNum**: The number of classifiers that constitute the ensemble for each permutation. By default, the value is set to 100.
- **permNum**: The number of permutations to be executed. By default, the value is set to 100.
- **parallel**: Boolean value that determines parallel or sequential execution. By default set to TRUE. For more details, see sfInit.
- **cpus**: Numeric value that provides the number of CPUs requested for the cluster. For more details, see sfInit.
- **type**: The type of cluster. It can take the values ‘SOCK’, ‘MPI’, ‘PVM’ or ‘NWS’. By default, type is equal to ‘SOCK’. For more details, see sfInit.
- **socketHosts**: Host list for socket clusters. Only needed for socketmode (SOCK) and if using more than one machines (if using only your local machine (localhost) no list is needed). For more details, see sfInit.
- **progressBar**: Boolean value that determines whether a progress bar should be displayed. By default set to TRUE.
- **scaling**: Boolean value that determines whether scaling should be applied (by default set to TRUE). Data are scaled internally, usually yielding better results. The parameters of SVM-models usually must be tuned to yield sensible results. For more information, see function svm.
Details

Permutation testing is a widely-applied process used in order to provide an indication of the statistical significance of the classification results. In a permutation test, the entries of the original class vector (inputClass) are randomly shuffled, while the class distribution is preserved. This approach destroys all the sample membership information since the samples of a permuted dataset correspond to randomly assigned classes. The whole model building process as described in \texttt{cfBuild} is once more repeated for the "false" (permuted) classes. In general, permutation testing should be performed at least 100 times (default value of \texttt{permNum}) until a stable distribution of results is obtained.

Value

The \texttt{cfPermute} function returns an object in the form of an R list. The attributes of the list can be accessed by executing the \texttt{attributes} command. More specifically, the list of attributes includes:

\begin{itemize}
  \item \texttt{avgAcc} \quad The average test accuracy across all ensembles within each permutation iteration.
  \item \texttt{totalTime} \quad The overall execution time of permutation testing.
  \item \texttt{execTime} \quad The individual execution times for each permutation round.
  \item \texttt{permList} \quad For each permutation iteration, a new object (list) is generated by the function \texttt{cfBuild} using as input the initial data and the permuted class. This attribute will have the same length - the same number of elements - as the \texttt{permNum} attribute specified in the \texttt{cfPermute} function. For more information on the arguments of the object, see \texttt{cfBuild}.
\end{itemize}

References

Good, P. I.
Permutation, Parametric and Bootstrap Tests of Hypotheses

Hesterberg, T., Moore, D. S., Monaghan, S., Clipson, A. and Epstein, R. Bootstrap methods and permutation tests
Introduction to the Practice of Statistics, vol. 5, pp. 1-70, 2005

See Also

\texttt{getPerm5Num, ggPermHist}

Examples

\begin{verbatim}
# Not run:
data(iris)
irisClass <- iris[,5]
irisData  <- iris[,-5]
ens <- cfBuild(irisData, irisClass, bootNum = 100, ensNum = 100, parallel = TRUE, cpus = 4, type = "SOCK")
\end{verbatim}
# Execute 5 permutation rounds; in each permutation test, an ensemble of 20 classifiers
# is constructed, each running 10 bootstrap iterations during the optimization process
# The default values for permutation testing are ensNum = bootNum = permNum = 100

permObj <- cfPermute(irisData, irisClass, bootNum = 10, ensNum = 20, permNum = 5, parallel = TRUE, cpus = 4, type = "SOCK")

# List of attributes for each permutation
attributes(permObj)

# Get the vector of averaged accuracies, one for each permutation
# (each permutation is an independent classification ensemble)
permObj$avgAcc

# Get the overall elapsed time for the permutation process
permObj$totalTime[3]

# Get the vector of individual execution times for each permutation
permObj$execTime

# Access the first ensemble in the permutation list
permObj$permList[[1]]

## End(Not run)

cfPredict

**Predict the class of new data using an existing ensemble**

**Description**

The `cfPredict` function uses a classification ensemble object created by `cfBuild` to predict the class(es) of one or more samples described by a given data matrix. The function returns the predicted classes for each sample, together with a confidence score (between 0 and 100) which equates to the percentage of SVMs within the classifier that voted for the reported class.

**Usage**

```r
cfPredict(ensObj, newInputData)
```

**Arguments**

- `ensObj` The classification ensemble (in the form of an R list) as generated by `cfBuild`
- `newInputData` A new independent dataset with unknown classes. The new dataset must have exactly the same number of columns as the `inputData`, passed as an argument in `cfBuild`.
Value

The `cfPredict` function returns an object in the form of an R list. The attributes of the list can be accessed by executing the `attributes` command. More specifically, the list of attributes includes:

- **totalPred**: A matrix of the predicted classes as generated by a majority vote between the classifiers in the ensemble along with their confidence scores (the % percentage of the predicted class in the majority vote) for each sample.

- **indivPred**: A matrix of the individual classes as predicted by each classifier in the ensemble. Each row represents a sample to be predicted, and each column an independent classification model in the ensemble as generated by `cfBuild`. The application of a majority vote on these prediction scores generates the `totalPred` matrix.

See Also

`cfBuild`

Examples

```r
Not run:
data(iris)
irisClass <- iris[,5]
irisData <- iris[,-5]

Construct a classification ensemble with 100 classifiers and 100 bootstrap
iterations during optimisation
ens <- cfBuild(irisData, irisClass, bootNum = 100, ensNum = 100, parallel = TRUE,
cpus = 4, type = "SOCK")

Randomly generate test data to find out their classes using the generated ensemble
400 points are selected at random, which results in 100 samples (rows).
Predict the classes of the data using the classifiers in the constructed ensemble

testMatr <- matrix(runif(400)*100, ncol=4)
predRes <- cfPredict(ens, testMatr)

Get the attributes of the object predRes
attributes(predRes)$names

Get the predicted classes as generated by a majority vote between the classifiers
predRes$totalPred

Get the individual classes as predicted by each classifier in the ensemble
predRes$indivPred

End(Not run)
```
getAcc

Get the accuracies of a classification ensemble

Description

The getAcc function returns the test and train accuracies for all the classifiers within a classification ensemble as generated by cfBuild.

Usage

getAcc(ensObj)

Arguments

ensObj   The classification ensemble (in the form of an R list) as generated by cfBuild

Value

The getAcc function returns a list with two named (Test and Train) vectors, equal to the overall test accuracies (%CC) and overall train accuracies of the classifiers within the ensemble. The attributes of the list can be accessed by executing the attributes command.

See Also

getAvgAcc

Examples

```r
Not run:
data(iris)

irisClass <- iris[,5]
irisData <- iris[,-5]

ens <- cfBuild(inputData = irisData, inputClass = irisClass, bootNum = 100,
 ensNum = 100, parallel = TRUE, cpus = 4, type = "SOCK")

Get the attributes provided by the getAcc function
attributes(getAcc(ens))

Get both the vectors of test and train accuracies from the classifiers in the ensemble
getAcc(ens)

Get the vector of test accuracies from the classifiers in the ensemble
getAcc(ens)$Test

Get the vector of train accuracies from the classifiers in the ensemble
getAcc(ens)$Train

End(Not run)
```
getAvgAcc

Get the average accuracies of a classification ensemble

Description
The avgTestAcc function returns the average test accuracy (%CC) and average train accuracy of an ensemble of classifiers as generated by the function cfBuild.

Usage
getAvgAcc(ensObj)

Arguments
ensObj The classification ensemble (in the form of an R list) as generated by cfBuild

Value
The avgTestAcc function returns a list with two named (Test and Train) numerical values, equal to the average overall test accuracy (%CC) and the average overall train accuracy of the ensemble. The attributes of the list can be accessed by executing the attributes command.

See Also
getAcc

Examples
## Not run:
data(iris)

irisClass <- iris[,5]
irisData <- iris[,-5]

ens <- cfBuild(inputData = irisData, inputClass = irisClass, bootNum = 100,
ensNum = 100, parallel = TRUE, cpus = 4, type = "SOCK")

# Get the attributes provided by the getAvgAcc function
attributes(getAvgAcc(ens))

# Get the average test and train accuracies within the ensemble
getAvgAcc(ens)

# Get the average test accuracy
getAvgAcc(ens)$Test

# Get the average train accuracy
getAvgAcc(ens)$Train

## End(Not run)
Description

The `getConfMatr` function returns a confusion matrix from an ensemble created by `cfBuild`. The matrix is populated using class predictions for test data, predictions which were obtained during the building and optimisation of the classifier. Each column of the confusion matrix represents the instances in a predicted class, while each row represents the instances in an actual class. Cells in the matrix indicate the percentage of samples predicted to belong to each class. In a perfect ensemble the diagonal elements would all be 100%.

Usage

```
getConfMatr(ensObj)
```

Arguments

- `ensObj` The classification ensemble (in the form of an R list) as generated by `cfBuild`.

Note

A graphical representation of this information is provided by `ggClassPred`.

Examples

```r
Not run:
data(iris)
irisClass <- iris[,5]
irisData <- iris[,-5]
ens <- cfBuild(irisData, irisClass, bootNum = 100, ensNum = 100, parallel = TRUE, cpus = 4, type = "SOCK")

Get the confusion matrix summarising the performance of the ensemble
getConfMatr(ens)
End(Not run)
```
getOptParam

Get the optimal SVM hyperparameters of a classification ensemble

Description

To allow detailed reporting of the methods used to create classifiers, the `getOptParam` function retrieves the optimum hyperparameters for each SVM within an ensemble classifier, built using `cfBuild`.

Usage

```r
getOptParam(ensObj)
```

Arguments

- `ensObj` The classification ensemble (in the form of an R list) as generated by `cfBuild`.

Value

Returns a matrix containing the optimal gamma and optimal cost for each SVM in the classification ensemble. For information about what these hyperparameters are and how they are determined, see the documentation for `cfBuild`.

Examples

```r
Not run:
data(iris)

irisClass <- iris[,5]
irisData <- iris[,-5]

ens <- cfBuild(irisData, irisClass, bootNum = 100, ensNum = 100, parallel = TRUE, cpus = 4, type = "SOCK")

Get the optimal SVM hyperparameters of the classification ensemble
optParam <- getOptParam(ens)

optParam

End(Not run)
```
getPerm5Num

Get descriptive statistics from a permutation object

Description

The getPerm5Num function returns the "five number summary", a descriptive statistic that consists of the minimum, first (lower) quartile, median, third (upper) quartile and maximum value of a given distribution. In this case, the function is applied directly on the output of permutation testing, generated by the cfPermute function.

Usage

getPerm5Num(permObj)

Arguments

permObj The permutation object as generated by cfPermute

Value

The getPerm5Num function returns an R object in the form of a list that contains the five number summary. The names of the returned statistics can be viewed by using the function attributes.

Examples

## Not run:
data(iris)

irisClass <- iris[,5]
irisData  <- iris[,-5]
permObj <- cfPermute(irisData, irisClass, bootNum = 10, ensNum = 20, permNum = 5,
                     parallel = TRUE, cpus = 4, type = "SOCK")

getPerm5Num(permObj)
getPerm5Num(permObj)$median
getPerm5Num(permObj)$minimum
getPerm5Num(permObj)$maximum
getPerm5Num(permObj)$upperQ
getPerm5Num(permObj)$lowerQ

## End(Not run)
**Description**

The `ggClassPred` function generates a barplot with the per class accuracies (%) for all the correctly classified and misclassified samples in the classification ensemble.

**Usage**

```r
ggClassPred(ensObj, position = "stack", displayAll = FALSE, showText = FALSE,
 xlabel = NULL, ylabel = NULL, cbPalette = FALSE, fillBrewer = FALSE)
```

**Arguments**

- `ensObj`: The classification ensemble (in the form of an R list) as generated by `cfBuild`.
- `position`: The position may be equal to either "stack" or "dodge".
- `displayAll`: Boolean value, by default set to FALSE. When `displayAll = FALSE`, only the percentages of correctly classified samples are displayed in the barplot. If `displayAll = TRUE`, the percentages of all classified and misclassified samples are depicted in the barplot.
- `showText`: Boolean value, by default set to FALSE. If `showText = TRUE`, then the per class accuracies (%) for all classifiers in the ensemble are displayed in the plot.
- `xlabel`: A subtitle for the x axis (optional field).
- `ylabel`: A subtitle for the y axis (optional field).
- `cbPalette`: If TRUE, enable a color-blind-friendly palette.
- `fillBrewer`: If TRUE, enable a color scale taken from the RColorBrewer package.

**Examples**

```r
Not run:
data(iris)

irisClass <- iris[,5]
irisData <- iris[,-5]

ens <- cfBuild(irisData, irisClass, bootNum = 100, ensNum = 100, parallel = TRUE,
 cpus = 4, type = "SOCK")

Show the percentages of correctly classified samples in
a barplot with or without text respectively

ggClassPred(ens)
ggClassPred(ens, showText = TRUE)

Show the percentages of classified and misclassified samples
```
# in a barplot simultaneously with and without text

ggClassPred(ens, displayAll = TRUE)
ggClassPred(ens, position="stack", displayAll = TRUE)
ggClassPred(ens, position="stack", displayAll = TRUE, showText = TRUE)

# Alternatively, using a dodge position

ggClassPred(ens, position = "dodge", displayAll = TRUE)
ggClassPred(ens, position = "dodge", displayAll = TRUE, showText = TRUE)

## End(Not run)

---

**ggEnsHist**  
*Ensemble Histograms*

**Description**

The `ggEnsHist` function generates a histogram of the ensemble results as generated by `cfBuild`.

**Usage**

```r
ggEnsHist(ensObj, density = FALSE, percentiles = FALSE, mean = FALSE, median = FALSE)
```

**Arguments**

- **ensObj**  
The classification ensemble (in the form of an R list) as generated by `cfBuild`
- **density**  
  Boolean value, by default equal to `FALSE`. If density = `FALSE`, the histogram depicts frequencies, the counts component of the result. Instead, for density = `TRUE`, probability densities are plotted.
- **percentiles**  
  Boolean value, by default equal to `FALSE`. If percentiles = `TRUE`, the upper and lower percentiles of the distribution are depicted in the plot.
- **mean**  
  Boolean value, by default equal to `FALSE`. If mean = `TRUE`, the mean of the distribution is depicted in the plot.
- **median**  
  Boolean value, by default equal to `FALSE`. If median = `TRUE`, the median of the distribution is depicted in the plot.

**See Also**

- `ggPermHist`

**Examples**

```r
Not run:
data(iris)

irisClass <- iris[,5]
irisData <- iris[,1:5]
```


```r
ens <- cfBuild(irisData, irisClass, bootNum = 100, ensNum = 100, parallel = TRUE,
 cpus = 4, type = "SOCK")

Basic histogram of the test accuracies in the ensemble
ggEnsHist(ens)

Density plot of the test accuracies in the ensemble
ggEnsHist(ens, density = TRUE)

Density plot that highlights additional descriptive statistics
ggEnsHist(ens, density = TRUE, percentiles=TRUE)
ggEnsHist(ens, density = TRUE, percentiles=TRUE, mean=TRUE)
ggEnsHist(ens, density = TRUE, percentiles=TRUE, median=TRUE)
```

```r
End(Not run)
```

---

**Description**

The `ggEnsTrend` function displays the average test accuracies for every new classifier added to the ensemble, as constructed by the `cfBuild` function.

**Usage**

```r
ggEnsTrend(ensObj, xlabel = NULL, ylabel = NULL, showText = FALSE, xlims = NULL,
 ylims = NULL)
```

**Arguments**

- `ensObj`: The R object as generated by `cfBuild`
- `xlabel`: A sub title for the x axis (optional field).
- `ylabel`: A sub title for the y axis (optional field).
- `showText`: Boolean value, by default set to `FALSE`. If `showText=TRUE`, then the values of all test accuracies in the ensemble are displayed in the plot.
- `xlims`: A vector of numeric values that specifies the minimum and maximum values in the x axis.
- `ylims`: A vector of numeric values that specifies the minimum and maximum values in the y axis.

**Examples**

```r
Not run:
data(iris)
irisClass <- iris[,5]
```
irisData <- iris[,-5]
ens <- cfBuild(irisData, irisClass, bootNum = 100, ensNum = 100, parallel = TRUE, 
cpus = 4, type = "SOCK")

# Plot the trend of the test accuracies in the ensemble
ggEnsTrend(ens)

# Plot with text
ggEnsTrend(ens, showText = TRUE)

# Plot with text; set different limits on y axis
ggEnsTrend(ens, showText = TRUE, ylims=c(90, 100))
## End(Not run)

### ggFusedHist

**Fused histograms of ensemble and permutation results**

**Description**

The `ggFusedHist` function generates a histogram of the permutation results as generated by `cfBuild` and `cfPermute`.

**Usage**

`ggFusedHist(ensObj, permObj)`

**Arguments**

- `ensObj` The classification ensemble (in the form of an R list) as generated by `cfBuild`
- `permObj` The permutation object as generated by `cfPermute`

**See Also**

`cfBuild, cfPermute, ggEnsHist, ggPermHist`

**Examples**

## Not run:
data(iris)

irisClass <- iris[,5]
irisData  <- iris[,-5]

# ** Use parallel = FALSE for execution in sequence **

# Ensemble construction
ensObj  <- cfBuild(inputData = irisData, inputClass = irisClass, bootNum = 5,
ggPermHist

```r
gPermHist = 21
ensNum = 2, parallel = FALSE)

Permutation test
permObj <- cfPermute(irisData, irisClass, bootNum = 5, ensNum = 2, permNum = 2,
 parallel = FALSE)

ggFusedHist(ensObj, permObj)

End(Not run)
```

---

**Description**

The `ggPermHist` function generates a histogram of the permutation results as generated by `cfPermute`.

**Usage**

```r
ggPermHist(permObj, density = FALSE, percentiles = FALSE, mean = FALSE,
 median = FALSE)
```

**Arguments**

- `permObj`: The permutation object as generated by `cfPermute`
- `density`: Boolean value, by default equal to `FALSE`. If `density = FALSE`, the histogram depicts frequencies, the counts component of the result. Instead, for `density = TRUE`, probability densities are plotted.
- `percentiles`: Boolean value, by default equal to `FALSE`. If `percentiles = TRUE`, the upper and lower percentiles of the distribution are depicted in the plot.
- `mean`: Boolean value, by default equal to `FALSE`. If `mean = TRUE`, the mean of the distribution is depicted in the plot.
- `median`: Boolean value, by default equal to `FALSE`. If `median = TRUE`, the median of the distribution is depicted in the plot.

**See Also**

`ggEnsHist`

**Examples**

```r
Not run:
data(iris)

irisClass <- iris[,5]
irisData <- iris[,1:4]

permObj <- cfPermute(irisData, irisClass, bootNum = 10, ensNum = 20, permNum = 5,
```
parallel = TRUE, cpus = 4, type = "SOCK")

# Basic histogram of the averaged test accuracies during permutation
ggPermHist(permObj)

# Density plot
ggPermHist(permObj, density=TRUE)

# Density plot that highlights additional descriptive statistics
ggPermHist(permObj, density=TRUE, percentiles = TRUE, mean = TRUE)

## End(Not run)
Index

*Topic **array**
  getAcc, 12
  getAvgAcc, 13
  getConfMatr, 14
  getOptParam, 15

*Topic **classif**
  cfBuild, 4
  cfPredict, 10

*Topic **hplot**
  ggClassPred, 17
  ggEnsHist, 18
  ggEnsTrend, 19
  ggFusedHist, 20
  ggPermHist, 21

*Topic **math**
  getPerm5Num, 16

*Topic **models**
  cfBuild, 4
  cfPermute, 8
  cfPredict, 10

*Topic **multivariate**
  cfBuild, 4
  cfPredict, 10

*Topic **nonlinear**
  cfBuild, 4
  cfPredict, 10

*Topic **nonparametric**
  cfPermute, 8

*Topic **optimize**
  cfBuild, 4

*Topic **package**
  classyfire-package, 2
  attrs, 5, 9, 11–13, 16
  cfBuild, 4, 8–15, 17–20
  cfPermute, 7, 8, 16, 20, 21
  cfPredict, 4, 7, 10
  classyfire(classyfire-package), 2
  classyfire-package, 2

getAcc, 12, 13
getAvgAcc, 12, 13
getConfMatr, 14
getOptParam, 15
getPerm5Num, 9, 16
ggClassPred, 14, 17
ggEnsHist, 18, 20, 21
ggEnsTrend, 19
ggFusedHist, 20
ggPermHist, 9, 18, 20, 21
sfInit, 4, 8
svm, 4, 6, 8