Package ‘clickstream’

December 14, 2017

Type Package
Title Analyzes Clickstreams Based on Markov Chains
Version 1.3.0
Date 2017-12-14
Author Michael Scholz, Theo van Kraay
Maintainer Michael Scholz <michael.scholz@uni-passau.de>
Description A set of tools to read, analyze and write lists of click sequences on websites (i.e., clickstream). A click can be represented by a number, character or string. Clickstreams can be modeled as zero- (only computes occurrence probabilities), first- or higher-order Markov chains.
License GPL-2
Depends R (>= 3.0.1), methods, igraph, stats, utils, reshape2, data.table, MASS
Imports plyr, Rsolnp, arules, linprog, ggplot2, ClickClust, parallel
LazyLoad yes
ByteCompile yes
RoxygenNote 6.0.1
NeedsCompilation no
Repository CRAN
Date/Publication 2017-12-14 10:31:54 UTC

R topics documented:
clickstream-package ... 2
+,Pattern,Pattern-method ... 4
absorbingStates ... 4
as.ClickClust ... 5
as.transactions .. 6
chiSquareTest .. 7
clusterClickstreams .. 7
EvaluationResult-class .. 9
Description

This package allows modeling clickstreams with Markov chains. It supports to model clickstreams as zero-order, first-order or higher-order Markov chains.
Details

Package: clickstream
Type: Package
Version: 1.3.0
Date: 2017-12-15
License: GPL-2
Depends: R (>= 3.0), methods

Author(s)

Michael Scholz <michael.scholz@uni-passau.de>
Theo van Kraay <theo.vankraay@hotmail.com>

References

Examples

fitting a simple Markov chain and predicting the next click
clickstreams <- c("User1,h,c,p,c,h,c,p,p,c,p,p,o",
"User2,i,c,i,c,c,d",
"User3,h,i,c,i,c,p,c,c,i,d",
"User4,c,c,p,c,d",
"User5,h,c,c,p,p,c,p,p,p,i,p,o",
"User6,i,h,c,c,p,p,c,p,c,d")
csf <- tempfile()
writeLines(clickstreams, csf)
cls <- readClickstreams(csf, header = TRUE)
cmc <- fitMarkovChain(clss)
startPattern <- new("Pattern", sequence = c("h", "c"))
predict(mmc, startPattern)
plot(mmc)
+,,Pattern,Pattern-method

Concatenates two Pattern objects

Description
Concatenates two Pattern objects

Usage
S4 method for signature 'Pattern,Pattern'
e1 + e2

Arguments
- **e1**: First pattern
- **e2**: Second pattern

Methods
- `list("signature(e1 = "Pattern", e2 = "Pattern")")` Concatenates two Pattern objects.

Author(s)
Michael Scholz <michael.scholz@uni-passau.de>

absorbingStates

Returns All Absorbing States

Description
Returns All Absorbing States

Usage
absorbingStates(object)

Arguments
- **object**: An instance of the MarkovChain-class

Methods
- `list("signature(object = "MarkovChain")")` Returns the names of all states that never have a successor in a clickstream (i.e. that are absorbing).
as.ClickClust

Author(s)
Michael Scholz <michael.scholz@uni-passau.de>

as.ClickClust Coerces a Clickstream Object to a ClickClust Object

Description
Coerces a Clickstream object to a ClickClust object.

Usage
as.ClickClust(clickstreamList)

Arguments
clickstreamList
A list of clickstreams.

Value
A list consisting of a dataset X and a vector of initial states y

Author(s)
Michael Scholz <michael.scholz@uni-passau.de>

See Also
frequencies

Examples
```r
clickstreams <- c("User1,h,c,c,p,c,h,c,p,p,c,p,p,o", "User1,i,c,i,c,c,d", "User3,h,i,c,i,c,p,c,c,p,c,c,i,d", "User4,c,c,p,c,d", "User5,h,c,c,p,p,c,p,p,i,p,o", "User6,i,h,c,c,p,p,c,p,c,d")
csf <- tempfile()
writeLines(clickstreams, csf)
cls <- readClickstreams(csf, header = TRUE)
X <- as.ClickClust(cls)
```
as.transactions

Coerces a Clickstream Object to a Transactions Object

Description

Coerces a clickstream object to a transactions object.

Usage

as.transactions(clickstreamList)

Arguments

clickstreamList

A list of clickstreams.

Value

An instance of the class transactions

Author(s)

Michael Scholz <michael.scholz@uni-passau.de>

See Also

frequencies

Examples

clickstreams <- c("User1,h,c,c,p,c,h,c,p,p,c,p,p,o",
 "User2,i,c,i,c,c,d",
 "User3,h,i,c,c,p,c,c,p,c,c,i,d",
 "User4,c,c,p,c,d",
 "User5,h,c,c,p,p,c,p,i,p,o",
 "User6,i,h,c,c,p,p,c,p,c,d")
csf <- tempfile()
writelines(clickstreams, csf)
cls <- readClickstreams(csf, header = TRUE)
trans <- as.transactions(cls)
chiSquareTest

Calculates the chi-square statistic

Description

Calculates the chi-Square statistic, p-value, and degrees of freedom, for the first-order transition matrix of a MarkovChain object compared with observed state changes.

Usage

chiSquareTest(cls, mc)

Arguments

cls The clickstream object.
mc The Markov chain against which to compare the clickstream data. Please note that the first-order transition matrix is used for performing the chi-square test.

Author(s)

Theo van Kraay <theo.vankraay@hotmail.com>

Examples

clickstreams <- c("User1,h,c,c,p,h,c,p,p,c,p,o",
 "User2,i,c,i,c,c,d",
 "User3,h,i,c,i,c,p,c,p,c,i,d",
 "User4,c,c,p,c,d")

csf <- tempfile()
writeLines(clickstreams, csf)
cls <- readClickstreams(csf, header = TRUE)
unlink(csf)
mc <- fitMarkovChain(cls)
chiSquareTest(cls, mc)

clusterClickstreams

Performs K-Means Clustering on a List of Clickstreams

Description

Performs k-means clustering on a list of clickstreams. For each clickstream a transition matrix of a given order is computed. These transition matrices are used as input for performing k-means clustering.
Usage

`clusterClickstreams(clickstreamList, order = 0, centers, ...)`

Arguments

- `clickstreamList`
 A list of clickstreams for which the cluster analysis is performed.
- `order`
 The order of the transition matrices used as input for clustering (default is 0; 0 and 1 are possible).
- `centers`
 The number of clusters.
- `...`
 Additional parameters for k-means clustering (see `kmeans`).

Value

This method returns a `ClickstreamClusters` object (S3-class). It is a list with the following components:

- `clusters`
 The resulting list of Clickstreams objects.
- `centers`
 A matrix of cluster centres.
- `states`
 Vector of states
- `totss`
 The total sum of squares.
- `withinss`
 Vector of within-cluster sum of squares, one component per cluster.
- `tot.withinss`
 Total within-cluster sum of squares, i.e., `sum(withinss)`.
- `betweenss`
 The between-cluster sum of squares, i.e., `totss - tot.withinss`.

Author(s)

Michael Scholz <michael.scholz@uni-passau.de>

See Also

`print.ClickstreamClusters`, `summary.ClickstreamClusters`

Examples

```r
clickstreams <- c("User1,h,c,p,c,h,c,p,p,c,p,p,o",
                   "User2,i,c,i,c,c,c,d",
                   "User3,h,i,c,i,c,p,c,c,p,c,i,d",
                   "User4,c,c,p,c,d",
                   "User5,h,c,c,p,c,p,p,p,i,p,o",
                   "User6,i,h,c,c,p,c,p,c,d")
csf <- tempfile()
writeLines(clickstreams, csf)
csf <- readClickstreams(csf, header = TRUE)
cclusters <- clusterClickstreams(cls, order = 0, centers = 2)
print(clusters)
```
EvaluationResult-class

Description

Class EvaluationResult

Objects from the Class

Objects can be created by calls of the form `new("EvaluationResult", ...)`. This S4 class describes EvaluationResult objects.

Author(s)

Michael Scholz <michael.scholz@uni-passau.de>

See Also

mcEvaluate

Examples

```r
# show EvaluationResult definition
displayClass("EvaluationResult")
```

fitMarkovChain

Fits a List of Clickstreams to a Markov Chain

Description

This function fits a list of clickstreams to a Markov chain. Zero-order, first-order as well as higher-order Markov chains are supported. For estimating higher-order Markov chains this function solves the following linear or quadratic programming problem:

\[
\min \left\| \sum_{i=1}^{k} X - \lambda_i Q_i X \right\|
\]

s.t.

\[
\sum_{i=1}^{k} \lambda_i = 1
\]

\[
\lambda_i \geq 0
\]

The distribution of states is given as \(X\). \(\lambda_i\) is the lag parameter for lag \(i\) and \(Q_i\) the transition matrix.
Usage

fitMarkovChain(clickstreamList, order = 1, verbose = TRUE, control = list())

Arguments

clickstreamList
 A list of clickstreams for which a Markov chain is fitted.

order
 (Optional) The order of the Markov chain that is fitted from the clickstreams. Per default, Markov chains with order=1 are fitted. It is also possible to fit zero-order Markov chains (order=0) and higher-order Markov chains.

verbose
 (Optional) An optimal logical variable to indicate whether warnings and infos should be printed.

control
 (Optional) The control list of optimization parameters. Parameter optimizer specifies the type of solver used to solve the given optimization problem. Possible values are "linear" (default) and "quadratic". Parameter use.lpsolve determines whether lpSolve or linprog is used as linear solver.

Details

For solving the quadratic programming problem of higher-order Markov chains, an augmented Lagrange multiplier method from the package Rsolnp is used.

Value

Returns a MarkovChain object.

Note

At least half of the clickstreams need to consist of as many clicks as the order of the Markov chain that should be fitted.

Author(s)

Michael Scholz <michael.scholz@uni-passau.de>

References

See Also

MarkovChain, Rsolnp
Examples

fitting a simple Markov chain
clickstreams <- c("User1,h,c,p,c,h,c,p,p,c,p,o",
"User2,i,c,i,c,c,d",
"User3,i,c,i,c,p,c,p,c,c,i,d",
"User4,c,c,p,c,d",
"User5,h,c,c,p,p,c,p,i,p,o",
"User6,i,h,c,c,p,p,c,c,d")
csf <- tempfile()
writeLines(clickstreams, csf)
cls <- readClickStreams(csf, header = TRUE)
mc <- fitMarkovChain(cls)
show(mc)

fitMarkovChains

Generates a list of markov chains from a given set of clusters

Description

The purpose of this function is to generate pre-computed markov chain objects from clusters of clickstreams.

Usage

fitMarkovChains(clusters, order = 1)

Arguments

clusters The clusters from which to generate markov chain objects.
order The order for the markov chain.

Author(s)

Theo van Kraay <theo.vankraay@hotmail.com>

Examples

training <- c("User1,h,c,p,c,h,c,p,p,c,p,p,o",
"User2,i,c,i,c,c,d",
"User3,h,i,c,i,c,p,c,p,c,c,i,d",
"User4,c,c,p,c,d")
test <- c("User1,h,c,c,p,p,h,c,p,p,c,p,o",
"User2,i,c,i,c,c,d",
"User4,c,c,c,d")

fitMarkovChains

Generates a list of markov chains from a given set of clusters

Description

The purpose of this function is to generate pre-computed markov chain objects from clusters of clickstreams.

Usage

fitMarkovChains(clusters, order = 1)

Arguments

clusters The clusters from which to generate markov chain objects.
order The order for the markov chain.

Author(s)

Theo van Kraay <theo.vankraay@hotmail.com>

Examples

training <- c("User1,h,c,p,c,h,c,p,p,c,p,p,o",
"User2,i,c,i,c,c,d",
"User3,h,i,c,i,c,p,c,p,c,c,i,d",
"User4,c,c,p,c,d")
test <- c("User1,h,c,c,p,p,h,c,p,p,c,p,o",
"User2,i,c,i,c,c,d",
"User4,c,c,c,d")
```r
frequencies <- tempfile()
writelines(training, frequencies)
trainingCLS <- readClickstreams(frequencies, header = TRUE)
unlink(frequencies)

frequencies <- tempfile()
writelines(test, frequencies)
testCLS <- readClickstreams(frequencies, header = TRUE)
unlink(frequencies)

clusters <- clusterClickstreams(trainingCLS, centers = 2)
markovchains <- fitMarkovChains(clusters, order = 1)
```

frequencies

Generates a Data Frame of State Frequencies for All Clickstreams in a List of Clickstreams

Description

Generates a data frame of state frequencies for all clickstreams in a list of clickstreams.

Usage

```r
frequencies(clickstreamList)
```

Arguments

- `clickstreamList`:
 A list of clickstreams.

Value

A data frame containing state frequencies for each clickstream.

Author(s)

Michael Scholz <michael.scholz@uni-passau.de>

See Also

- `transactions`

Examples

```r
clickstreams <- c("User1,h,c,c,p,c,h,c,p,p,c,p,p,o",
                   "User2,i,c,i,c,c,d",
                   "User3,h,i,c,i,c,p,c,c,p,c,i,d",
                   "User4,c,c,p,c,d",
                   "User5,h,c,c,p,c,p,p,p,i,p,o",
```

```
getConsensusClusters

Generates an optimal set of clusters for a clickstream based on certain constraints

Description

This is an experimental function for a consensus clustering algorithm based on targeting a range of average next state probabilities derived when fitting each cluster to a markov chain.

Usage

getConsensusClusters(trainingCLS, testCLS, maxIterations = 10, optimalProbMean = 0.5, range = 0.3, centresMin = 2, clusterCentresRange = 0, order = 1, takeHighest = FALSE, verbose = FALSE)

Arguments

trainingCLS Clickstream object with training data (this should be the data used to build the markov chain object).

testCLS Clickstream object with test data.

maxIterations Number of times to iterate (repeat) through the k-means clustering.
optimalProbMean The target average probability of each next page click prediction in a 1st order markov chain.

range The range above the optimal probability to target.
centresMin The minimum cluster centres to evaluate.

clusterCentresRange the additional cluster centres to evaluate.

order The order for markov chains that will be used to evaluate each cluster.
takeHighest determines whether to default to the highest mean next click probability, or error if the target is not reached after the given number of k-means iterations.

verbose Should this function report extra information on progress?

Author(s)

Theo van Kraay <theo.vankraay@hotmail.com>
getConsensusClustersParallel

Generates an optimal set of clusters for a clickstream based on certain constraints and with parallel computation

Description

This is an experimental function for a consensus clustering algorithm based on targeting a range of average next state probabilities derived when fitting each cluster to a markov chain. This function parallelizes k-means and fitToMarkovChain operations across computer cores, and depends on the parallel package to function.

Examples

```r
training <- c("User1,h,c,c,p,c,h,c,p,c,p,c,o",
"User2,i,c,i,c,c,d",
"User3,h,i,c,c,p,c,c,c,i,d",
"User4,h,c,c,p,c,p,p,i,p,o",
"User5,i,h,c,c,p,c,p,c,d",
"User6,i,h,c,c,p,c,p,o",
"User7,i,h,c,c,p,c,p,c,d",
"User8,i,h,c,c,p,c,p,c,d,o")

test <- c(
"User1,h,c,c,p,c,h,c,p,c,p,c,o",
"User2,i,c,i,c,c,d",
"User3,h,i,c,c,p,c,c,c,i,d"
)

csf <- tempfile()
writeLines(training, csf)
trainingCLS <- readClickstreams(csf, header = TRUE)
unlink(csf)

csf <- tempfile()
writeLines(test, csf)
testCLS <- readClickstreams(csf, header = TRUE)
unlink(csf)

clusters <- getConsensusClusters(trainingCLS, testCLS, maxIterations=5,
optimalProbMean=0.40, range = 0.70, centresMin = 2,
clusterCentresRange = 0, order = 1, takeHighest = FALSE,
verbose = FALSE)

markovchains <- fitMarkovChains(clusters)
startPattern <- new("Pattern", sequence = c("i", "h", "c", "p"))
mc <- getOptimalMarkovChain(startPattern, markovchains, clusters)
predict(mc, startPattern)
```
getConsensusClustersParallel

Usage

getConsensusClustersParallel(trainingCLS, testCLS, maxIterations = 10, optimalProbMean = 0.5, range = 0.3, centresMin = 2, clusterCentresRange = 0, order = 1, cores = 2, takeHighest = FALSE, verbose = FALSE)

Arguments

trainingCLS  Clickstream object with training data (this should be the data used to build the markov chain object).

testCLS  Clickstream object with test data.

maxIterations  Number of times to iterate (repeat) through the k-means clustering.

optimalProbMean  The target average probability of each next page click prediction in a 1st order markov chain.

range  The range above the optimal probability to target.

centresMin  The minimum cluster centres to evaluate.

clusterCentresRange  the additional cluster centres to evaluate.

order  The order for markov chains that will be used to evaluate each cluster.

cores  Number of cores used for clustering.

takeHighest  determines whether to default to the highest mean next click probability, or error if the target is not reached after the given number of k-means iterations.

verbose  Should this function report extra information on progress?

Author(s)

Theo van Kraay <theo.vankraay@hotmail.com>

Examples

training <- c("User1,h,c,c,p,c,h,c,p,p,c,p,p,o", "User2,i,c,i,c,c,d", "User3,h,i,c,i,c,p,c,c,p,c,i,d", "User4,h,c,c,p,p,c,p,p,i,p,o", "User5,i,h,c,c,p,c,p,c,d", "User6,i,h,c,c,p,c,p,c,o", "User7,i,h,c,c,p,c,p,c,d", "User8,i,h,c,c,p,p,c,p,c,d,o")

test <- c( "User1,h,c,c,p,c,h,c,p,p,c,p,p,o", "User2,i,c,i,c,c,d", "User3,h,i,c,i,c,p,c,c,p,c,i,d"
)

csf <- tempfile()
getOptimalMarkovChain

Generates the optimal markov chains from a list of markov chains and corresponding clusters

Description

The purpose of this function is to predict from a pattern using pre-computed markov chains and corresponding clusters. The markov chain corresponding with the cluster that is the best fit to the prediction value is used.

Usage

getOptimalMarkovChain(startPattern, markovchains, clusters)

Arguments

startPattern The pattern object to be used.
markovchains The pre-computed markov chains generated from a set of clusters.
clusters The corresponding clusters (should be in the corresponding order as the markov chains).

Author(s)

Theo van Kraay <theo.vankraay@hotmail.com>
hmPlot

Examples

```r
training <- c("User1,h,c,c,p,c,h,c,p,p,c,p,p,o",
 "User2,i,c,i,c,c,d",
 "User3,h,i,c,i,c,p,c,c,p,c,c,i,d",
 "User4,c,c,p,c,d")

test <- c("User1,h,c,c,p,p,h,c,p,p,c,p,p,o",
 "User2,i,c,i,c,c,d",
 "User4,c,c,c,d")

csf <- tempfile()
writelines(training, csf)
trainingCLS <- readClickstreams(csf, header = TRUE)
unlink(csf)

csf <- tempfile()
writelines(test, csf)
testCLS <- readClickstreams(csf, header = TRUE)
unlink(csf)

clusters <- clusterClickstreams(trainingCLS, centers = 2)
markovchains <- fitMarkovChains(clusters, order = 1)
startPattern <- new("Pattern", sequence = c("c"))
mchimp <- getOptimalMarkovChain(startPattern, markovchains, clusters)
predict(mchimp, startPattern)
```

hmPlot  

Plots a Heatmap

Description

Plots a Heatmap

Usage

```
hmPlot(object, order = 1, absorptionProbability = FALSE, title = NA,
 lowColor = "yellow", highColor = "red", flip = FALSE)
```

Arguments

- **object**: The MarkovChain for which a heatmap is plotted.
- **order**: Order of the transition matrix that should be plotted. Default is 1.
- **absorptionProbability**: Should the heatmap show absorption probabilities? Default is FALSE.
- **title**: Title of the heatmap.
- **lowColor**: Color for the lowest transition probability of 0. Default is "yellow".
- **highColor**: Color for the highest transition probability of 1. Default is "red".
- **flip**: Flip to horizontal plot. Default is FALSE.
initialize, Pattern-method

Description

Creates a new Pattern object

Usage

## S4 method for signature 'Pattern'
initialize(.Object, sequence, probability,
  absorbingProbabilities, ...)
MarkovChain-class

Arguments

- Object: Pattern (name of the class)
- sequence: Click sequence
- probability: Probability for the click sequence
- absorbingProbabilities: Probabilities that the sequence will finally end in one of the absorbing states
- ...: Further arguments for the CallNextMethod function

Methods

- `list("signature(sequence = \"character\", probability = \"numeric\", absorbingProbabilities = \"numeric\")")`
  - Creates a new Pattern object.

Author(s)

Michael Scholz <michael.scholz@uni-passau.de>

Description

Class MarkovChain

Objects from the Class

Objects can be created by calls of the form `new("MarkovChain", ...). This S4 class describes MarkovChain objects.

Author(s)

Michael Scholz <michael.scholz@uni-passau.de>

See Also

- `fitMarkovChain`

Examples

```r
show MarkovChain definition
showClass("MarkovChain")

fit a simple Markov chain from a list of click streams
clickstreams <- c("User1,h,c,p,c,h,c,p,p,c,p,o",
 "User2,i,c,i,c,c,c,d",
 "User3,h,i,c,i,p,c,c,p,c,i,d",
```
mcEvaluate

Evaluates the number of occurrences of predicted next clicks

Description

Evaluates the number of occurrences of predicted next clicks vs. total number of starting pattern occurrences in a given clickstream. The predicted next click can be a markov chain of any order.

Usage

mcEvaluate(mc, startPattern, testCLS)

Arguments

mc a markovchain object (this should have been built from a set of training data)
startPattern the starting pattern we want to predict next click on, and evaluate observed occurrences in test data.
testCLS clickstream object with test data

Author(s)

Theo van Kraay <theo.vankraay@hotmail.com>

Examples

training <- c("User1,h,c,c,p,c,h,c,p,c,p,p,o",
"User2,i,c,i,c,c,d",
"User3,h,i,c,i,c,p,c,c,p,c,i,d",
"User4,c,c,p,c,d")

test <- c("User1,h,h,h,c,c,p,p,h,c,p,p,c,p,p,o",
"User2,i,c,i,c,c,d",
"User4,c,c,c,d,c,c,c")

csf <- tempfile()
writeLines(csf)
trainingCLS <- readClickstreams(csf, header = TRUE)
unlink(csf)
`mcEvaluateAll` | `mcEvaluateAll` Evaluates all next page clicks in a clickstream training data set against a test data

**Description**

Evaluates all next page clicks in a clickstream training data set against a test data. Handles higher order by cycling through every possible pattern permutation. Produces a report of observed and expected values in a matrix.

**Usage**

```r
mcEvaluateAll(mc, trainingCLS, testCLS, includeChiSquare = TRUE, returnChiSquareOnly = FALSE)
```

**Arguments**

- `mc` A markovchain object that corresponds to a list of clusters.
- `trainingCLS` Clickstream object with training data (this should be the data used to build the markov chain object).
- `testCLS` Clickstream object with test data.
- `includeChiSquare` Should the result include the chi-square value?
- `returnChiSquareOnly` Should the result only consist of the chi-square value?

**Author(s)**

Theo van Kraay <theo.vankraay@hotmail.com>

**See Also**

- `mcEvaluate`
mcEvaluateAllClusters

Evaluates all next page clicks in a clickstream training data set against a test data

Description

Evaluates all next page clicks in a clickstream training data set against a test data on the basis of a set of pre-computed Markov chains and corresponding clusters. Handles higher order by cycling through every possible pattern permutation. Produces and produces a report of observed and expected values in a matrix.

Usage

mcEvaluateAllClusters(markovchains, clusters, testCLS, trainingCLS, includeChiSquare = TRUE, returnChiSquareOnly = FALSE)

Arguments

markovchains  A list of MarkovChain-objects.
clusters  The list of clusters.
testCLS  Clickstream object with test data.
trainingCLS  Clickstream object with training data (this should be the data used to build the markov chain object).
includeChiSquare  Should the result include the chi-square value?
returnChiSquareOnly  Should the result only consist of the chi-square value?
Description

This S4 class describes a click pattern consisting of a sequence of clicks and a probability of occurrence.

Objects from the Class

Objects can be created by calls of the form `new("Pattern", sequence, probability, ...)`. This S4 class describes a click pattern consisting of a sequence of clicks and a probability of occurrence.

Author(s)

Michael Scholz <michael.scholz@uni-passau.de>
See Also

randomClicks

Examples

# show Pattern definition
showClass("Pattern")

# create simple Pattern objects
pattern1 <- new("Pattern", sequence = c("h", "c", "p"))
pattern2 <- new("Pattern", sequence = c("c", "p", "p"), probability = 0.2)
pattern3 <- new("Pattern", sequence = c("h", "p", "p"), probability = 0.35,
     absorbingProbabilities = data.frame(d = 0.6, o = 0.4))

plot,MarkovChain-method

Plots a MarkovChain object

Description

Plots a MarkovChain object

Usage

## S4 method for signature 'MarkovChain'
plot(x, order = 1, digits = 2, minProbability = 0,
     ...)  

Arguments

x  
An instance of the MarkovChain-class

order  
The order of the transition matrix that should be plotted

digits  
The number of digits of the transition probabilities

minProbability  
Only transitions with a probability >= the specified minProbability will be shown

...  
Further parameters for the plot-function in package igraph

Methods

list("signature(x = \"MarkovChain\", order = \"numeric\", digits = \"numeric\")\)  
Plots the transition matrix with order order of a MarkovChain object as graph.

Author(s)

Michael Scholz <michael.scholz@uni-passau.de>
predict,MarkovChain-method

Predicts the Next Click(s) of a User

Description

Predicts the Next Click(s) of a User

Usage

```r
S4 method for signature 'MarkovChain'
predict(object, startPattern, dist = 1,
 ties = "random")
```

Arguments

- `object` The MarkovChain used for predicting the next click(s)
- `startPattern` Starting clicks of a user as Pattern object. A Pattern with an empty sequence is also possible.
- `dist` (Optional) The number of clicks that should be predicted (default is 1).
- `ties` (Optional) The strategy for handling ties in predicting the next click. Possible strategies are random (default) and first.

Methods

`list("signature(object = "MarkovChain")")` This method predicts the next click(s) of a user. The first clicks of a user are given as Pattern object. The next click(s) are predicted based on the transition probabilities in the MarkovChain object. The probability distribution of the next click \( n \) is estimated as follows:

\[
X^{(n)} = B \cdot \sum_{i=1}^{k} \lambda_i Q_i X^{(n-i)}
\]

The distribution of states at time \( n \) is given as \( X^n \). The transition matrix for lag \( i \) is given as \( Q_i \). \( \lambda_i \) specifies the lag parameter and \( B \) the absorbing probability matrix.

Author(s)

Michael Scholz <michael.scholz@uni-passau.de>

See Also

`fitMarkovChain`
Examples

```r
fitting a simple Markov chain and predicting the next click
clickstreams <- c("User1,h,c,c,p,c,h,c,p,p,c,p,p,o",
 "User2,i,c,i,c,c,c,d",
 "User3,h,i,c,i,c,p,c,c,p,c,i,d",
 "User4,c,c,p,c,d",
 "User5,h,c,c,p,p,c,p,p,i,p,o",
 "User6,i,h,c,c,p,p,c,p,c,d")

csf <- tempfile()
writeLines(clickstreams, csf)

cls <- readClickstreams(csf, header = TRUE)
mc <- fitMarkovChain(cls)
startPattern <- new("Pattern", sequence = c("h", "c"))
predict(mc, startPattern)

predict with predefined absorbing probabilities
#
startPattern <- new("Pattern", sequence = c("h", "c"),
 absorbingProbabilities = data.frame(d = 0.2, o = 0.8))
predict(mc, startPattern)
```

---

**predict.ClickstreamClusters**

*Predicts the Cluster for a Given Pattern Object*

**Description**

Predicts the cluster for a given Pattern object. Potential clusters need to be identified with the method `clusterClickstreams` before predicting the cluster.

**Usage**

```r
S3 method for class 'ClickstreamClusters'
predict(object, pattern, ...)
```

**Arguments**

- `object` A ClickstreamClusters object containing the clusters. ClickstreamClusters represent the result of a cluster analysis on a list of clickstreams (see `clusterClickstreams`).
- `pattern` Sequence of a user’s initial clicks as Pattern object.
- `...` Ignored parameters.

**Value**

Returns the index of the clusters to which the given Pattern object most probably belongs to.
print.ClickstreamClusters

Author(s)
Michael Scholz <michael.scholz@uni-passau.de>

See Also
clusterClickstreams, print.ClickstreamClusters

Examples

clickstreams <- c("User1,h,c,p,c,h,c,p,p,c,p,p,o",
                    "User2,i,c,c,c,c,d",
                    "User3,h,i,c,i,p,c,c,p,c,c,i,d",
                    "User4,c,c,p,c,d",
                    "User5,h,c,c,p,p,c,p,p,i,p,o",
                    "User6,i,h,c,c,p,p,c,p,c,d")

csf <- tempfile()
writelines(clickstreams, csf)
cls <- readClickstreams(csf, header = TRUE)
clusters <- clusterClickstreams(cls, order = 0, centers = 2)
pattern <- new("Pattern", sequence = c("h", "c"))
predict(clusters, pattern)

print.ClickstreamClusters

Prints a ClickstreamClusters Object

Description
Prints a ClickstreamClusters object. A ClickstreamClusters object represents the result of a
cluster analysis on a list of clickstreams (see clusterClickstreams).

Usage
## S3 method for class 'ClickstreamClusters'
print(x, ...)

Arguments

x A ClickstreamClusters object (see clusterClickstreams).

... Ignored parameters.

Author(s)
Michael Scholz <michael.scholz@uni-passau.de>
See Also

clusterClickstreams, summary.ClickstreamClusters

Examples

clickstreams <- c("User1,h,c,p,c,h,c,p,p,c,p,p,o",  
    "User2,i,c,i,c,c,c,d",  
    "User3,h,i,c,i,c,p,c,c,c,i,d",  
    "User4,c,c,p,c,d",  
    "User5,h,c,c,p,p,c,p,p,i,p,o",  
    "User6,i,h,c,c,p,c,p,c,d")
csf <- tempfile()
writeLines(clickstreams, csf)
cls <- readClickstreams(csf, header = TRUE)
clusters <- clusterClickstreams(cls, order = 0, centers = 2)
print(clusters)

print.Clickstreams  Prints a Clickstreams Object

Description

Prints a Clickstreams object

Usage

## S3 method for class 'Clickstreams'
print(x, ...)

Arguments

x  A list of clickstreams.

... Ignored parameters.

Author(s)

Michael Scholz <michael.scholz@uni-passau.de>

See Also

readClickstreams, randomClickstreams
Examples

```r
clickstreams <- c("User1,h,c,c,p,c,h,c,p,p,c,p,p,o",
 "User2,i,c,i,c,c,d",
 "User3,h,i,c,i,c,p,c,c,c,i,d",
 "User4,c,c,p,c,d",
 "User5,h,c,c,p,p,c,p,p,i,p,o",
 "User6,i,h,c,c,p,p,c,c,d")

csf <- tempfile()
writeLines(clickstreams, csf)
cls <- readClickstreams(csf, header = TRUE)
print(cls)
```

Description

Prints the summary of a MarkovChain object.

Usage

```r
S3 method for class 'MarkovChainSummary'
print(x, ...)
```

Arguments

- `x`: A MarkovChainSummary object generated with the function `summary`
- `...`: Ignored parameters.

Author(s)

Michael Scholz <michael.scholz@uni-passau.de>

See Also

`summary`

Examples

```r
clickstreams <- c("User1,h,c,c,p,c,h,c,p,p,c,p,p,o",
 "User2,i,c,i,c,c,d",
 "User3,h,i,c,i,c,p,c,c,c,i,d",
 "User4,c,c,p,c,d",
 "User5,h,c,c,p,p,c,p,p,i,p,o",
 "User6,i,h,c,c,p,p,c,c,d")
```
randomClicks

Generates a Sequence of Clicks

Description

Generates a Sequence of Clicks

Usage

randomClicks(object, startPattern, dist)

Arguments

object The MarkovChain used for generating the next click(s)
startPattern Pattern containing the first clicks of a user. A Pattern object with an empty sequence is also possible.
dist (Optional) The number of clicks that should be generated (default is 1).

Methods

list("signature(object = \"MarkovChain\")") Generates a sequence of clicks by randomly walking through the transition graph of a given MarkovChain object.

Author(s)

Michael Scholz <michael.scholz@uni-passau.de>

See Also

fitMarkovChain

Examples

# fitting a simple Markov chain and predicting the next click
clickstreams <- c("User1,h,c,c,p,c,h,c,p,p,c,p,o",  
"User2,i,c,i,c,c,d",  
"User3,h,i,c,i,c,p,c,c,p,c,i,d",  
"User4,c,c,p,c,d",  
"User5,h,c,c,p,p,c,p,p,i,p,o",  
"User6,i,h,c,c,p,p,c,p,c,d")

csf <- tempfile()
writelines(clickstreams, csf)
cls <- readClickstreams(csf, header = TRUE)
mc <- fitMarkovChain(cls)
print(summary(mc))
randomClickstreams

Generates a List of Clickstreams

Description

Generates a list of clickstreams by randomly walking through a given transition matrix.

Usage

randomClickstreams(states, startProbabilities, transitionMatrix, meanLength, n = 100)

Arguments

- **states**: Names of all possible states.
- **startProbabilities**: Start probabilities for all states.
- **transitionMatrix**: Matrix of transition probabilities.
- **meanLength**: Average length of the click streams.
- **n**: Number of click streams to be generated.

Value

Returns a list of clickstreams.

Author(s)

Michael Scholz <michael.scholz@uni-passau.de>

See Also

- `fitMarkovChain`
- `readClickstreams`
- `print.Clickstreams`
Examples

```r
generate a simple list of click streams
states <- c("a", "b", "c")
startProbabilities <- c(0.2, 0.5, 0.3)
transitionMatrix <- matrix(c(0, 0.4, 0.6, 0.3, 0.1, 0.6, 0.2, 0.8, 0), nrow = 3)
cls <- randomClickstreams(states, startProbabilities, transitionMatrix, meanLength = 5, n = 10)
print(cls)
```

readClickstreams  
Reads a List of Clickstreams from File

Description

Reads a list of clickstream from a csv-file. Note that non-alphanumeric characters will be removed.

Usage

```r
readClickstreams(file, sep = ",", header = FALSE)
```

Arguments

- `file`: The name of the file which the clickstreams are to be read from. Each line of the file appears as one click stream. If it does not contain an absolute path, the file name is relative to the current working directory, `getwd`.
- `sep`: The character separating clicks (default is ",").
- `header`: A logical flag indicating whether the first entry of each line in the file is the name of the clickstream user.

Value

A list of clickstreams. Each element is a vector of characters representing the clicks. The name of each list element is either the header of a clickstream file or a unique number.

Author(s)

Michael Scholz <michael.scholz@uni-passau.de>

See Also

- `print.Clickstreams`
- `randomClickstreams`
Examples

```r
clickstreams <- c("User1,h,c,c,p,c,h,c,p,p,c,p,p,o",
 "User2,i,c,i,c,c,c,d",
 "User3,i,c,i,c,p,c,c,p,c,i,d",
 "User4,c,c,p,c,d",
 "User5,h,c,c,p,c,p,p,i,p,o",
 "User6,i,h,c,c,p,c,p,c,d")

csf <- tempfile()
writelines(clickstreams, csf)
cls <- readClickstreams(csf, header = TRUE)
print(cls)
```

Description

Shows an EvaluationResult object

Usage

```r
S4 method for signature 'EvaluationResult'
show(object)
```

Arguments

- **object**: An instance of the EvaluationResult-class

Methods

- `list("signature(object = \"EvaluationResult\")")`  Shows an EvaluationResult object.

Author(s)

Michael Scholz <michael.scholz@uni-passau.de>
show,Pattern-method

*Shows a Pattern object*

**Description**

Shows a Pattern object

**Usage**

```r
S4 method for signature 'Pattern'
show(object)
```

**Arguments**

- `object` An instance of the Pattern-class

**Methods**

```r
list("signature(object = \"Pattern\")")
```

*Shows a Pattern object.*

**Author(s)**

Michael Scholz <michael.scholz@uni-passau.de>

---

show,MarkovChain-method

*Shows a MarkovChain object*

**Description**

Shows a MarkovChain object

**Usage**

```r
S4 method for signature 'MarkovChain'
show(object)
```

**Arguments**

- `object` An instance of the MarkovChain-class

**Methods**

```r
list("signature(object = \"MarkovChain\")")
```

*Shows a MarkovChain object.*

**Author(s)**

Michael Scholz <michael.scholz@uni-passau.de>
Description

Returns All States

Usage

states(object)

Arguments

object

An instance of the MarkovChain-class

Methods

list("signature(object = "MarkovChain\ so\ te")") Returns the name of all states of a MarkovChain object.

Author(s)

Michael Scholz <michael.scholz@uni-passau.de>

summary,MarkovChain-method

Prints the Summary of a MarkovChain Object

Description

Prints the Summary of a MarkovChain Object

Usage

## S4 method for signature 'MarkovChain'

summary(object)

Arguments

object

An instance of the MarkovChain-class
summary.ClickstreamClusters

Value

Returns a MarkovChainSummary object.

- list("desc") A short description of the MarkovChain object.
- list("observations") The number of observations from which the MarkovChain has been fitted.
- list("k") The number of estimation parameters.
- list("logLikelihood") The maximal log-likelihood of the MarkovChain estimation.
- list("aic") Akaike's Information Criterion for the MarkovChain object
- list("bic") Bayesian Information Criterion for the MarkovChain object

Methods

- list("signature(object = "MarkovChain")") Generates a summary for a given MarkovChain object

Author(s)

Michael Scholz <michael.scholz@uni-passau.de>

Description

Prints a summary of a ClickstreamCluster object. A ClickstreamClusters object represents the result of a cluster analysis on a list of clickstreams (see clusterClickstreams).

Usage

```
S3 method for class 'ClickstreamClusters'
summary(object, ...)
```

Arguments

- object A ClickstreamClusters object returned by clusterClickstreams.
- ... Ignored parameters.

Author(s)

Michael Scholz <michael.scholz@uni-passau.de>

See Also

clusterClickstreams, print.ClickstreamClusters
summary.Clickstreams

Examples

clickstreams <- c("User1,h,c,c,p,c,h,c,p,p,c,p,p,o",  
                   "User2,i,c,i,c,c,d",  
                   "User3,h,i,c,i,c,p,c,c,p,c,i,d",  
                   "User4,c,c,p,c,d",  
                   "User5,h,c,c,p,p,c,p,p,i,p,o",  
                   "User6,i,h,c,c,p,c,p,c,d")

csf <- tempfile()
writelines(clickstreams, csf)
cls <- readClickstreams(csf, header = TRUE)
clusters <- clusterClickstreams(cls, order = 0, centers = 2)
summary(clusters)

summary.Clickstreams  Prints a Summary of a Clickstreams Object

Description

Prints a summary of a Clickstreams object.

Usage

## S3 method for class 'Clickstreams'
summary(object, ...)

Arguments

object  A Clickstreams object (see readClickstreams).
...  Ignored parameters.

Author(s)

Michael Scholz <michael.scholz@uni-passau.de>

See Also

readClickstreams, randomClickstreams

Examples

clickstreams <- c("User1,h,c,c,p,c,h,c,p,p,c,p,p,o",  
                   "User2,i,c,i,c,c,d",  
                   "User3,h,i,c,i,c,p,c,c,p,c,i,d",  
                   "User4,c,c,p,c,d",  
                   "User5,h,c,c,p,p,c,p,p,i,p,o",  
                   "User6,i,h,c,c,p,c,p,c,d")
transientStates  

Description

Returns All Transient States

Usage

transientStates(object)

Arguments

object  
An instance of the MarkovChain-class

Methods

list("signature(object = "MarkovChain")") Returns the names of all states that have a non-zero probability that a user will never return to them (i.e. that are transient).

Author(s)

Michael Scholz <michael.scholz@uni-passau.de>

writeClickstreams  

Description

Writes a list of clickstream to a csv-file.

Usage

writeClickstreams(clickstreamList, file, header = TRUE, sep = ",", quote = TRUE)
writeClickstreams

Arguments

- **clickstreamList**
  - The list of clickstreams to be written.
- **file**
  - The name of the file which the clickstreams are written to.
- **header**
  - A logical flag indicating whether the name of each clickstream element should be used as first element.
- **sep**
  - The character used to separate clicks (default is ",").
- **quote**
  - A logical flag indicating whether each element of a clickstream will be surrounded by double quotes (default is TRUE).

Author(s)

Michael Scholz <michael.scholz@uni-passau.de>

See Also

- readClickstreams
- clusterClickstreams

Examples

```r
clickstreams <- c("User1,h,c,p,c,h,c,p,p,c,p,o", "User2,i,c,c,c,d", "User3,i,c,i,c,p,c,p,c,c,i,d", "User4,c,c,p,c,d", "User5,c,c,p,p,c,p,p,i,p,o", "User6,i,h,c,c,p,p,c,c,d")
csf <- tempfile()
writelines(clickstreams, csf)
cls <- readClickstreams(csf, header = TRUE)
clusters <- clusterClickstreams(cls, order = 0, centers = 2)
writeClickstreams(cls, file = "clickstreams.csv", header = TRUE, sep = ",")
```
Index

*Topic Markov
  clickstream-package, 2
*Topic chain
  clickstream-package, 2
*Topic classes
  EvaluationResult-class, 9
  MarkovChain-class, 19
  Pattern-class, 23
*Topic click
  clickstream-package, 2
*Topic methods
  +,Pattern,Pattern-method, 4
  absorbingStates, 4
  hmPlot, 17
  initialize,Pattern-method, 18
  plot,MarkovChain-method, 24
  predict,MarkovChain-method, 25
  randomClicks, 30
  show,EvaluationResult-method, 33
  show,MarkovChain-method, 34
  show,Pattern-method, 34
  states, 35
  summary,MarkovChain-method, 35
  transientStates, 38
*Topic stream
  clickstream-package, 2
  +,Pattern,Pattern-method, 4
  absorbingStates, 4
  absorbingStates,MarkovChain-method
    (absorbingStates), 4
  as.ClickClust, 5
  as.transactions, 6
  chiSquareTest, 7
  clickstream (clickstream-package), 2
  clickstream-package, 2
  clusterClickstreams, 7, 26–28, 36, 39
  EvaluationResult-class, 9

fitMarkovChain, 9, 18, 19, 25, 30, 31
fitMarkovChains, 11
frequencies, 5, 6, 12
getConsensusClusters, 13
getConsensusClustersParallel, 14
getOptimalMarkovChain, 16
getwd, 32
hmPlot, 17
hmPlot,MarkovChain-method (hmPlot), 17
initialize,Pattern-method, 18
kmeans, 8
MarkovChain, 10
MarkovChain-class, 19
mcEvaluate, 9, 20, 21
mcEvaluateAll, 21, 23
mcEvaluateAllClusters, 22
Pattern-class, 23
plot,MarkovChain-method, 24
predict,MarkovChain-method, 25
predict.ClickstreamClusters, 26
print.ClickstreamClusters, 8, 27, 27, 36
print.Clickstreams, 28, 31, 32
print.MarkovChainSummary, 29
randomClicks, 24, 30
randomClicks,MarkovChain-method
  (randomClicks), 30
randomClickstreams, 28, 31, 32, 37
readClickstreams, 28, 31, 32, 37, 39
Rsolnp, 10
show,EvaluationResult-method, 33
show,MarkovChain-method, 34
show,Pattern-method, 34
states, 35
INDEX

states, MarkovChain-method (states), 35
summary, 29
summary, MarkovChain-method, 35
summary, ClickstreamClusters, 8, 28, 36
summary, Clickstreams, 37

transactions, 6, 12
transientStates, 38
transientStates, MarkovChain-method (transientStates), 38

writeClickstreams, 38