Package ‘clickstream’

January 30, 2020

Type Package
Title Analyzes Clickstreams Based on Markov Chains
Version 1.3.1
Date 2020-01-30
Author Michael Scholz, Theo van Kraay
Maintainer Michael Scholz <michael.scholz@uni-passau.de>
Encoding UTF-8
Description A set of tools to read, analyze and write lists of click sequences on websites (i.e., clickstream). A click can be represented by a number, character or string. Clickstreams can be modeled as zero- (only computes occurrence probabilities), first- or higher-order Markov chains.
License GPL-2
Depends R (>= 3.0.1), methods, igraph, stats, utils, reshape2, MASS
Imports plyr, Rsolnp, arules, linprog, ggplot2, ClickClust, parallel, data.table
LazyLoad yes
ByteCompile yes
RoxygenNote 7.0.2
NeedsCompilation no
Repository CRAN
Date/Publication 2020-01-30 16:10:02 UTC

R topics documented:
clickstream-package .. 2
+,Pattern,Pattern-method ... 3
absorbingStates .. 4
as.ClickClust .. 5
as.clickstreams .. 6
as.moltenTransactions ... 7
Clickstream-package

Analyzes Clickstreams Based on Markov Chains

Description

This package allows modeling clickstreams with Markov chains. It supports to model clickstreams as zero-order, first-order or higher-order Markov chains.

Details
Package: clickstream
Type: Package
Version: 1.3.1
Date: 2020-01-07
License: GPL-2
Depends: R (>= 3.0), methods

Author(s)

Michael Scholz <michael.scholz@uni-passau.de>
Theo van Kraay <theo.vankraay@hotmail.com>

References

Examples

```r
# fitting a simple Markov chain and predicting the next click
clickstreams <- c("User1,h,c,c,p,c,h,c,p,p,c,p,o",
                 "User2,i,c,i,c,c,c,d",
                 "User3,h,i,c,i,c,p,c,c,i,d",
                 "User4,c,c,p,c,d",
                 "User5,h,c,c,p,c,p,p,i,p,o",
                 "User6,i,h,c,c,p,c,p,c,d")
cls <- as.clickstreams(clickstreams, header = TRUE)
mc <- fitMarkovChain(cls)
startPattern <- new("Pattern", sequence = c("h", "c"))
predict(mc, startPattern)
plot(mc)
```

Description

Concatenates two Pattern objects
absorbingStates

Usage

S4 method for signature 'Pattern,Pattern'
e1 + e2

Arguments

 e1 First pattern
 e2 Second pattern

Methods

list("signature(e1 = "Pattern", e2 = "Pattern")") Concatenates two Pattern objects.

Author(s)

Michael Scholz <michael.scholz@uni-passau.de>

absorbingStates Returns All Absorbing States

Description

Returns All Absorbing States

Usage

absorbingStates(object)

Arguments

 object An instance of the MarkovChain-class

Methods

list("signature(object = "MarkovChain")") Returns the names of all states that never have a successor in a clickstream (i.e. that are absorbing).

Author(s)

Michael Scholz <michael.scholz@uni-passau.de>
as.ClickClust Coerces a Clickstream Object to a ClickClust Object

Description

Coerces a Clickstream object to a ClickClust object.

Usage

as.ClickClust(clickstreamList)

Arguments

clickstreamList
A list of clickstreams.

Value

A list consisting of a dataset X and a vector of initial states y

Author(s)

Michael Scholz <michael.scholz@uni-passau.de>

See Also

frequencies

Examples

clickstreams <- c("User1,h,c,c,p,c,h,c,p,p,c,p,p,o", "User2,i,c,i,c,c,c,d", "User3,h,i,c,i,c,p,c,c,p,c,i,d", "User4,c,c,p,c,d", "User5,h,c,c,p,c,p,p,i,p,o", "User6,i,h,c,c,p,c,p,c,d")
cls <- as.clickstreams(clickstreams, header = TRUE)
X <- as.ClickClust(cls)
as.clickstreams

Converts a character vector or a character list into a clickstream list.

Description

Converts a character vector or a character list into a clickstream list. Note that non-alphanumeric characters will be removed.

Usage

as.clickstreams(obj, sep = ",", header = TRUE)

Arguments

obj The character vector or character list which will be converted into a clickstream list. Each line of the vector must represent exactly one click stream.
sep The character separating clicks (default is ",").
header A logical flag indicating whether the first entry of each entry in the character vector is the name of the clickstream.

Value

A list of clickstreams. Each element is a vector of characters representing the clicks. The name of each list element is either extracted from the character vector or a unique number.

Author(s)

Michael Scholz <michael.scholz@uni-passau.de>

See Also

print.Clickstreams, randomClickstreams

Examples

clickstreams <- c("User1,h,c,p,c,h,c,p,c,p,p,o",
 "User2,i,c,i,c,c,c,d",
 "User3,h,i,c,i,c,p,c,c,i,d",
 "User4,c,c,p,c,d",
 "User5,h,c,c,p,c,p,p,p,i,p,o",
 "User6,i,h,c,c,p,c,p,c,d")
cls <- as.clickstreams(clickstreams, header = TRUE)
print(cls)
as.moltenTransactions

Coerces a Clickstream Object to a Transactions Object

Description

Coerces a Clickstream object to a transactions object.

Usage

as.moltenTransactions(clickstreamList)

Arguments

clickstreamList

A list of clickstreams.

Value

An instance of the old class transactions

Author(s)

Michael Scholz <michael.scholz@uni-passau.de>

See Also

frequencies

Examples

clickstreams <- c("User1,h,c,c,p,c,h,c,p,p,c,p,p,o", "User2,i,c,i,c,c,c,d", "User3,h,i,c,i,p,c,c,p,c,i,d", "User4,c,c,p,c,d", "User5,h,c,c,p,c,p,p,i,p,o", "User6,i,h,c,c,p,c,p,c,d")
c1s <- as.clickstreams(clickstreams, header = TRUE)
trans <- as.moltenTransactions(cls)
as.transactions

Coerces a Clickstream Object to a Transactions Object

Description

Coerces a Clickstream object to a transactions object.

Usage

as.transactions(clickstreamList)

Arguments

clickstreamList

A list of clickstreams.

Value

An instance of the class transactions

Author(s)

Michael Scholz <michael.scholz@uni-passau.de>

See Also

frequencies

Examples

clickstreams <- c("User1,h,c,c,p,c,h,c,p,p,c,p,p,o",
 "User2,i,c,i,c,c,c,d",
 "User3,h,i,c,i,c,p,c,c,p,c,i,d",
 "User4,c,c,p,c,d",
 "User5,h,c,c,p,c,p,p,i,p,o",
 "User6,i,h,c,c,p,c,p,c,d")
cls <- as.clickstreams(clickstreams, header = TRUE)
trans <- as.transactions(cls)
chiSquareTest

Calculates the chi-square statistic

Description

Calculates the chi-Square statistic, p-value, and degrees of freedom, for the first-order transition matrix of a MarkovChain object compared with observed state changes.

Usage

```
chiSquareTest(cls, mc)
```

Arguments

- `cls` The clickstream object.
- `mc` The Markov chain against which to compare the clickstream data. Please note that the first-order transition matrix is used for performing the chi-square test.

Author(s)

Theo van Kraay <theo.vankraay@hotmail.com>

Examples

```r
clickstreams <- c("User1,h,c,p,c,h,p,c,p,p,c,p,p,o",
                  "User2,i,c,i,c,c,c,d",
                  "User3,h,i,c,i,c,p,c,c,p,c,c,i,d",
                  "User4,c,c,p,c,d")

csf <- tempfile()
writeLines(clickstreams, csf)
cls <- readClickstreams(csf, header = TRUE)
unlink(csf)

mc <- fitMarkovChain(cls)
chiSquareTest(cls, mc)
```

clusterClickstreams

Performs K-Means Clustering on a List of Clickstreams

Description

Performs k-means clustering on a list of clickstreams. For each clickstream a transition matrix of a given order is computed. These transition matrices are used as input for performing k-means clustering.
Usage

clusterclickstreams(clickstreamList, order = 0, centers, ...)

Arguments

clickstreamList
A list of clickstreams for which the cluster analysis is performed.

order
The order of the transition matrices used as input for clustering (default is 0; 0
and 1 are possible).

centers
The number of clusters.

... Additional parameters for k-means clustering (see kmeans).

Value

This method returns a ClickstreamClusters object (S3-class). It is a list with the following
components:

clusters The resulting list of Clickstreams objects.

centers A matrix of cluster centres.

states Vector of states

totss The total sum of squares.

withinss Vector of within-cluster sum of squares, one component per cluster.

tot.withinss Total within-cluster sum of squares, i.e., sum(withinss).

betweenss The between-cluster sum of squares, i.e., totss - tot.withinss.

Author(s)

Michael Scholz <michael.scholz@uni-passau.de>

See Also

print.ClickstreamClusters, summary.ClickstreamClusters

Examples

clickstreams <- c("User1,h,c,c,p,c,h,c,p,p,c,p,p,o",
"User2,i,c,i,c,c,c,d",
"User3,h,i,c,i,c,p,c,c,i,d",
"User4,c,c,p,c,d",
"User5,h,c,c,p,p,c,p,p,p,i,p,o",
"User6,i,h,c,c,p,p,c,p,c,d")
cls <- as.clickstreams(clickstreams, header = TRUE)
clusters <- clusterclickstreams(cls, order = 0, centers = 2)
print(clusters)
EvaluationResult-class

Class EvaluationResult

Description

Class EvaluationResult

Objects from the Class

Objects can be created by calls of the form `new("EvaluationResult",...)`. This S4 class describes EvaluationResult objects.

Author(s)

Michael Scholz <michael.scholz@uni-passau.de>

See Also

mcEvaluate

Examples

```r
# show EvaluationResult definition
devtools::showClass("EvaluationResult")
```

fitMarkovChain

Fits a List of Clickstreams to a Markov Chain

Description

This function fits a list of clickstreams to a Markov chain. Zero-order, first-order as well as higher-order Markov chains are supported. For estimating higher-order Markov chains this function solves the following linear or quadratic programming problem:

\[
\min || \sum_{i=1}^{k} X - \lambda_i Q_i X ||
\]

s.t.

\[
\sum_{i=1}^{k} \lambda_i = 1
\]

\[
\lambda_i \geq 0
\]

The distribution of states is given as \(X\). \(\lambda_i\) is the lag parameter for lag \(i\) and \(Q_i\) the transition matrix.
fitMarkovChain

Usage

 fitMarkovChain(clickstreamList, order = 1, verbose = TRUE, control = list())

Arguments

 clickstreamList
 A list of clickstreams for which a Markov chain is fitted.

 order
 (Optional) The order of the Markov chain that is fitted from the clickstreams. Per default, Markov chains with order=1 are fitted. It is also possible to fit zero-order Markov chains (order=0) and higher-order Markov chains.

 verbose
 (Optional) An optimal logical variable to indicate whether warnings and infos should be printed.

 control
 (Optional) The control list of optimization parameters. Parameter optimizer specifies the type of solver used to solve the given optimization problem. Possible values are "linear" (default) and "quadratic". Parameter use.lpSolve determines whether lpSolve or linprog is used as linear solver.

Details

 For solving the quadratic programming problem of higher-order Markov chains, an augmented Lagrange multiplier method from the package Rsolnp is used.

Value

 Returns a MarkovChain object.

Note

 At least half of the clickstreams need to consist of as many clicks as the order of the Markov chain that should be fitted.

Author(s)

 Michael Scholz <michael.scholz@uni-passau.de>

References

See Also

 MarkovChain, Rsolnp
Examples

fitting a simple Markov chain
clickstreams <- c("User1,h,c,c,p,c,h,c,p,p,c,p,p,o",
 "User2,i,c,i,c,c,c,d",
 "User3,h,i,c,i,c,p,c,c,c,i,d",
 "User4,c,c,p,c,d",
 "User5,h,c,c,p,p,c,p,p,i,p,o",
 "User6,i,h,c,c,p,c,c,d")
cls <- as.clickstreams(clickstreams, header = TRUE)
mc <- fitMarkovChain(cls)
show(mc)

fitMarkovChains

Generates a list of markov chains from a given set of clusters

Description

The purpose of this function is to generate pre-computed markov chain objects from clusters of clickstreams.

Usage

fitMarkovChains(clusters, order = 1)

Arguments

clusters The clusters from which to generate markov chain objects.
order The order for the markov chain.

Author(s)

Theo van Kraay <theo.vankraay@hotmail.com>

Examples

training <- c("User1,h,c,c,p,c,h,c,p,p,c,p,p,o",
 "User2,i,c,i,c,c,c,d",
 "User3,h,i,c,i,c,p,c,c,c,i,d",
 "User4,c,c,p,c,d")

testing

test <- c("User1,h,c,c,p,p,h,c,p,p,c,p,p,o",
 "User2,i,c,i,c,c,c,d",
 "User4,c,c,c,c,d")

trainingCLS <- as.clickstreams(training, header = TRUE)
testCLS <- as.clickstreams(test, header = TRUE)

testing
clusters <- clusterClickstreams(trainingCLS, centers = 2)
markovchains <- fitMarkovChains(clusters, order = 1)

frequencies

Generates a Data Frame of State Frequencies for All Clickstreams in a List of Clickstreams

Description

Generates a data frame of state frequencies for all clickstreams in a list of clickstreams.

Usage

```
frequencies(clickstreamList)
```

Arguments

- `clickstreamList` (A list of clickstreams.)

Value

A data frame containing state frequencies for each clickstream.

Author(s)

Michael Scholz <michael.scholz@uni-passau.de>

See Also

- `transactions`

Examples

```
clickstreams <- c("User1,h,c,p,c,h,c,p,p,c,p,p,o", "User2,i,c,i,c,c,c,d", "User3,h,i,c,i,c,p,c,c,p,c,c,i,d", "User4,c,c,p,c,d", "User5,h,c,c,p,p,p,i,p,o", "User6,i,h,c,c,p,p,c,p,c,d")
cls <- as.clickstreams(clickstreams, header = TRUE)
frequencyDF <- frequencies(cls)
```
getConsensusClusters

Generates an optimal set of clusters for a clickstream based on certain constraints

Description

This is an experimental function for a consensus clustering algorithm based on targeting a range of average next state probabilities derived when fitting each cluster to a markov chain.

Usage

```r
getConsensusClusters(
  trainingCLS,
  testCLS,
  maxIterations = 5,
  optimalProbMean = 0.5,
  range = 0.3,
  centresMin = 2,
  clusterCentresRange = 0,
  order = 1,
  takeHighest = FALSE,
  verbose = FALSE
)
```

Arguments

- `trainingCLS`: Clickstream object with training data (this should be the data used to build the markov chain object).
- `testCLS`: Clickstream object with test data.
- `maxIterations`: Number of times to iterate (repeat) through the k-means clustering.
- `optimalProbMean`: The target average probability of each next page click prediction in a 1st order markov chain.
- `range`: The range above the optimal probability to target.
- `centresMin`: The minimum cluster centres to evaluate.
- `clusterCentresRange`: The additional cluster centres to evaluate.
- `order`: The order for markov chains that will be used to evaluate each cluster.
- `takeHighest`: Determines whether to default to the highest mean next click probability, or error if the target is not reached after the given number of k-means iterations.
- `verbose`: Should this function report extra information on progress?

Author(s)

Theo van Kraay <theo.vankraay@hotmail.com>
getConsensusClustersParallel

Generates an optimal set of clusters for a clickstream based on certain constraints and with parallel computation.

Description

This is an experimental function for a consensus clustering algorithm based on targeting a range of average next state probabilities derived when fitting each cluster to a markov chain. This function parallelizes k-means and fitToMarkovChain operations across computer cores, and depends on the parallel package to function.

Usage

getConsensusClustersParallel(
 trainingCLS,
 testCLS,
 maxIterations = 5,
 optimalProbMean = 0.5,
 range = 0.3,
 centresMin = 2,
 clusterCentresRange = 0,
 order = 1,
 takeHighest = FALSE,
 verbose = FALSE)

Examples

training <- c("User1,h,c,c,p,c,h,c,p,c,p,p,o",
 "User2,i,c,i,c,c,d",
 "User3,h,i,c,i,c,p,c,c,c,i,d",
 "User4,h,c,p,p,c,p,p,i,p,o",
 "User5,i,h,c,p,p,c,p,c,d",
 "User6,i,h,c,p,c,p,c,o",
 "User7,i,h,c,p,c,p,c,d",
 "User8,i,h,c,c,p,c,p,c,d,o")

test <- c(
 "User1,h,c,c,p,c,h,c,p,p,o",
 "User2,i,c,i,c,c,d",
 "User3,h,i,c,i,c,p,c,c,c,i,d"
)

trainingCLS <- as.clickstreams(training, header = TRUE)
testCLS <- as.clickstreams(test, header = TRUE)

clusters <- getConsensusClusters(trainingCLS, testCLS, maxIterations=5,
 optimalProbMean=0.40, range = 0.70, centresMin = 2,
 clusterCentresRange = 0, order = 1, takeHighest = FALSE,
 verbose = FALSE)

markovchains <- fitMarkovChains(clusters)
startPattern <- new("Pattern", sequence = c("i", "h", "c", "p")
mc <- getOptimalMarkovChain(startPattern, markovchains, clusters)
predict(mc, startPattern)
getConsensusClustersParallel

 clusterCentresRange = 0,
 order = 1,
 cores = 2,
 takeHighest = FALSE,
 verbose = FALSE
)

Arguments

trainingCLS Clickstream object with training data (this should be the data used to build the markov chain object).
testCLS Clickstream object with test data.
maxIterations Number of times to iterate (repeat) through the k-means clustering.
onimalProbMean The target average probability of each next page click prediction in a 1st order markov chain.
range The range above the optimal probability to target.
centresMin The minimum cluster centres to evaluate.
clusterCentresRange the additional cluster centres to evaluate.
order The order for markov chains that will be used to evaluate each cluster.
cores Number of cores used for clustering.
takeHighest determines whether to default to the highest mean next click probability, or error if the target is not reached after the given number of k-means iterations.
verbose Should this function report extra information on progress?

Author(s)

Theo van Kraay <theo.vankraay@hotmail.com>

Examples

training <- c("User1,h,c,c,p,c,h,c,p,c,p,p,o",
 "User2,i,c,i,c,c,d",
 "User3,i,c,i,c,p,c,c,p,c,c,i,d",
 "User4,h,c,c,p,p,c,p,p,i,p,o",
 "User5,i,h,c,c,p,p,c,c,d",
 "User6,i,h,c,c,p,p,c,c,o",
 "User7,i,h,c,c,p,p,c,c,d",
 "User8,i,h,c,c,p,p,c,c,d,o")

test <- c(
 "User1,h,c,c,p,c,h,c,p,p,c,p,p,o",
 "User2,i,c,i,c,c,d",
 "User3,i,c,i,c,p,c,c,p,c,c,i,d"
)

trainingCLS <- as.clickstreams(training, header = TRUE)
getOptimalMarkovChain

Generates the optimal markov chains from a list of markov chains and corresponding clusters

Description

The purpose of this function is to predict from a pattern using pre-computed markov chains and corresponding clusters. The markov chain corresponding with the cluster that is the best fit to the prediction value is used.

Usage

gotOptimalMarkovChain(startPattern, markovchains, clusters)

Arguments

startPattern The pattern object to be used.
markovchains The pre-computed markov chains generated from a set of clusters.
clusters The corresponding clusters (should be in the corresponding order as the markov chains).

Author(s)

Theo van Kraay <theo.vankraay@hotmail.com>

Examples

```r
training <- c("User1,h,c,p,c,h,c,p,c,p,p,o",
               "User2,i,c,i,c,c,d",
               "User3,h,i,c,c,c,c,c,i,d",
               "User4,c,c,p,c,d")

test <- c("User1,h,c,p,h,c,p,c,p,p,o",
           "User2,i,c,i,c,c,d",
           "User4,c,c,c,c,d")

trainingCLS <- as.clickstreams(training, header = TRUE)
```
testCLS <- as.clickstreams(test, header = TRUE)
clusters <- clusterClickstreams(trainingCLS, centers = 2)
markovchains <- fitMarkovChains(clusters, order = 1)
startPattern <- new("Pattern", sequence = c("c"))
mc <- getOptimalMarkovChain(startPattern, markovchains, clusters)
predict(mc, startPattern)

hmPlot

Plots a Heatmap

Description

Plots a Heatmap

Usage

hmPlot(
 object,
 order = 1,
 absorptionProbability = FALSE,
 title = NA,
 lowColor = "yellow",
 highColor = "red",
 flip = FALSE
)

Arguments

object The MarkovChain for which a heatmap is plotted.
order Order of the transition matrix that should be plotted. Default is 1.
absorptionProbability Should the heatmap show absorption probabilities? Default is FALSE.
title Title of the heatmap.
lowColor Color for the lowest transition probability of 0. Default is "yellow".
highColor Color for the highest transition probability of 1. Default is "red".
flip Flip to horizontal plot. Default is FALSE.

Methods

list("signature(object = \"MarkovChain\")") Plots a heatmap for a specified transition matrix or the absorption probability matrix of a given MarkovChain object.

Author(s)

Michael Scholz <michael.scholz@uni-passau.de>
See Also
 fitMarkovChain

Examples

fitting a simple Markov chain and predicting the next click
clickstreams <- c("User1,h,c,p,c,h,c,p,p,c,p,p,o",
 "User2,i,c,i,c,c,c,d",
 "User3,h,i,c,i,c,p,c,p,c,i,d",
 "User4,c,c,p,c,d",
 "User5,h,c,c,p,c,p,p,p,i,p,o",
 "User6,i,h,c,c,p,c,p,c,d")
clicks <- as.clickstreams(clickstreams, header = TRUE)
mc <- fitMarkovChain(cls)
hmPlot(mc)

initialize,Pattern-method

Creates a new Pattern object

Description

Creates a new Pattern object

Usage

S4 method for signature 'Pattern'
initialize(.Object, sequence, probability, absorbingProbabilities, ...)

Arguments

/Object/ Pattern (name of the class)

sequence/ Click sequence

probability/ Probability for the click sequence

absorbingProbabilities/ Probabilities that the sequence will finally end in one of the absorbing states

.../ Further arguments for the CallNextMethod function

Methods

list("signature(sequence = \"character\", probability = \"numeric\", absorbingProbabilities = \"numeric\")

Creates a new Pattern object.

Author(s)

Michael Scholz <michael.scholz@uni-passau.de>
MarkovChain-class

Class MarkovChain

Description

Class MarkovChain

Objects from the Class

Objects can be created by calls of the form `new("MarkovChain",...)`. This S4 class describes MarkovChain objects.

Author(s)

Michael Scholz <michael.scholz@uni-passau.de>

See Also

fitMarkovChain

Examples

```r
# show MarkovChain definition
showClass("MarkovChain")

# fit a simple Markov chain from a list of click streams
clickstreams <- c("User1,h,c,c,p,c,h,c,p,p,c,p,p,o",
                 "User2,i,c,i,c,c,d",
                 "User3,h,i,c,i,c,p,c,c,p,c,i,d",
                 "User4,c,c,p,c,d",
                 "User5,h,c,c,p,c,p,p,i,p,o",
                 "User6,i,h,c,c,p,c,p,c,d")
cls <- as.clickstreams(clickstreams, header = TRUE)
mc <- fitMarkovChain(cls)
show(mc)
```

mcEvaluate

Evaluates the number of occurrences of predicted next clicks

Description

Evaluates the number of occurrences of predicted next clicks vs. total number of starting pattern occurrences in a given clickstream. The predicted next click can be a markov chain of any order.
Usage

mcEvaluate(mc, startPattern, testCLS)

Arguments

mc a markovchain object (this should have been built from a set of training data)
startPattern the starting pattern we want to predict next click on, and evaluate observed occurrences in test data.
testCLS clickstream object with test data

Author(s)

Theo van Kraay <theo.vankraay@hotmail.com>

Examples

training <- c("User1,h,c,c,p,c,h,c,p,p,c,p,p,o",
 "User2,i,c,i,c,c,d",
 "User3,h,i,c,i,c,p,c,p,c,c,i,d",
 "User4,c,c,p,c,d")

test <- c("User1,h,h,h,h,c,c,p,p,h,c,p,p,p,o",
 "User2,i,c,i,c,c,d",
 "User4,c,c,c,d,c,c,c")

csf <- tempfile()
writeLines(training, csf)
trainingCLS <- readClickstreams(csf, header = TRUE)
unlink(csf)

csf <- tempfile()
writeLines(test, csf)
testCLS <- readClickstreams(csf, header = TRUE)
unlink(csf)

mc <- fitMarkovChain(trainingCLS, order = 1)
startPattern <- new("Pattern", sequence = c("c","c"))
res <- mcEvaluate(mc, startPattern, testCLS)
res

Description

Evaluates all next page clicks in a clickstream training data set against a test data

Evaluates all next page clicks in a clickstream training data set against a test data. Handles higher order by cycling through every possible pattern permutation. Produces a report of observed and expected values in a matrix.
Usage

mcEvaluateAll(
 mc, trainingCLS, testCLS,
 includeChiSquare = TRUE, returnChiSquareOnly = FALSE
)

Arguments

mc A markovchain object that corresponds to a list of clusters.
trainingCLS Clickstream object with training data (this should be the data used to build the markov chain object).
testCLS Clickstream object with test data.
includeChiSquare Should the result include the chi-square value?
returnChiSquareOnly Should the result only consist of the chi-square value?

Author(s)

Theo van Kraay <theo.vankraay@hotmail.com>

See Also

mcEvaluate

Examples

t = c("User1,h,c,c,p,c,h,c,p,p,c,p,p", "User2,i,c,i,c,c,d")
test <- c("User1,h,c,c,p,c,h,c,d,p,c,d,p", "User2,i,c,i,p,c,c,d")

mc <- fitMarkovChain(trainingCLS, order = 2)
mcEvaluateAll(mc, trainingCLS, testCLS)
mcEvaluateAllClusters Evaluates all next page clicks in a clickstream training data set against a test data

Description

Evaluates all next page clicks in a clickstream training data set against a test data on the basis of a set of pre-computed Markov chains and corresponding clusters. Handles higher order by cycling through every possible pattern permutation. Produces and produces a report of observed and expected values in a matrix

Usage

mcEvaluateAllClusters(
 markovchains,
 clusters,
 testCLS,
 trainingCLS,
 includeChiSquare = TRUE,
 returnChiSquareOnly = FALSE
)

Arguments

markovchains A list of MarkovChain-objects.
clusters The list of clusters.
testCLS Clickstream object with test data.
trainingCLS Clickstream object with training data (this should be the data used to build the markov chain object).
includeChiSquare Should the result include the chi-square value?
returnChiSquareOnly Should the result only consist of the chi-square value?

Author(s)

Theo van Kraay <theo.vankraay@hotmail.com>

See Also

mcEvaluateAll
Examples

```
training <- c("User1,h,c,p,c,h,c,h,o,p,p,c,p,p,o",
               "User2,i,c,i,c,c,o,o,i,d",
               "User3,h,i,c,i,c,o,i,p,c,p,c,c,i,d",
               "User4,c,c,p,c,d,o,i,h,o,o")

test <- c("User1,h,c,c,p,p,h,o,i,c,p,p,c,p,p,o",
           "User2,i,c,i,c,c,d",
           "User4,c,c,c,c,d")

csf <- tempfile()
writeLines(training, csf)
trainingCLS <- readClickstreams(csf, header = TRUE)
unlink(csf)

csf <- tempfile()
writeLines(test, csf)
testCLS <- readClickstreams(csf, header = TRUE)
unlink(csf)

clusters <- clusterClickstreams(trainingCLS, centers = 2, order = 1)
markovchains <- fitMarkovChains(clusters, order = 2)
mcEvaluateAllClusters(markovchains, clusters, testCLS, trainingCLS)
```

Pattern-class

<table>
<thead>
<tr>
<th>Class Pattern</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pattern</td>
</tr>
</tbody>
</table>

Description

This S4 class describes a click pattern consisting of a sequence of clicks and a probability of occurrence.

Objects from the Class

Objects can be created by calls of the form `new("Pattern", sequence, probability,...)`. This S4 class describes a click pattern consisting of a sequence of clicks and a probability of occurrence.

Author(s)

Michael Scholz <michael.scholz@uni-passau.de>

See Also

`randomClicks`
Examples

```r
# show Pattern definition
showClass("Pattern")

# create simple Pattern objects
pattern1 <- new("Pattern", sequence = c("h", "c", "p"))
pattern2 <- new("Pattern", sequence = c("c", "p", "p"), probability = 0.2)
pattern3 <- new("Pattern", sequence = c("h", "p", "p"), probability = 0.35,
               absorbingProbabilities = data.frame(d = 0.6, o = 0.4))
```

Description

Plots a MarkovChain object

Usage

```r
## S4 method for signature 'MarkovChain'
plot(x, order = 1, digits = 2, minProbability = 0, ...)
```

Arguments

- `x`: An instance of the MarkovChain-class
- `order`: The order of the transition matrix that should be plotted
- `digits`: The number of digits of the transition probabilities
- `minProbability`: Only transitions with a probability >= the specified minProbability will be shown
- `...`: Further parameters for the plot-function in package igraph

Methods

```r
list("signature(x = \"MarkovChain\", order = \"numeric\", digits = \"numeric\")")
```

Plots the transition matrix with order order of a MarkovChain object as graph.

Author(s)

Michael Scholz <michael.scholz@uni-passau.de>
predict,MarkovChain-method

Predicts the Next Click(s) of a User

Description

Predicts the Next Click(s) of a User

Usage

```r
## S4 method for signature 'MarkovChain'
predict(object, startPattern, dist = 1, ties = "random")
```

Arguments

- `object` The MarkovChain used for predicting the next click(s)
- `startPattern` Starting clicks of a user as Pattern object. A Pattern with an empty sequence is also possible.
- `dist` (Optional) The number of clicks that should be predicted (default is 1).
- `ties` (Optional) The strategy for handling ties in predicting the next click. Possible strategies are `random` (default) and `first`.

Methods

- `list("signature(object = \"MarkovChain\")")` This method predicts the next click(s) of a user. The first clicks of a user are given as Pattern object. The next click(s) are predicted based on the transition probabilities in the MarkovChain object. The probability distribution of the next click \(n \) is estimated as follows:

\[
X^{(n)} = B \cdot \sum_{i=1}^{k} \lambda_i Q_i X^{(n-i)}
\]

The distribution of states at time \(n \) is given as \(X^n \). The transition matrix for lag \(i \) is given as \(Q_i \). \(\lambda_i \) specifies the lag parameter and \(B \) the absorbing probability matrix.

Author(s)

Michael Scholz <michael.scholz@uni-passau.de>

See Also

`fitMarkovChain`
Examples

```r
# fitting a simple Markov chain and predicting the next click
clickstreams <- c("User1,h,c,p,c,h,c,p,p,c,p,p,o",
                 "User2,i,c,i,c,c,c,d",
                 "User3,h,i,c,i,c,p,c,c,i,d",
                 "User4,c,c,p,c,d",
                 "User5,h,c,c,p,p,c,p,p,i,p,o",
                 "User6,i,h,c,c,p,p,c,p,c,d")
cls <- as.clickstreams(clickstreams, header = TRUE)
mc <- fitMarkovChain(cls)
startPattern <- new("Pattern", sequence = c("h", "c"))
predict(mc, startPattern)
#
# predict with predefined absorbing probabilities
#
startPattern <- new("Pattern", sequence = c("h", "c"),
                   absorbingProbabilities = data.frame(d = 0.2, o = 0.8))
predict(mc, startPattern)
```

predict.ClickstreamClusters

Predicts the Cluster for a Given Pattern Object

Description

Predicts the cluster for a given Pattern object. Potential clusters need to be identified with the method `clusterClickstreams` before predicting the cluster.

Usage

```r
## S3 method for class 'ClickstreamClusters'
predict(object, pattern, ...)```

**Arguments**

- `object` A ClickstreamClusters object containing the clusters. ClickstreamClusters represent the result of a cluster analysis on a list of clickstreams (see `clusterClickstreams`).
- `pattern` Sequence of a user’s initial clicks as Pattern object.
- `...` Ignored parameters.

**Value**

Returns the index of the clusters to which the given Pattern object most probably belongs to.

**Author(s)**

Michael Scholz <michael.scholz@uni-passau.de>
print.ClickstreamClusters

See Also

clickstreamClusters, print.ClickstreamClusters

Examples

clickstreams <- c("User1,h,c,p,c,h,c,p,p,c,p,p,o",
                     "User2,i,c,i,c,c,d",
                     "User3,h,i,c,i,c,p,c,c,p,c,i,d",
                     "User4,c,c,p,c,d",
                     "User5,h,c,c,p,c,p,p,i,p,o",
                     "User6,i,h,c,c,p,c,p,c,d")
cls <- as.clickstreams(clickstreams, header = TRUE)
clusters <- clusterClickstreams(cls, order = 0, centers = 2)
pattern <- new("Pattern", sequence = c("h", "c"))
predict(clusters, pattern)

print.ClickstreamClusters

Prints a ClickstreamClusters Object

Description

Prints a ClickstreamClusters object. A ClickstreamClusters object represents the result of a
cluster analysis on a list of clickstreams (see clusterClickstreams).

Usage

## S3 method for class 'ClickstreamClusters'
print(x, ...)  

Arguments

x A ClickstreamClusters object (see clusterClickstreams).

... Ignored parameters.

Author(s)

Michael Scholz <michael.scholz@uni-passau.de>

See Also

clickstreamClusters, summary.ClickstreamClusters
Examples

```r
clickstreams <- c("User1,h,c,p,c,h,c,p,p,c,p,p,o",
"User2,i,c,i,c,c,d",
"User3,h,i,c,i,p,c,c,p,c,c,i,d",
"User4,c,c,p,c,d",
"User5,h,c,c,p,p,c,c,p,i,p,o",
"User6,i,h,c,c,p,p,c,p,c,d")
clickstreams <- clickstreams, header = TRUE)
clusters <- clusterClickstreams(cls, order = 0, centers = 2)
print(clusters)
```

print.Clickstreams

Prints a Clickstreams Object

Description

Prints a Clickstreams object

Usage

```r
S3 method for class 'Clickstreams'
print(x, ...)
```

Arguments

- `x` A list of clickstreams.
- `...` Ignored parameters.

Author(s)

Michael Scholz <michael.scholz@uni-passau.de>

See Also

- readClickstreams
- randomClickstreams

Examples

```r
clickstreams <- c("User1,h,c,p,c,h,c,p,p,c,p,p,o",
"User2,i,c,i,c,c,d",
"User3,h,i,c,i,p,c,c,p,c,c,i,d",
"User4,c,c,p,c,d",
"User5,h,c,c,p,p,c,c,p,i,p,o",
"User6,i,h,c,c,p,p,c,p,c,d")
cls <- as.clickstreams(clickstreams, header = TRUE)
print(cls)
```
print.MarkovChainSummary

Prints the Summary of a MarkovChain Object

Description

Prints the summary of a MarkovChain object.

Usage

## S3 method for class 'MarkovChainSummary'
print(x, ...)

Arguments

- **x**
  - A MarkovChainSummary object generated with the function `summary`
- **...**
  - Ignored parameters.

Author(s)

Michael Scholz <michael.scholz@uni-passau.de>

See Also

summary

Examples

clickstreams <- c("User1,h,c,c,p,h,c,c,p,p,p,o",
                   "User2,i,c,i,c,c,c,d",
                   "User3,h,i,c,i,c,p,c,c,c,i,d",
                   "User4,c,c,p,c,d",
                   "User5,h,c,c,p,p,i,p,o",
                   "User6,i,h,c,c,p,p,c,p,c,d")
cls <- as.clickstreams(clickstreams, header = TRUE)
mc <- fitMarkovChain(cls)
print(summary(mc))
randomClicks  Generates a Sequence of Clicks

Description
Generates a Sequence of Clicks

Usage
randomClicks(object, startPattern, dist)

Arguments
- object: The MarkovChain used for generating the next click(s)
- startPattern: Pattern containing the first clicks of a user. A Pattern object with an empty sequence is also possible.
- dist: (Optional) The number of clicks that should be generated (default is 1).

Methods
- list("signature(object = "MarkovChain\n")") Generates a sequence of clicks by randomly walking through the transition graph of a given MarkovChain object.

Author(s)
Michael Scholz <michael.scholz@uni-passau.de>

See Also
- fitMarkovChain

Examples

```r
fitting a simple Markov chain and predicting the next click
clickstreams <- c("User1,h,c,p,c,h,c,p,p,c,p,p,o",
 "User2,i,c,i,c,c,c,d",
 "User3,h,i,c,i,c,p,c,c,c,i,d",
 "User4,c,c,p,c,d",
 "User5,h,c,c,p,p,c,p,p,i,p,o",
 "User6,i,h,c,c,p,p,c,p,c,d")
clickstreams <- as.clickstreams(clickstreams, header = TRUE)
clicks <- fitMarkovChain(clicks)
startPattern <- new("Pattern", sequence = c("h", "c"))
predict(mc, startPattern)
```
randomClickstreams

Generates a List of Clickstreams

Description

Generates a list of clickstreams by randomly walking through a given transition matrix.

Usage

randomClickstreams(
  states,
  startProbabilities,
  transitionMatrix,
  meanLength,
  n = 100
)

Arguments

states       Names of all possible states.
startProbabilities  Start probabilities for all states.
transitionMatrix   Matrix of transition probabilities.
meanLength     Average length of the click streams.
n            Number of click streams to be generated.

Value

Returns a list of clickstreams.

Author(s)

Michael Scholz <michael.scholz@uni-passau.de>

See Also

fitMarkovChain, readClickstreams, print.Clickstreams

Examples

# generate a simple list of click streams
states <- c("a", "b", "c")
startProbabilities <- c(0.2, 0.5, 0.3)
transitionMatrix <- matrix(c(0, 0.4, 0.6, 0.3, 0.1, 0.6, 0.2, 0.8, 0), nrow = 3)
cls <- randomClickstreams(states, startProbabilities, transitionMatrix, meanLength = 5, n = 10)
print(cls)
**readClickstreams**  
*Reads a List of Clickstreams from File*

**Description**

Reads a list of clickstream from a csv-file. Note that non-alphanumeric characters will be removed.

**Usage**

```r
readClickstreams(file, sep = ",", header = FALSE)
```

**Arguments**

- `file` The name of the file which the clickstreams are to be read from. Each line of the file appears as one click stream. If it does not contain an absolute path, the file name is relative to the current working directory, `getwd`.
- `sep` The character separating clicks (default is ",").
- `header` A logical flag indicating whether the first entry of each line in the file is the name of the clickstream user.

**Value**

A list of clickstreams. Each element is a vector of characters representing the clicks. The name of each list element is either the header of a clickstream file or a unique number.

**Author(s)**

Michael Scholz <michael.scholz@uni-passau.de>

**See Also**

`print.Clickstreams, randomClickstreams`

**Examples**

```r
clickstreams <- c("User1,h,c,c,p,c,h,c,p,p,c,p,p,o",
 "User2,i,c,i,c,c,c,d",
 "User3,h,i,c,i,c,p,c,c,p,c,i,d",
 "User4,c,c,p,c,d",
 "User5,h,c,c,p,p,p,i,p,o",
 "User6,i,h,c,c,p,c,p,c,d")
csf <- tempfile()
writeLines(clickstreams, csf)
cls <- readClickstreams(csf, header = TRUE)
unlink(csf)
print(cls)
```
show, EvaluationResult-method

\textit{Shows an EvaluationResult object}

\section*{Description}

Shows an EvaluationResult object

\section*{Usage}

\begin{verbatim}
## S4 method for signature 'EvaluationResult'
show(object)
\end{verbatim}

\section*{Arguments}

\begin{description}
\item[object] An instance of the EvaluationResult-class
\end{description}

\section*{Methods}

\begin{verbatim}
list("signature(object = "EvaluationResult")")
\end{verbatim}
Show an EvaluationResult object.

\section*{Author(s)}

Michael Scholz <michael.scholz@uni-passau.de>

---

show, MarkovChain-method

\textit{Shows a MarkovChain object}

\section*{Description}

Shows a MarkovChain object

\section*{Usage}

\begin{verbatim}
## S4 method for signature 'MarkovChain'
show(object)
\end{verbatim}

\section*{Arguments}

\begin{description}
\item[object] An instance of the MarkovChain-class
\end{description}

\section*{Methods}

\begin{verbatim}
list("signature(object = "MarkovChain")")
\end{verbatim}
Show a MarkovChain object.
show, Pattern-method  

*Shows a Pattern object*

---

**Description**

Shows a Pattern object

**Usage**

```r
S4 method for signature 'Pattern'
show(object)
```

**Arguments**

- `object` An instance of the Pattern-class

**Methods**

- `list("signature(object = \"Pattern\")")`  Shows a Pattern object.

---

**Author(s)**

Michael Scholz <michael.scholz@uni-passau.de>

---

states

*Returns All States*

---

**Description**

Returns All States

**Usage**

`states(object)`

**Arguments**

- `object` An instance of the MarkovChain-class

**Methods**

- `list("signature(object = \"MarkovChain\")")`  Returns the name of all states of a MarkovChain object.
**summary.MarkovChain-method**

Prints the Summary of a MarkovChain Object

**Description**

Prints the Summary of a MarkovChain Object

**Usage**

```r
S4 method for signature 'MarkovChain'
summary(object)
```

**Arguments**

- `object` An instance of the MarkovChain-class

**Value**

Returns a MarkovChainSummary object.

- `list("desc")` A short description of the MarkovChain object.
- `list("observations")` The number of observations from which the MarkovChain has been fitted.
- `list("k")` The number of estimation parameters.
- `list("logLikelihood")` The maximal log-likelihood of the MarkovChain estimation.
- `list("aic")` Akaike's Information Criterion for the MarkovChain object
- `list("bic")` Bayesian Information Criterion for the MarkovChain object

**Methods**

- `list("signature(object = \"MarkovChain\")")` Generates a summary for a given MarkovChain object

**Author(s)**

Michael Scholz <michael.scholz@uni-passau.de>
summary.ClickstreamClusters

*Prints a Summary of a ClickstreamCluster Object*

---

**Description**

Prints a summary of a ClickstreamCluster object. A ClickstreamClusters object represents the result of a cluster analysis on a list of clickstreams (see `clusterClickstreams`).

**Usage**

```r
S3 method for class 'ClickstreamClusters'
summary(object, ...)
```

**Arguments**

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>object</code></td>
<td>A ClickstreamClusters object returned by <code>clusterClickstreams</code>.</td>
</tr>
<tr>
<td><code>...</code></td>
<td>Ignored parameters.</td>
</tr>
</tbody>
</table>

**Author(s)**

Michael Scholz <michael.scholz@uni-passau.de>

**See Also**

`clusterClickstreams`, `print.ClickstreamClusters`

**Examples**

```r

clickstreams <- c("User1,h,c,c,p,c,h,c,p,p,c,p,p,o",
 "User2,i,c,i,c,c,c,d",
 "User3,h,i,c,i,c,p,c,c,p,c,c,i,d",
 "User4,c,c,p,c,d",
 "User5,h,c,c,p,c,p,p,p,i,p,o",
 "User6,i,h,c,c,p,p,c,p,c,d")
c1s <- as.clickstreams(clickstreams, header = TRUE)
cclusters <- clusterClickstreams(c1s, order = 0, centers = 2)
summary(cclusters)
```
summary.Clickstreams

Prints a Summary of a Clickstreams Object

Description

Prints a summary of a Clickstreams object.

Usage

## S3 method for class 'Clickstreams'
summary(object, ...)  

Arguments

object A Clickstreams object (see readClickstreams).

... Ignored parameters.

Author(s)

Michael Scholz <michael.scholz@uni-passau.de>

See Also

readClickstreams, randomClickstreams

Examples

```r
clickstreams <- c("User1,h,c,p,c,h,c,p,p,c,p,p,o",
 "User2,i,c,i,c,c,c,d",
 "User3,h,i,c,i,c,p,c,c,i,d",
 "User4,c,c,p,c,d",
 "User5,h,c,c,p,c,p,p,i,p,o",
 "User6,i,h,c,c,p,p,c,p,c,d")
cls <- as.clickstreams(clickstreams, header = TRUE)
summary(cls)
```
### transientStates

**Returns All Transient States**

**Description**

Returns All Transient States

**Usage**

```
transientStates(object)
```

**Arguments**

- `object` An instance of the `MarkovChain`-class

**Methods**

- `list("signature(object = "MarkovChain")")` Returns the names of all states that have a non-zero probability that a user will never return to them (i.e. that are transient).

**Author(s)**

Michael Scholz <michael.scholz@uni-passau.de>

---

### writeClickstreams

**Writes a List of Clickstreams to File**

**Description**

Writes a list of clickstream to a csv-file.

**Usage**

```
writeClickstreams(
 clickstreamList, file,
 header = TRUE,
 sep = ",",
 quote = TRUE
)
```
Arguments

- **clickstreamList**: The list of clickstreams to be written.
- **file**: The name of the file which the clickstreams are written to.
- **header**: A logical flag indicating whether the name of each clickstream element should be used as first element.
- **sep**: The character used to separate clicks (default is ",").
- **quote**: A logical flag indicating whether each element of a clickstream will be surrounded by double quotes (default is TRUE).

Author(s)

Michael Scholz <michael.scholz@uni-passau.de>

See Also

- `readClickstreams`
- `clusterClickstreams`

Examples

```r
clickstreams <- c("User1,h,c,c,p,c,h,c,p,p,c,p,p,o",
 "User2,i,c,i,c,c,c,d",
 "User3,h,i,c,i,c,p,c,c,c,i,d",
 "User4,c,c,p,c,d",
 "User5,h,c,c,p,p,c,p,p,i,p,o",
 "User6,i,h,c,c,p,p,c,c,d")
cls <- as.clickstreams(clickstreams, header = TRUE)
clusters <- clusterClickstreams(cls, order = 0, centers = 2)
writeClickstreams(cls, file = "clickstreams.csv", header = TRUE, sep = ",")

Remove the clickstream file
unlink("clickstreams.csv")
```
Index

*Topic Markov
  clickstream-package, 2
*Topic chain
  clickstream-package, 2
*Topic classes
  EvaluationResult-class, 11
  MarkovChain-class, 21
  Pattern-class, 25
*Topic click
  clickstream-package, 2
*Topic methods
  +,Pattern,Pattern-method, 3
  absorbingStates, 4
  hmPlot, 19
  initialize,Pattern-method, 20
  plot,MarkovChain-method, 26
  predict,MarkovChain-method, 27
  randomClicks, 32
  show,EvaluationResult-method, 35
  show,MarkovChain-method, 35
  show,Pattern-method, 36
  states, 36
  summary,MarkovChain-method, 37
  transientStates, 40
*Topic stream
  clickstream-package, 2
  +,Pattern,Pattern-method, 3
  absorbingStates, 4
  absorbingStates,MarkovChain-method (absorbingStates), 4
  as.ClickClust, 5
  as.clickstreams, 6
  as.moltenTransactions, 7
  as.transactions, 8
  chiSquareTest, 9
  clickstream (clickstream-package), 2
  clickstream-package, 2
  clusterClickstreams, 9, 28, 29, 38, 41
  EvaluationResult-class, 11
  fitMarkovChain, 11, 20, 21, 27, 32, 33
  fitMarkovChains, 13
  frequencies, 5, 7, 8, 14
  getConsensusClusters, 15
  getConsensusClustersParallel, 16
  getOptimalMarkovChain, 18
  getwd, 34
  hmPlot, 19
  hmPlot,MarkovChain-method (hmPlot), 19
  initialize,Pattern-method, 20
  kmeans, 10
  MarkovChain, 12
  MarkovChain-class, 21
  mcEvaluate, 11, 21, 23
  mcEvaluateAll, 22, 24
  mcEvaluateAllClusters, 24
  Pattern-class, 25
  plot,MarkovChain-method, 26
  predict,MarkovChain-method, 27
  predict.ClickstreamClusters, 28
  print.ClickstreamClusters, 10, 29, 29, 38
  print.Clickstreams, 6, 30, 33, 34
  print.MarkovChainSummary, 31
  randomClicks, 25, 32
  randomClicks,MarkovChain-method (randomClicks), 32
  randomClicks, 6, 30, 33, 34, 39
  readClickstreams, 30, 33, 34, 39, 41
  Rsolnp, 12
  show,EvaluationResult-method, 35
  show,MarkovChain-method, 35
show, Pattern-method, 36
states, 36
states, MarkovChain-method (states), 36
summary, 31
summary, MarkovChain-method, 37
summary, ClickstreamClusters, 10, 29, 38
summary, Clickstreams, 39
transactions, 7, 8, 14
transientStates, 40
tranientStates, MarkovChain-method
(transientStates), 40
writeClickstreams, 40