Package ‘cleaner’

October 29, 2022

Title Fast and Easy Data Cleaning
Version 1.5.4
Date 2022-10-28

Description Data cleaning functions for classes logical, factor, numeric, character, currency and Date to make data cleaning fast and easy. Relying on very few dependencies, it provides smart guessing, but with user options to override anything if needed.

Depends R (>= 3.0.0)
Imports backports, crayon, knitr, pillar, rlang (>= 0.3.1), vctrs
Suggests ggplot2, rmarkdown, testthat (>= 1.0.2)

URL https://msberends.github.io/cleaner/
https://github.com/msberends/cleaner

BugReports https://github.com/msberends/cleaner/issues
License GPL-2
Encoding UTF-8
LazyData true
RoxygenNote 7.2.1

Author Matthijs S. Berends [aut, cre]
 (<https://orcid.org/0000-0001-7620-1800>)
Maintainer Matthijs S. Berends <m.s.berends@umcg.nl>
Repository CRAN
Date/Publication 2022-10-29 07:50:39 UTC

R topics documented:
clean .. 2
currency ... 6
Clean column data to a class

Description

Use any of these functions to quickly clean columns in your data set. Use `clean()` to pick the functions that return the least relative number of NAs. They always return the class from the function name (e.g. `clean_Date()` always returns class `Date`).

Usage

```r
clean(x)

## S3 method for class 'data.frame'
clean(x)

clean_logical(
  x,
  true = regex_true(),
  false = regex_false(),
  na = NULL,
  fixed = FALSE,
  ignore.case = TRUE
)

clean_factor(
  x,
  levels = unique(x),
  ordered = FALSE,
  droplevels = FALSE,
  fixed = FALSE,
  ignore.case = TRUE
)

clean_numeric(x, remove = "[^0-9.,-]", fixed = FALSE)
```
clean_double(x, remove = "[^0-9.,-]", fixed = FALSE)
clean_integer(x, remove = "[^0-9.,-]", fixed = FALSE)
clean_character(
 x,
 remove = "[^a-z \t\r\n]",
 fixed = FALSE,
 ignore.case = TRUE,
 trim = TRUE
)
clean_currency(x, currency_symbol = NULL, remove = "[^0-9.,-]", fixed = FALSE)
clean_percentage(x, remove = "[^0-9.,-]", fixed = FALSE)
clean_Date(x, format = NULL, guess_each = FALSE, max_date = Sys.Date(), ...)
clean_POSIXct(
 x,
 tz = ",",
 remove = "[^.0-9 :/-]",
 fixed = FALSE,
 max_date = Sys.Date(),
 ...)

Arguments

- **x**: data to clean
- **true**: regex to interpret values as TRUE (which defaults to `regex_true`), see Details
- **false**: regex to interpret values as FALSE (which defaults to `regex_false`), see Details
- **na**: regex to force interpret values as NA, i.e. not as TRUE or FALSE
- **fixed**: logical to indicate whether regular expressions should be turned off
- **ignore.case**: logical to indicate whether matching should be case-insensitive
- **levels**: new factor levels, may be named with regular expressions to match existing values, see Details
- **ordered**: logical to indicate whether the factor levels should be ordered
- **droplevels**: logical to indicate whether non-existing factor levels should be dropped
- **remove**: regex to define the character(s) that should be removed, see Details
- **trim**: logical to indicate whether the result should be trimmed with `trimws(..., which = "both")`
- **currency_symbol**: the currency symbol to use, which will be guessed based on the input and otherwise defaults to the current system locale setting (see `Sys.localeconv`)
format: character string giving a date-time format as used by `strptime`.
For `clean_Date(..., guess_each = TRUE)`, this can be a vector of values to be used for guessing, see Examples.

guess_each: logical to indicate whether all items of `x` should be guessed one by one, see Examples.

max_date: date (coercible with `[as.Date()]`) to indicate to maximum allowed of `x`, which defaults to today. This is to prevent that `clean_Date("23-03-47")` will return 23 March 2047 and instead returns 23 March 1947 with a warning.

...: for `clean_Date` and `clean.POSIXct`: other parameters passed on these functions.

tz: time zone specification to be used for the conversion, *if one is required*. System-specific (see time zones), but "" is the current time zone, and "GMT" is UTC (Universal Time, Coordinated). Invalid values are most commonly treated as UTC, on some platforms with a warning.

Details

Using `clean()` on a vector will guess a cleaning function based on the potential number of NAs it returns. Using `clean()` on a data.frame to apply this guessed cleaning over all columns.

Info about the different functions:

- `clean_logical()`:
 Use parameters `true` and `false` to match values using case-insensitive regular expressions (`regex`). Unmatched values are considered NA. At default, values are matched with `regex_true` and `regex_false`. This allows support for values "Yes" and "No" in the following languages: Arabic, Bengali, Chinese (Mandarin), Dutch, English, French, German, Hindi, Indonesian, Japanese, Malay, Portuguese, Russian, Spanish, Telugu, Turkish and Urdu. Use parameter `na` to override values as NA that would else be matched with true or false. See Examples.

- `clean_factor()`:
 Use parameter `levels` to set new factor levels. They can be case-insensitive regular expressions to match existing values of `x`. For matching, new values for `levels` are internally temporarily sorted descending on text length. See Examples.

- `clean_numeric()`, `clean_double()`, `clean_integer()` and `clean_character()`:
 Use parameter `remove` to match values that must be removed from the input, using regular expressions (`regex`). In case of `clean_numeric()`, comma's will be read as dots and only the last dot will be kept. Function `clean_character()` will keep middle spaces at default. See Examples.

- `clean_percentage()`:
 This new class works like `clean_numeric()`, but transforms it with `as.percentage`, which will retain the original values, but will print them as percentages. See Examples.

- `clean_currency()`:
 This new class works like `clean_numeric()`, but transforms it with `as.currency`. The currency symbol is guessed based on the most traded currencies by value (see Source): the United States dollar, Euro, Japanese yen, Pound sterling, Swiss franc, Renminbi, Swedish krona, Mexican peso, South Korean won, Turkish lira, Russian ruble, Indian rupee and the South African rand. See Examples.
• **clean_Date()**:
 Use parameter `format` to define a date format, or leave it empty to have the format guessed. Use "Excel" to read values as Microsoft Excel dates. The format parameter will be evaluated with `format_datetime`, which means that a format like "d-mmm-yy" will be translated internally to "%e-%b-%y" for convenience. See Examples.

• **clean_POSIXct()**:
 Use parameter `remove` to match values that must be removed from the input, using regular expressions (regex). The resulting string will be coerced to a date/time element with class `POSIXct`, using `as.POSIXct()`. See Examples.

The use of invalid regular expressions in any of the above functions will not return an error (like in base R), but will instead interpret the expression as a fixed value and will throw a warning.

Value

The `clean_*` functions always return the class from the function name:

• **clean_logical()**: class `logical`
• **clean_factor()**: class `factor`
• **clean_numeric()** and **clean_double()**: class `numeric`
• **clean_integer()**: class `integer`
• **clean_character()**: class `character`
• **clean_percentage()**: class `percentage`
• **clean_currency()**: class `currency`
• **clean_Date()**: class `Date`
• **clean_POSIXct()**: classes `POSIXct/POSIXt`

Source

Examples

clean_logical(c("Yes", "No")) # English
clean_logical(c("Oui", "Non")) # French
clean_logical(c("ya", "tidak")) # Indonesian
clean_logical(x = c("Positive", "Negative", "Unknown", "Some value"),
true = "pos", false = "neg")

gender_age <- c("male 0-50", "male 50+", "female 0-50", "female 50+")
clean_factor(gender_age, c("M", "F"))
clean_factor(gender_age, c("Male", "Female"))
clean_factor(gender_age, c("0-50", "50+")), ordered = TRUE)

clean_Date("13jul18", "ddmmmyy")
clean_Date("12 August 2010")
clean_Date("12 06 2012")
Transform input to a currency. The actual values are numeric, but will be printed as formatted currency values.

Usage

```r
as.currency(x, currency_symbol = Sys.localeconv()"int_curr_symbol", ...)  
is.currency(x)
```

S3 method for class 'currency'

```r
print(
  x,
```
Arguments

x input

currency_symbol the currency symbol to use, which defaults to the current system locale setting (see Sys.localeconv)

... other parameters passed on to methods
decimal.mark symbol to use as a decimal separator, defaults togetOption("OutDec")

big.mark symbol to use as a thousands separator, defaults to a dot if decimal.mark is a comma, and a comma otherwise

as_symbol try to format and print using currency symbols instead of text

Details

Printing currency will always have a currency symbol followed by a space, 2 decimal places and is never written in scientific format (like 2.5e+04).

Examples

money <- as.currency(c(0.25, 2.5, 25, 25000))
money
sum(money)
max(money)
mean(money)

format(money, currency_symbol = "USD")
format(money, currency_symbol = "EUR", decimal.mark = ",")
format(money, currency_symbol = "EUR", as_symbol = TRUE)

as.currency(2.5e+04)
format_datetime

Readable date format to POSIX

Description

Use this function to transform generic date/time info writing (dd-mm-yyyy) into POSIX standardised format (%d-%m-%Y), see Examples.

Usage

format_datetime(format)

Arguments

- **format**: the format that needs to be transformed

Value

A character string (a POSIX standardised format)

Examples

format_datetime("yyyy-mm-dd")

Very hard to remember all these characters:
format(Sys.time(), "%a %b %d %Y %X")

Easy to remember and write the same as above:
format(Sys.time(), format_datetime("ddd mmm dd yyyy HH:MM:ss"))

seconds since the Epoch, 1970-01-01 00:00:00
format(Sys.time(), format_datetime("epoch"))

format_names

Format names and values

Description

This function can be used on any data.frame, list or character vector to format their names or values. It supports snake case and camel case.
Usage

```r
format_names(
  x,
  ..., 
  snake_case = FALSE, 
  camelCase = FALSE, 
  tolower = FALSE, 
  toupper = FALSE
)
```

Arguments

- **x**: a data.frame, list or character vector
- **...**: when `x` is a data.frame: new column names to set, which can be named (in the form `old = "new"`). The original column names do not need to be quoted, see Examples.
- **snake_case**: logical to indicate whether the column names must be in snake case. This will have no effect on manually set column names.
- **camelCase**: logical to indicate whether the column names must be in camel case. This will have no effect on manually set column names.
- **tolower, toupper**: logical to indicate whether the column names must be lower/upper case. This will have no effect on manually set column names.

Examples

```r
df <- data.frame(Name.341ABC = "value", 
                 name_123def = "value", 
                 This.is.a.column = "value")

format_names(df, snake_case = TRUE)
format_names(df, camelCase = TRUE)
format_names(df, letters[1:3])
format_names(df, This.is.a.column = "a_new_colname")

rownames(mtcars) <- format_names(rownames(mtcars), snake_case = TRUE)
mtcars[, 1:5]

format_names(list(a = 1, b = 2), c("new_1", "new_2"))

## Not run:
library(dplyr)
starwars %>% format_names(camelCase = TRUE) %>% # new column names
mutate(name = name %>% format_names(name,
```
format_p_value

Description

This function will round p values according to the APA guideline. It will try to round to two decimals where possible, and will try to avoid printing the value of alpha, see Examples.

Usage

format_p_value(p, alpha = 0.05, prepend_p = FALSE)

Arguments

p p value(s) to transform
alpha the value of alpha, defaults to 0.05
prepend_p a logical to indicate whether "p =" should be prepended to the result

Value

A character

Examples

format_p_value(0.345678)
format_p_value(0.05125)

this must not be "0.05", but is not "0.049" either,
so it will add as many decimals as needed:
format_p_value(0.04993)

format_p_value(c(0.123, 0.00000001))
format_p_value(c(0.123, 0.00000001), prepend_p = TRUE)
freq

Frequency table

Description

Create a frequency table of a vector or a data.frame. It supports tidyverse’s quasiquotation and RMarkdown for reports. Easiest practice is: `data %>% freq(var)` using the tidyverse.

top_freq can be used to get the top/bottom n items of a frequency table, with counts as names. It respects ties.

Usage

```r
freq(x, ...)
```

Default S3 method:
freq(
x,
sort.count = TRUE,
nmax = getOption("max.print.freq"),
na.rm = TRUE,
row.names = TRUE,
markdown = !interactive(),
digits = 2,
quote = NULL,
header = TRUE,
title = NULL,
na = "<NA>",
sep = " ",
decimal.mark = getOption("OutDec"),
big.mark = " ",
wt = NULL,
...)

S3 method for class 'factor'
freq(x, ..., droplevels = FALSE)

S3 method for class 'matrix'
freq(x, ..., quote = FALSE)

S3 method for class 'table'
freq(x, ..., sep = " ")

S3 method for class 'numeric'
freq(x, ..., digits = 2)
```
## S3 method for class 'Date'
freq(x, ..., format = "yyyy-mm-dd")

## S3 method for class 'hms'
freq(x, ..., format = "HH:MM:SS")

is.freq(f)

top_freq(f, n)

header(f, property = NULL)

## S3 method for class 'freq'
print(
  x,
  nmax =getOption("max.print.freq", default = 10),
  markdown = !interactive(),
  header = TRUE,
  decimal.mark =getOption("OutDec"),
  big.mark = ifelse(decimal.mark != ",", ",", ",", "."),
  ...
)

### Arguments

- **x**: vector of any class or a data.frame or table
- **...**: up to nine different columns of x when x is a data.frame or tibble, to calculate frequencies from - see Examples. Also supports quasiquotation.
- **sort.count**: sort on count, i.e. frequencies. This will be TRUE at default for everything except when using grouping variables.
- **nmax**: number of row to print. The default, 10, uses getOption("max.print.freq"). Use nmax = 0, nmax = Inf, nmax = NULL or nmax = NA to print all rows.
- **na.rm**: a logical value indicating whether NA values should be removed from the frequency table. The header (if set) will always print the amount of NAs.
- **row.names**: a logical value indicating whether row indices should be printed as 1:nrow(x)
- **markdown**: a logical value indicating whether the frequency table should be printed in markdown format. This will print all rows (except when nmax is defined) and is default behaviour in non-interactive R sessions (like when knitting RMarkdown files).
- **digits**: how many significant digits are to be used for numeric values in the header (not for the items themselves, that depends on getOption("digits"))
- **quote**: a logical value indicating whether or not strings should be printed with surrounding quotes. Default is to print them only around characters that are actually numeric values.
- **header**: a logical value indicating whether an informative header should be printed
**freq**

**title**
Text to show above frequency table, at default to tries to coerce from the variables passed to `x`.

**na**
A character string that should be used to show empty (NA) values (only useful when `na.rm = FALSE`).

**sep**
A character string to separate the terms when selecting multiple columns.

**decimal.mark**
The character to be used to indicate the numeric decimal point.

**big.mark**
Character; if not empty used as mark between every 'big.interval' decimals before (hence big) the decimal point.

**wt**
Frequency weights. If a variable, computes `sum(wt)` instead of counting the rows.

**droplevels**
A logical value indicating whether in factors empty levels should be dropped.

**format**
A character to define the printing format (it supports `format_datetime` to transform e.g. "d mmmm yyyy" to "%e %B %Y")

**n**
Number of top `n` items to return, use `-n` for the bottom `n` items. It will include more than `n` rows if there are ties.

**property**
Property in header to return this value directly.

**Details**

Frequency tables (or frequency distributions) are summaries of the distribution of values in a sample. With the `freq` function, you can create univariate frequency tables. Multiple variables will be pasted into one variable, so it forces a univariate distribution.

Input can be done in many different ways. Base R methods are:

```r
freq(df$variable)
freq(df[, "variable"])
```

Tidyverse methods are:

```r
df$variable %>% freq()
df[, "variable"] %>% freq()
df %>% freq("variable")
df %>% freq(variable)
```

For numeric values of any class, these additional values will all be calculated with `na.rm = TRUE` and shown into the header:

- Mean, using `mean`
- Standard Deviation, using `sd`
- Coefficient of Variation (CV), the standard deviation divided by the mean
- Mean Absolute Deviation (MAD), using `mad`
- Tukey Five-Number Summaries (minimum, Q1, median, Q3, maximum), see *NOTE* below
- Interquartile Range (IQR) calculated as Q3 - Q1, see *NOTE* below
- Coefficient of Quartile Variation (CQV, sometimes called coefficient of dispersion) calculated as \((Q_3 - Q_1) / (Q_3 + Q_1)\), see NOTE below
- Outliers (total count and percentage), using `boxplot.stats`

**NOTE:** These values are calculated using the same algorithm as used by Minitab and SPSS: 
\[ p[k] = E[F(x[k])] \]. See Type 6 on the `quantile` page.

For dates and times of any class, these additional values will be calculated with `na.rm = TRUE` and shown into the header:

- Oldest, using `min`
- Newest, using `max`, with difference between newest and oldest

In factors, all factor levels that are not existing in the input data will be dropped at default.

The function `top_freq` will include more than `n` rows if there are ties. Use a negative number for `n` (like `n = -3`) to select the bottom `n` values.

**Value**

A `data.frame` (with an additional class "freq") with five columns: `item`, `count`, `percent`, `cum_count` and `cum_percent`.

**Extending the `freq()` function**

Interested in extending the `freq()` function with your own class? Add a method like below to your package, and optionally define some header info by passing a `list` to the `.add_header` parameter, like below example for class `difftime`. This example assumes that you use the roxygen2 package for package development.

```r
#' @method freq difftime
#' @importFrom cleaner freq.default
#' @export
#' @noRd
freq.difftime <- function(x, ...) {
 freq.default(x = x, ...,
 .add_header = list(units = attributes(x)$units))
}
```

Be sure to call `freq.default` in your function and not just `freq`. Also, add cleaner to the `Imports` field of your DESCRIPTION file, to make sure that it will be installed with your package, e.g.:

```r
Imports: cleaner
```

**Examples**

```r
freq(unclean$gender, markdown = FALSE)

freq(x = clean_factor(unclean$gender,
 levels = c("^m" = "Male",
 "^f" = "Female")),
```
**na_replace**

markdown = TRUE,
title = "Frequencies of a cleaned version for a markdown report!",
header = FALSE,
quote = TRUE)

---

**na_replace**  
*Replace NA values*

**Description**

This is a generic function to replace NA values in data. It takes most data types as input and is extendible by other packages.

**Usage**

```r
na_replace(x, ...)
```

## Default S3 method:
```r
na_replace(x, replacement = "", ...)
```

## S3 method for class 'data.frame'
```r
na_replace(x, ..., replacement = NULL)
```

## S3 method for class 'matrix'
```r
na_replace(x, replacement = 0, ...)
```

## S3 method for class 'list'
```r
na_replace(x, replacement = NULL, ...)
```

## S3 method for class 'numeric'
```r
na_replace(x, replacement = 0, ...)
```

## S3 method for class 'Date'
```r
na_replace(x, replacement = Sys.Date(), ...)
```

## S3 method for class 'logical'
```r
na_replace(x, replacement = FALSE, ...)
```

**Arguments**

- **x**  
  any vector, data.frame, matrix or list with values of which NA must be replaced

- **...**  
  When x is a data.frame: columns of x to affect. This supports tidy evaluation without the need to quote the columns, see Examples.

- **replacement**  
  value to replace NA with. This is at default: 0 for numeric values and class matrix, FALSE for class logical, today for class Date, and "" otherwise. Can also be a vector with the length of the number of NAs of x (sum(is.na(x))). When x is a data.frame, this can be a vector with the length of the number of columns to be affected, see Examples.
Details

All functions preserve attributes. Within a list or data.frame, all attributes per index/item/column are also preserved.

Examples

```r
mtrx <- matrix(c(1, 2, NA, 3), nrow = 2)
mtrx
na_replace(mtrx)

na_replace(c(1, 2, NA, NA))
na_replace(c(1, 2, NA, NA), replacement = -1)
na_replace(c(1, 2, NA, NA), replacement = c(0, -1))

na_replace(c(Sys.Date(), NA)) # replacement defaults to 'today'
na_replace(c(TRUE, FALSE, NA))
na_replace(c(TRUE, FALSE, NA), replacement = TRUE)

we're flexible, the class only remains the same if
the replacement value allows it
na_replace(c(1, 2, 3, NA), replacement = "-"

data.frame is a special case
mtcars[1:6, c("mpg", "hp")]
head(mtcars)
head(na_replace(mtcars, mpg, hp)) # no need to quote columns (but you can)
head(na_replace(mtcars, mpg, hp, replacement = c(999, 123)))
```

```
Not run: # practical way using tidyverse
library(dplyr)
starwars %>%
 na_replace()

even maintains groups
starwars %>%
 group_by(hair_color) %>%
 na_replace(hair_color, replacement = "TEST!") %>%
 summarise(n = n())

End(Not run)
```

---

### percentage

**Transform to percentage**

**Description**

Transform input to a percentage. The actual values are numeric, but will be printed as formatted percentages.
percentage

Usage

\[
\begin{align*}
\text{as.percentage}(x, \ldots) \\
\text{is.percentage}(x) \\
## S3 method for class 'percentage' 
\text{print}(x, \ldots) \\
## S3 method for class 'percentage' 
\text{format}(x, \text{digits} = \text{NULL}, \ldots) \\
\text{percentage}(x, \text{digits} = \text{NULL}, \ldots)
\end{align*}
\]

Arguments

\begin{itemize}
\item \textbf{x} \\
\quad input
\item \textbf{...} \\
\quad other parameters passed on to methods
\item \textbf{digits} \\
\quad how many digits should be printed. It defaults to printing all decimals available in the data after transforming to a percentage, with a minimum of 0 and a maximum of 3.
\end{itemize}

Details

Printing percentages will always have a percentage symbol and is never written in scientific format (like 2.5e+04%).

The function \texttt{percentage} is a wrapper around \texttt{format(as.percentage(...))} with automatic determination of the number of digits, varying between 0 and 1. It also, unlike \texttt{R}, rounds according to basic math rules: \texttt{percentage(0.4455)} returns "44.6%" and not "44.5%". This function always returns a character, and can also be used in plotting, see Examples.

Examples

\begin{verbatim}
proportion <- as.percentage(c(0.25, 2.5, 0.0025))
proportion
sum(proportion)
max(proportion)
mean(proportion)

as.percentage(2.5e-14)

as.percentage(pi)
format(as.percentage(pi))
format(as.percentage(pi), digits = 6)

round(0.4455 * 100, 1) # mind the rounding
percentage(0.4455) # does not round to 44.5%

if (require("ggplot2")) {
  ggplot(iris) +
\end{verbatim}
rdate

Generate random dates

Description

This function provides random date generation with a specified range, that defaults to the beginning and end of the current year.

Usage

rdate(
  n,
  min = paste0(format(Sys.Date(), "%Y"), "-01-01"),
  max = paste0(format(Sys.Date(), "%Y"), "-12-31"),
  ...
)

Arguments

n number of observations. If length(n) > 1, the length is taken to be the number required.

min, max lower and upper limits of the distribution. Must be (coercible to) valid dates.

... parameters given to as.Date() for coercing the values of min and max

Examples

# generate a million random dates and check the distribution
hist(rdate(1000000), breaks = "months")

regex_true_false

Regular expressions for TRUE and FALSE

Description

These functions just return a regular expression to define values TRUE and FALSE in the most spoken languages in the world. They are the default input for the function clean_logical.
Usage

regex_true()

regex_false()

Details

Both functions support values "Yes" and "No" in the following languages: Arabic, Bengali, Chinese (Mandarin), Dutch, English, French, German, Hindi, Indonesian, Japanese, Malay, Portuguese, Russian, Spanish, Telugu, Turkish and Urdu.

Note: all these translations are in Latin characters only (e.g. "da" for Russian, "haan" for Hindi and "hai" for Japanese).

Source

Wolfram Alpha, query: https://www.wolframalpha.com/input/?i=20+most+spoken+languages

unclean

Example data that is not clean

Description

This typical data example can be used for checking and cleaning.

Usage

unclean

Format

A data.frame with 500 observations and the following variables:

date  Dates imported from Excel, they are integers ranging from ~30,000 to ~43,000.
gender  Characters with mixed values observed in original data about patients gender.

See Also

freq to check values and clean to clean them.
Index

* datasets
  unclean, 19
* frequency
  freq, 11
* freq
  freq, 11
* summarise
  freq, 11
* summary
  freq, 11

as.currency, 4
as.currency (currency), 6
as.percentage, 4
as.percentage (percentage), 16
as.POSIXct, 5

boxplot.stats, 14

clean, 2, 19
clean_character (clean), 2
clean_currency (clean), 2
clean_Date (clean), 2
clean_double (clean), 2
clean_factor (clean), 2
clean_integer (clean), 2
clean_logical, 18
clean_logical (clean), 2
clean_numeric (clean), 2
clean_percentage (clean), 2
clean_POSIXct (clean), 2
currency, 6
data.frame, 12, 19

format.currency (currency), 6
format.percentage (percentage), 16
format_datetime, 5, 8, 13
format_names, 8
format_p_value, 10
freq, 11, 19

getOption, 7, 12

header (freq), 11

is.currency (currency), 6
is.freq (freq), 11
is.percentage (percentage), 16

list, 14

logical, 15

mad, 13

matrix, 15

max, 14

mean, 13

min, 14

na_replace, 15

percentage, 16

print.currency (currency), 6

print.freq (freq), 11

print.percentage (percentage), 16

quantile, 14

rdate, 18

regex, 3–5

regex_false, 3, 4

regex_false (regex_true_false), 18

regex_true, 3, 4

regex_true (regex_true_false), 18

regex_true_false, 18

sd, 13

strftime, 4

Sys.localeconv, 3, 7

table, 12

time zones, 4

top_freq (freq), 11

trimws, 3

unclean, 19