Package ‘climaemet’

May 25, 2023

Title Climate AEMET Tools

Version 1.1.1

Description Tools to download the climatic data of the Spanish Meteorological Agency (AEMET) directly from R using their API and create scientific graphs (climate charts, trend analysis of climate time series, temperature and precipitation anomalies maps, warming stripes graphics, climatograms, etc.).

License GPL-3

BugReports https://github.com/rOpenSpain/climaemet/issues

Depends R (>= 3.6.0)

Imports dplyr (>= 1.0.0), ggplot2 (>= 3.3.2), httr (>= 1.4.1), jsonlite (>= 1.7.0), rappdirs (>= 0.3.3), readr (>= 1.4.0), rlang (>= 0.4.6), tibble (>= 3.0.3), tidyr (>= 1.1.0)

Suggests climatol (>= 3.1.2), gganimate (>= 1.0.5), jpeg (>= 0.1.8), knitr, lubridate, rmarkdown, scales, sf (>= 0.9.0)

VignetteBuilder knitr

Config/Needs/website mapSpain, classInt, terra, sf, gstat, geoR, tidyverse, tidyterra, scales, gifski, reactable, leaflet, geofacet

Copyright © AEMET. See file COPYRIGHTS

Encoding UTF-8

LazyData true

RoxygenNote 7.2.3

X-schema.org-applicationCategory Meteorology

X-schema.org-isPartOf https://ropenspain.es/

NeedsCompilation no
Author Manuel Pizarro [aut, cph] (<https://orcid.org/0000-0002-6981-0154>),
 Diego Hernangómez [aut, cre] (<https://orcid.org/0000-0001-8457-4658>,
 rOpenSpain),
 Gema Fernández-Avilés [aut] (<https://orcid.org/0000-0001-5934-1916>)

Maintainer Diego Hernangómez <diego.hernangomezherrero@gmail.com>

Repository CRAN

Date/Publication 2023-05-25 18:00:02 UTC

R topics documented:

aemet_api_key .. 3
aemet_daily_clim .. 4
aemet_detect_api_key ... 6
aemet_extremes_clim ... 6
aemet_forecast_daily .. 7
aemet_forecast_tidy ... 9
aemet_last_obs .. 11
aemet_monthly .. 12
aemet_munic ... 14
aemet_normal .. 15
aemet_stations .. 16
climaemt_9434_climatogram 17
climaemt_9434_temp ... 17
climaemt_9434_wind .. 18
climaemt_news ... 19
climatetripes_station ... 19
climatogram_normal .. 21
climatogram_period .. 22
dms2decdegrees .. 23
first_day_of_year ... 24
get_data_aemet .. 25
ggclimat_walter_lieth .. 26
ggstripes .. 28
ggwindrose ... 30
windrose_days ... 31
windrose_period .. 33

Index 35
Install an AEMET API Key

Description

This function will store your AEMET API key on your local machine so it can be called securely without being stored in your code. After you have installed your key, it can be called any time by typing `Sys.getenv("AEMET_API_KEY")` and can be used in package functions by simply typing `AEMET_API_KEY`.

Alternatively, you can install the API Key manually:

- Run `Sys.setenv(AEMET_API_KEY = "Your_Key")`. You would need to run this command on each session (Similar to `install = FALSE`).
- Write this line on your .Renviron file: `AEMET_API_KEY = "Your_Key"` (same behavior than `install = TRUE`). This would store your API key permanently.

Usage

`aemet_api_key(apikey, overwrite = FALSE, install = FALSE)`

Arguments

- **apikey**: The API key provided to you from the AEMET formatted in quotes. A key can be acquired at https://opendata.aemet.es/centrodedescargas/inicio.
- **overwrite**: If this is set to `TRUE`, it will overwrite an existing AEMET_API_KEY that you already have in local machine.
- **install**: if `TRUE`, will install the key in your local machine for use in future sessions. Defaults to `FALSE`.

Value

None

Note

To locate your API Key on your local machine, run `rappdirs::user_cache_dir("climaemet", "R")`.

See Also

Other aemet_auth: `aemet_detect_api_key()`
Examples

Don't run these examples!

if (FALSE) {
 aemet_api_key("111111abc", install = TRUE)

 # You can check it with:
 Sys.getenv("AEMET_API_KEY")
}

if (FALSE) {
 # If you need to overwrite an existing key:
 aemet_api_key("222222abc", overwrite = TRUE, install = TRUE)

 # You can check it with:
 Sys.getenv("AEMET_API_KEY")
}

aemet_daily_clim

Daily/annual climatology values

Description

Get climatology values for a station or for all the available stations. Note that aemet_daily_period() and aemet_daily_period_all() are shortcuts of aemet_daily_clim().

Usage

aemet_daily_clim(
station = "all",
start = Sys.Date() - 7,
end = Sys.Date(),
verbose = FALSE,
return_sf = FALSE
)

aemet_daily_period(
station,
start = 2020,
end = 2020,
verbose = FALSE,
return_sf = FALSE
)

aemet_daily_period_all(
start = 2020,
end = 2020,
verbose = FALSE,
Arguments

station Character string with station identifier code(s) (see `aemet_stations()`) or "all" for all the stations.

start, end Character string with start and end date. See Details.

verbose Logical TRUE/FALSE. Provides information about the flow of information between the client and server.

return_sf Logical TRUE or FALSE. Should the function return an sf spatial object? If FALSE (the default value) it returns a tibble. Note that you need to have the sf package installed.

Details

start and end parameters should be:

- For `aemet_daily_clim()`: A Date object or a string with format: YYYY-MM-DD (2020-12-31) coercible with `as.Date()`.
- For `aemet_daily_period()` and `aemet_daily_period_all()`: A string representing the year(s) to be extracted: "2020", "2018".

Value

A tibble or a sf object

API Key

You need to set your API Key globally using `aemet_api_key()`.

See Also

`aemet_api_key()`, `as.Date()`

Other aemet_api_data: `aemet_extremes_clim()`, `aemet_forecast_daily()`, `aemet_last_obs()`, `aemet_monthly`, `aemet_normal`, `aemet_stations()`

Examples

```r
library(tibble)
obs <- aemet_daily_clim(c("9434", "3195"))
glimpse(obs)
```
aemet_detect_api_key
Check if an AEMET API Key is present for the current session

Description
The function would detect if an API Key is available on this session:

- If an API Key is already set as an environment variable it would be preserved
- If no environment variable has been set and you have stored permanently an API Key using `aemet_api_key()`, the latter would be loaded.

Usage

```r
aemet_detect_api_key(...)  
```

Arguments

- ...
 Ignored

Value

TRUE or FALSE

See Also

Other `aemet_auth`: `aemet_api_key()`

Examples

```r
aemet_detect_api_key()  
```

aemet_extremes_clim
Extreme values for a station

Description
Get recorded extreme values for a station.

Usage

```r
aemet_extremes_clim(  
  station = NULL,  
  parameter = "T",  
  verbose = FALSE,  
  return_sf = FALSE  
)`
Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>station</td>
<td>Character string with station identifier code(s) (see \texttt{aemet_stations()})</td>
</tr>
<tr>
<td>parameter</td>
<td>Character string as temperature (&quot;T&quot;), precipitation (&quot;P&quot;) or wind (&quot;V&quot;) parameter.</td>
</tr>
<tr>
<td>verbose</td>
<td>Logical TRUE/FALSE. Provides information about the flow of information between the client and server.</td>
</tr>
<tr>
<td>return_sf</td>
<td>Logical TRUE or FALSE. Should the function return an sf spatial object? If FALSE (the default value) it returns a tibble. Note that you need to have the \texttt{sf} package installed.</td>
</tr>
</tbody>
</table>

Value

A tibble or a \texttt{sf} object

API Key

You need to set your API Key globally using \texttt{aemet_api_key()}.

See Also

\texttt{aemet_api_key()}

Other \texttt{aemet_api_data}: \texttt{aemet_daily_clim()}, \texttt{aemet_forecast_daily()}, \texttt{aemet_last_obs()}, \texttt{aemet_monthly}, \texttt{aemet_normal}, \texttt{aemet_stations()}

Examples

```r
library(tibble)
obs <- aemet_extremes_clim(c("9434", "3195"))
glimpse(obs)
```

---

\texttt{aemet_forecast_daily} \hspace{1cm} Forecast database by municipality

Description

Get a database of daily or hourly weather forecasts for a given municipality.

Usage

\texttt{aemet_forecast_daily(x, verbose = FALSE)}

\texttt{aemet_forecast_hourly(x, verbose = FALSE)}
Arguments

- x: A vector of municipality codes to extract. For convenience, `climaemet` provides this data on the dataset `aemet_munic` (see municipio field) as of January 2020.
- verbose: Logical TRUE/FALSE. Provides information about the flow of information between the client and server.

Details

Forecasts format provided by the AEMET API have a complex structure. Although `climaemet` returns a tibble, each forecasted value is provided as a nested tibble. `aemet_forecast_tidy()` helper function can unnest these values and provide a single unnested tibble for the requested variable.

Value

A nested tibble. Forecasted values can be extracted with `aemet_forecast_tidy()`. See also Details

API Key

You need to set your API Key globally using `aemet_api_key()`.

See Also

- `aemet_munic` for municipality codes.
- Other `aemet_api_data`: `aemet_daily_clim()`, `aemet_extremes_clim()`, `aemet_last_obs()`, `aemet_monthly`, `aemet_normal`, `aemet_stations()`
- Other forecasts: `aemet_forecast_tidy()`

Examples

```r
Select a city
data("aemet_munic")
library(dplyr)
munis <- aemet_munic %>%
 filter(municipio_nombre %in% c(
 "Santiago de Compostela",
 "Lugo"
)) %>%
pull(municipio)
daily <- aemet_forecast_daily(munis)

Vars available
aemet_forecast_vars_available(daily)

This is nested
```
daily %>%
  select(municipio, fecha, nombre, temperatura)

# Select and unnest
daily_temp <- aemet_forecast_tidy(daily, "temperatura")

# This is not
daily_temp

# Wrangle and plot
daily_temp_end <- daily_temp %>%
  select(
    elaborado, fecha, municipio, nombre, temperatura_minima, temperatura_maxima
  )
  tidyr::pivot_longer(cols = contains("temperatura"))

# Plot
library(ggplot2)
ggplot(daily_temp_end) +
  geom_line(aes(fecha, value, color = name)) +
  facet_wrap(~nombre, ncol = 1) +
  scale_color_manual(
    values = c("red", "blue"),
    labels = c("max", "min")
  ) +
  scale_x_date(
    labels = scales::label_date_short(),
    breaks = "day"
  ) +
  scale_y_continuous(
    labels = scales::label_comma(suffix = "º")
  ) +
  theme_minimal() +
  labs(
    x = "", y = "",
    color = "",
    title = "Forecast: 7-day temperature",
    subtitle = paste("Forecast produced on",
      format(daily_temp_end$elaborado[1], usetz = TRUE)
    )
  )

---

**aemet_forecast_tidy**

Helper functions for extracting forecasts

**Description**

Helpers for `aemet_forecast_daily()` and `aemet_forecast_hourly()`:
• `aemet_forecast_vars_available()` extracts the values available on the dataset.
• `aemet_forecast_tidy()` produces a tidy tibble with the forecast for `var`.

Usage

```r
aemet_forecast_tidy(x, var)
aemet_forecast_vars_available(x)
```

Arguments

- `x` A database extracted with `aemet_forecast_daily()` or `aemet_forecast_hourly()`.
- `var` Name of the desired `var` to extract

Value

A vector of characters (`aemet_forecast_vars_available()`), or a tibble (`aemet_forecast_tidy()`).

See Also

Other forecasts: `aemet_forecast_daily()`

Examples

```r
Hourly values
hourly <- aemet_forecast_hourly(c("15030", "28080"))

Vars available
aemet_forecast_vars_available(hourly)

Get temperature
temp <- aemet_forecast_tidy(hourly, "temperatura")

library(dplyr)
Make hour - Need lubridate to adjust timezones
temp_end <- temp %>%
 mutate(
 forecast_time = lubridate::force_tz(
 as.POSIXct(fecha) + hora,
 tz = "Europe/Madrid"
)
)

Add also sunset and sunrise
suns <- temp_end %>%
 select(nombre, fecha, orto, ocaso) %>%
 distinct_all() %>%
 group_by(nombre) %>%
 mutate(
 ocaso_end = lubridate::force_tz(()}"
as.POSIXct(fecha) + ocaso,
 tz = "Europe/Madrid"
 },
 orto_end = lubridate::force_tz(
 as.POSIXct(fecha) + orto,
 tz = "Europe/Madrid"
),
 orto_lead = lead(orto_end)
) %>%
tidy::drop_na()

Plot
library(ggplot2)

ggplot(temp_end) +
 geom_rect(data = suns, aes(
 xmin = ocaso_end, xmax = orto_lead,
 ymin = min(temp_end$temperatura),
 ymax = max(temp_end$temperatura)
), alpha = .4) +
 geom_line(aes(forecast_time, temperatura), color = "blue4") +
 facet_wrap(~nombre, nrow = 2) +
 scale_x_datetime(labels = scales::label_date_short()) +
 scale_y_continuous(labels = scales::label_number(suffix = "º")) +
 labs(
 x = "", y = "",
 title = "Forecast: Temperature",
 subtitle = paste("Forecast produced on", format(temp_end$elaborado[1],
 usetz = TRUE
))
)

aemet_last_obs

Last observation values for a station

Description

Get last observation values for a station.

Usage

aemet_last_obs(station = "all", verbose = FALSE, return_sf = FALSE)
Arguments

- **station**: Character string with station identifier code(s) (see `aemet_stations()`) or "all" for all the stations.
- **verbose**: Logical TRUE/FALSE. Provides information about the flow of information between the client and server.
- **return_sf**: Logical TRUE or FALSE. Should the function return an sf spatial object? If FALSE (the default value) it returns a tibble. Note that you need to have the sf package installed.

Value

A tibble or a sf object.

API Key

You need to set your API Key globally using `aemet_api_key()`.

See Also

Other aemet_api_data: aemet_daily_clim(), aemet_extremes_clim(), aemet_forecast_daily(), aemet_monthly, aemet_normal, aemet_stations()

Examples

```r
library(tibble)
obs <- aemet_last_obs(c("9434", "3195"))
glimpse(obs)
```

Description

Get monthly/annual climatology values for a station or all the stations. `aemet_monthly_period()` and `aemet_monthly_period_all()` allows requests that span several years.

Usage

```r
aemet_monthly_clim(
  station = NULL,
  year = 2020,
  verbose = FALSE,
  return_sf = FALSE
)
```
aemet_monthly_period(
 station = NULL,
 start = 2018,
 end = 2020,
 verbose = FALSE,
 return_sf = FALSE
)

aemet_monthly_period_all(
 start = 2019,
 end = 2020,
 verbose = FALSE,
 return_sf = FALSE
)
Arguments
 station Character string with station identifier code(s) (see aemet_stations())
 year Numeric value as date (format: YYYY).
 verbose Logical TRUE/FALSE. Provides information about the flow of information be-
 tween the client and server.
 return_sf Logical TRUE or FALSE. Should the function return an sf spatial object? If FALSE
 (the default value) it returns a tibble. Note that you need to have the sf package
 installed.
 start Numeric value as start year (format: YYYY).
 end Numeric value as end year (format: YYYY).
Value
 A tibble or a sf object

API Key
 You need to set your API Key globally using aemet_api_key().

See Also
 Other aemet_api_data: aemet_daily_clim(), aemet_extremes_clim(), aemet_forecast_daily(),
 aemet_last_obs(), aemet_normal, aemet_stations()

Examples

library(tibble)
obs <- aemet_monthly_clim(station = c("9434", "3195"), year = 2000)
glimpse(obs)
aemet_munic

Data set with all the municipalities of Spain

Description

A tibble with all the municipalities of Spain as defined by the INE (Instituto Nacional de Estadística) as of January 2020.

Format

A tibble with 8,131 rows and fields:

- municipio INE code of the municipality.
- municipio_nombre INE name of the municipality.
- cpro INE code of the province.
- cpro_nombre INE name of the province.
- codauto INE code of the autonomous community.
- codauto_nombre INE code of the autonomous community.

Source

INE, Municipality codes by province

See Also

aemet_forecast_daily(), aemet_forecast_hourly()

Other dataset: climaemet_9434_climatogram, climaemet_9434_temp, climaemet_9434_wind

Examples

data(aemet_munic)

aemet_munic
Normal climatology values

Description
Get normal climatology values for a station (or all the stations with aemet_normal_clim_all()). Standard climatology from 1981 to 2010.

Usage
aemet_normal_clim(station = NULL, verbose = FALSE, return_sf = FALSE)
aemet_normal_clim_all(verbose = FALSE, return_sf = FALSE)

Arguments
- `station` Character string with station identifier code(s) (see aemet_stations()) or "all" for all the stations.
- `verbose` Logical TRUE/FALSE. Provides information about the flow of information between the client and server.
- `return_sf` Logical TRUE or FALSE. Should the function return an sf spatial object? If FALSE (the default value) it returns a tibble. Note that you need to have the sf package installed.

Value
A tibble or a sf object.

API Key
You need to set your API Key globally using aemet_api_key().

Note
Code modified from project https://github.com/SevillaR/aemet

See Also
Other aemet_api_data: aemet_daily_clim(), aemet_extremes_clim(), aemet_forecast_daily(), aemet_last_obs(), aemet_monthly, aemet_stations()

Examples

library(tibble)
obs <- aemet_normal_clim(c("9434", "3195"))
glimpse(obs)
aemet_stations

AEMET stations

Description

Get AEMET stations.

Usage

aemet_stations(verbos e = FALSE, return sf = FALSE)

Arguments

verbose Logical TRUE/FALSE. Provides information about the flow of information between the client and server.

return_sf Logical TRUE or FALSE. Should the function return an sf spatial object? If FALSE (the default value) it returns a tibble. Note that you need to have the sf package installed.

Value

A tibble or a sf object

API Key

You need to set your API Key globally using aemet_api_key().

Note

Code modified from project https://github.com/SevillaR/aemet

See Also

Other aemet_api_data: aemet_daily_clim(), aemet_extremes_clim(), aemet_forecast_daily(), aemet_last_obs(), aemet_monthly, aemet_normal

Examples

library(tibble)
stations <- aemet_stations()
stations
Climatogram data for Zaragoza Airport ("9434") period 1981-2010

Description
Normal data for Zaragoza Airport (1981-2010). This is an example dataset used to plot climatograms.

Format
A data.frame with columns 1 to 12 (months) and rows:

- p_mes_md Precipitation (mm).
- tm_max_md Maximum temperature (Celsius).
- tm_min_md Minimum temperature (Celsius).
- ta_min_md Absolute monthly minimum temperature (Celsius).

Source
AEMET.

See Also
ggclimat_walter_lieth(), climatogram_period(), climatogram_normal()
Other dataset: aemet_munic, climaemet_9434_temp, climaemet_9434_wind
Other climatogram: climatogram_normal(), climatogram_period(), ggclimat_walter_lieth()

Examples
data(climaemet_9434_climatogram)

Average annual temperatures for Zaragoza Airport ("9434") period 1950-2020

Description
Yearly observations of average temperature for Zaragoza Airport (1950-2020). This is an example dataset.

Format
A tibble with columns:

- year Year of reference.
- indicativo Identifier of the station.
- temp Avg temperature (Celsius).
climaemet_9434_wind

Source

AEMET.

See Also

Other dataset: aemet_munic, climaemet_9434_climatogram, climaemet_9434_wind
Other stripes: climatestripes_station(), ggstripes()

Examples

data(climaemet_9434_temp)

climaemet_9434_wind Wind conditions for Zaragoza Airport (“9434”) period 2000-2020

Description

Daily observations of wind speed and directions for Zaragoza Airport (2000-2020). This is an example dataset.

Format

A tibble with columns:

- **fecha**: Date of observation.
- **dir**: Wind directions (0-360).
- **velmedia**: Avg wind speed (km/h).

Source

AEMET.

See Also

Other dataset: aemet_munic, climaemet_9434_climatogram, climaemet_9434_temp
Other wind: ggwindrose(), windrose_days(), windrose_period()

Examples

data(climaemet_9434_wind)
climaemet_news

Description
Show the NEWS file of the climaemet package.

Usage
climaemet_news()

Details
(See description)

Value
Open NEWS from climaemet.

See Also
Other helpers: dms2decdegrees(), first_day_of_year()

Examples
Not run:
climaemet_news()

End(Not run)

climatestripes_station

Station climate stripes graph

Description
Plot climate stripes graph for a station

Usage
climatestripes_station(
 station,
 start = 1950,
 end = 2020,
 with_labels = "yes",
 verbose = FALSE,
 ...
)
climatestripes_station

Arguments

station Character string with station identifier code(s) (see aemet_stations()).
start Numeric value as start year (format: YYYY).
end Numeric value as end year (format: YYYY).
with_labels Character string as yes/no. Indicates whether to use labels for the graph or not.
verbose Logical TRUE/FALSE. Provides information about the flow of information between the client and server.
... Arguments passed on to ggstripes
n_temp Numeric value as the number of colors of the palette. (default 11).
col_pal Character string indicating the name of the hcl.pals() color palette to be used for plotting.

Value

A ggplot2 object

API Key

You need to set your API Key globally using aemet_api_key().

See Also

ggstripes()

Other aemet_plots: climatogram_normal(), climatogram_period(), ggclimat_walter_lieth(),
ggstripes(), ggwindrose(), windrose_days(), windrose_period()

Other stripes: climaemet_9434_temp, ggstripes()

Examples

climatestripes_station(
 "9434",
 start = 2010,
 end = 2020,
 with_labels = "yes",
 col_pal = "Inferno"
)
climatogram_normal

Walter & Lieth climatic diagram from normal climatology values

Description
Plot of a Walter & Lieth climatic diagram from normal climatology data for a station. This climatogram are great for showing a summary of climate conditions for a place over a time period (1981-2010).

Usage
climatogram_normal(
 station,
 labels = "en",
 verbose = FALSE,
 ggplot2 = TRUE,
 ...
)

Arguments
 station Character string with station identifier code(s) (see aemet_stations())
 labels Character string as month labels for the X axis: "en" (english), "es" (spanish), "fr" (french), etc.
 verbose Logical TRUE/FALSE. Provides information about the flow of information between the client and server.
 ggplot2 TRUE/FALSE. On TRUE the function uses ggclimat_walter_lieth(), if FALSE uses climatol::diagwl().
 ...
Further arguments to climatol::diagwl() or ggclimat_walter_lieth(), depending on the value of ggplot2

Value
 A plot.

API Key
You need to set your API Key globally using aemet_api_key().

Note
The code is based on code from the CRAN package "climatol" by Jose A. Guijarro jguijarrop@aemet.es.

References
See Also

Other aemet_plots: `climatestripes_station()`, `climatogram_period()`, `ggclimat_walter_lieth()`, `ggstripes()`, `ggwindrose()`, `windrose_days()`, `windrose_period()`.

Other climatogram: `climaemt_9434_climatogram`, `climatogram_period()`, `ggclimat_walter_lieth()`.

Examples

```r
climatogram_normal("9434")
```

climatogram_period

Walter & Lieth climatic diagram for a time period

Description

Plot of a Walter & Lieth climatic diagram from monthly climatology data for a station. This climatogram are great for showing a summary of climate conditions for a place over a specific time period.

Usage

```r
climatogram_period(
  station = NULL,
  start = 1990,
  end = 2020,
  labels = "en",
  verbose = FALSE,
  ggplot2 = TRUE,
  ...
)
```

Arguments

- **station**: Character string with station identifier code(s) (see `aemet_stations()`).
- **start**: Numeric value as start year (format: YYYY).
- **end**: Numeric value as end year (format: YYYY).
- **labels**: Character string as month labels for the X axis: "en" (english), "es" (spanish), "fr" (french), etc.
- **verbose**: Logical TRUE/FALSE. Provides information about the flow of information between the client and server.
- **ggplot2**: TRUE/FALSE. On TRUE the function uses `ggclimat_walter_lieth()`, if FALSE uses `climatol::diagwl()`.
- **...**: Further arguments to `climatol::diagwl()` or `ggclimat_walter_lieth()`, depending on the value of ggplot2.
dms2decdegrees

Description

Converts degrees, minutes and seconds to decimal degrees.

Usage

```r
dms2decdegrees(input = NULL)
```

Arguments

- `input` Character string as DMS coordinates.

Value

A numeric value.

Value

A plot.

API Key

You need to set your API Key globally using `aemet_api_key()`.

Note

The code is based on code from the CRAN package "climatol" by Jose A. Guijarro `jguijarrop@aemet.es`.

References

See Also

Other `aemet_plots`: `climatestripes_station()`, `climatogram_normal()`, `ggclimat_walter_lieth()`, `ggstripes()`, `ggwindrose()`, `windrose_days()`, `windrose_period()`

Other `climatogram`: `climaemt_9434_climatogram`, `climatogram_normal()`, `ggclimat_walter_lieth()`

Examples

```r
climatogram_period("9434", start = 2015, end = 2020, labels = "en")
```

<table>
<thead>
<tr>
<th>dms2decdegrees</th>
<th>Converts dms to decimal degrees</th>
</tr>
</thead>
</table>

Examples

```r
climatogram_period("9434", start = 2015, end = 2020, labels = "en")
```
Note

Code modified from project https://github.com/SevillaR/aemet

See Also

Other helpers: climaemet_news(), first_day_of_year()

Examples

dms2decdegrees("055245W")

first_day_of_year(2000)
last_day_of_year(2020)

Description

Get first and last day of year.

Usage

first_day_of_year(year = NULL)
last_day_of_year(year = NULL)

Arguments

year Numeric value as year (format: YYYY).

Value

Character string as date (format: YYYY-MM-DD).

See Also

Other helpers: climaemet_news(), dms2decdegrees()

Examples

first_day_of_year(2000)
last_day_of_year(2020)
get_data_aemet

Description
Client tool to get data and metadata from AEMET and convert json to tibble.

Usage
get_data_aemet(apidest, verbose = FALSE)
get_metadata_aemet(apidest, verbose = FALSE)

Arguments
apidest Character string as destination URL. See \url{https://opendata.aemet.es/dist/index.html}.
verbose Logical TRUE/FALSE. Provides information about the flow of information between the client and server.

Value
A tibble (if possible) or the results of the query as provided by \code{httr::content()}.

Source
\url{https://opendata.aemet.es/dist/index.html}

See Also
Some examples on how to use these functions on \code{vignette("extending-climaemet")}.

Examples

Run this example only if AEMET_API_KEY is detected
url <- "/api/valores/climatologicos/inventarioestaciones/todasestaciones"
get_data_aemet(url)

Metadata
get_metadata_aemet(url)

We can get data from any API endpoint
Plain text
plain <- get_data_aemet("/api/prediccion/nacional/hoy")
cat(plain)

An image
image <- get_data_aemet("/api/mapasygraficos/analisis")

Write and read
tmp <- tempfile(fileext = ".gif")
writeBin(image, tmp)
gganimate::gif_file(tmp)

ggclimat_walter_lieth Walter and Lieth climatic diagram on ggplot2

Description

Plot of a Walter and Lieth climatic diagram of a station. This function is an updated version of climatol::diagwl(), by Jose A. Guijarro.

Usage

ggclimat_walter_lieth(
 dat,
 est = "",
 alt = NA,
 per = NA,
 mlab = "es",
 pcol = "#002F70",
 tcol = "#ff0000",
 pfcol = "#9BAEE2",
 sfcol = "#3C6FC4",
 shem = FALSE,
 p3line = FALSE,
 ...
)

Arguments

dat Monthly climatic data for which the diagram will be plotted.
est Name of the climatological station
alt Altitude of the climatological station
per Period on which the averages have been computed
mlab Month labels for the X axis. Use 2-digit language code ("en", "es", etc.). See readr::locale() for info.

col Color pen for precipitation.

col Color pen for temperature.

pcol Fill color for probable frosts.

sfcol Fill color for sure frosts.

shem Set to TRUE for southern hemisphere stations.

p3line Set to TRUE to draw a supplementary precipitation line referenced to three times the temperature (as suggested by Bogdan Rosca).

... Other graphic parameters

Details

See Details on climatol::diagwl().

Climatic data must be passed as a 4x12 matrix or data.frame of monthly (January to December) data, in the following order:

- Row 1: Mean precipitation.
- Row 2: Mean maximum daily temperature.
- Row 3: Mean minimum daily temperature.
- Row 4: Absolute monthly minimum temperature.

See climaemet_9434_climatogram for a sample dataset.

Value

A ggplot2 object. See help("ggplot2").

API Key

You need to set your API Key globally using aemet_api_key().

References

See Also

climatol::diagwl(), readr::locale()

Other aemet_plots: climatestripes_station(), climatogram_normal(), climatogram_period(), ggstripes(), ggwindrose(), windrose_days(), windrose_period()

Other climatogram: climaemet_9434_climatogram, climatogram_normal(), climatogram_period()
Examples

```r
library(ggplot2)

wl <- ggclimat_walter_lieth(
    climaemet::climaemet_9434_climatogram,
    alt = "249",
    per = "1981-2010",
    est = "Zaragoza Airport"
)

wl

# As it is a ggplot object we can modify it
wl + theme(
    plot.background = element_rect(fill = "grey80"),
    panel.background = element_rect(fill = "grey70"),
    axis.text.y.left = element_text(
        colour = "black",
        face = "italic"
    ),
    axis.text.y.right = element_text(
        colour = "black",
        face = "bold"
    )
)
```

ggstripes Warming stripes graph

Description

Plot different "climate stripes" or "warming stripes" using `ggplot2`. This graphics are visual representations of the change in temperature as measured in each location over the past 70-100+ years. Each stripe represents the temperature in that station averaged over a year.

Usage

```r
ggstripes(
    data,
    plot_type = "stripes",
    plot_title = "",
    n_temp = 11,
    col_pal = "RdBu",
    ...
)
```
Arguments

- **data**: a data.frame with date(year) and temperature(temp) variables.
- **plot_type**: plot type (with labels, background, stripes with line trend and animation). Accepted values are "background", "stripes", "trend" or "animation".
- **plot_title**: character string to be used for the graph title.
- **n_temp**: Numeric value as the number of colors of the palette. (default 11).
- **col_pal**: Character string indicating the name of the `hcl.pals()` color palette to be used for plotting.
- **...**: further arguments passed to `ggplot2::theme()`.

Value

A ggplot2 object.

API Key

You need to set your API Key globally using `aemet_api_key()`.

Note

"Warming stripes" charts are a conceptual idea of Professor Ed Hawkins (University of Reading) and are specifically designed to be as simple as possible and alert about risks of climate change. For more details see ShowYourStripes.

See Also

- `climatestripes_station()`, `ggplot2::theme()` for more possible arguments to pass to ggstripes.
- Other aemet_plots: `climatestripes_station()`, `climatogram_normal()`, `climatogram_period()`, `ggclimat_walter_lieth()`, `ggwindrose()`, `windrose_days()`, `windrose_period()`

Other stripes: `climaemet_9434_temp`, `climatestripes_station()`

Examples

```r
library(ggplot2)

data <- climaemet::climaemet_9434_temp

ggstripes(data, plot_title = "Zaragoza Airport") +
labs(subtitle = "(1950-2020)")

ggstripes(data, plot_title = "Zaragoza Airport", plot_type = "trend") +
labs(subtitle = "(1950-2020)")
```
Description

Plot a windrose showing the wind speed and direction using `ggplot2`.

Usage

```r
ggwindrose(
  speed,
  direction,
  n_directions = 8,
  n_speeds = 5,
  speed_cuts = NA,
  col_pal = "GnBu",
  legend_title = "Wind speed (m/s)",
  calm_wind = 0,
  n_col = 1,
  facet = NULL,
  plot_title = "",
  ...
)
```

Arguments

- `speed`
 Numeric vector of wind speeds.
- `direction`
 Numeric vector of wind directions.
- `n_directions`
 Numeric value as the number of direction bins to plot (petals on the rose). The number of directions defaults to 8.
- `n_speeds`
 Numeric value as the number of equally spaced wind speed bins to plot. This is used if `speed_cuts` is `NA` (default 5).
- `speed_cuts`
 Numeric vector containing the cut points for the wind speed intervals, or `NA` (default).
- `col_pal`
 Character string indicating the name of the `hcl.pals()` color palette to be used for plotting.
- `legend_title`
 Character string to be used for the legend title.
- `calm_wind`
 Numeric value as the upper limit for wind speed that is considered calm (default 0).
- `n_col`
 The number of columns of plots (default 1).
- `facet`
 Character or factor vector of the facets used to plot the various windroses.
- `plot_title`
 Character string to be used for the plot title.
- `...`
 Further arguments (ignored).
windrose_days

Value

A ggplot object.

API Key

You need to set your API Key globally using `aemet_api_key()`.

See Also

`ggplot2::theme()` for more possible arguments to pass to `ggwindrose`.

Other `aemet_plots`: `climatestripes_station()`, `climatogram_normal()`, `climatogram_period()`, `ggclimat_walter_lieth()`, `ggstripes()`, `windrose_days()`, `windrose_period()`

Other wind: `climaemet_9434_wind`, `windrose_days()`, `windrose_period()`

Examples

```r
library(ggplot2)

speed <- climaemet::climaemet_9434_wind$velmedia
direction <- climaemet::climaemet_9434_wind$dir

rose <- ggwindrose(
  speed = speed,
  direction = direction,
  speed_cuts = seq(0, 16, 4),
  legend_title = "Wind speed (m/s)",
  calm_wind = 0,
  n_col = 1,
  plot_title = "Zaragoza Airport"
)
rose + labs(
  subtitle = "2000-2020",
  caption = "Source: AEMET"
)
```

Description

Plot a windrose showing the wind speed and direction for a station over a days period.
windrose_days

Usage

windrose_days(
 station,
 start = "2000-12-01",
 end = "2000-12-31",
 n_directions = 8,
 n_speeds = 5,
 speed_cuts = NA,
 col_pal = "GnBu",
 calm_wind = 0,
 legend_title = "Wind Speed (m/s)",
 verbose = FALSE
)

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>station</td>
<td>Character string with station identifier code(s) (see aemet_stations()) or "all" for all the stations.</td>
</tr>
<tr>
<td>start</td>
<td>Character string as start date (format: YYYYY-MM-DD).</td>
</tr>
<tr>
<td>end</td>
<td>Character string as end date (format: YYYYY-MM-DD).</td>
</tr>
<tr>
<td>n_directions</td>
<td>Numeric value as the number of direction bins to plot (petals on the rose). The number of directions defaults to 8.</td>
</tr>
<tr>
<td>n_speeds</td>
<td>Numeric value as the number of equally spaced wind speed bins to plot. This is used if speed_cuts is NA (default 5).</td>
</tr>
<tr>
<td>speed_cuts</td>
<td>Numeric vector containing the cut points for the wind speed intervals, or NA (default).</td>
</tr>
<tr>
<td>col_pal</td>
<td>Character string indicating the name of the hcl.pals() color palette to be used for plotting.</td>
</tr>
<tr>
<td>calm_wind</td>
<td>Numeric value as the upper limit for wind speed that is considered calm (default 0).</td>
</tr>
<tr>
<td>legend_title</td>
<td>Character string to be used for the legend title.</td>
</tr>
<tr>
<td>verbose</td>
<td>Logical TRUE/FALSE. Provides information about the flow of information between the client and server.</td>
</tr>
</tbody>
</table>

Value

A ggplot2 object

API Key

You need to set your API Key globally using aemet_api_key().
windrose_period

See Also

aemet_daily_clim()

Other aemet_plots: climestripes_station(), climatogram_normal(), climatogram_period(), ggclimat_walter_lieth(), ggstripes(), ggwindrose(), windrose_period()

Other wind: climaememt_9434_wind, gggwindrose(), windrose_period()

Examples

windrose_days("9434",
 start = "2000-12-01",
 end = "2000-12-31",
 speed_cuts = 4
)

| windrose_period | Windrose (speed/direction) diagram of a station over a time period |

Description

Plot a windrose showing the wind speed and direction for a station over a time period.

Usage

windrose_period(
 station,
 start = 2000,
 end = 2010,
 n_directions = 8,
 n_speeds = 5,
 speed_cuts = NA,
 col_pal = "GnBu",
 calm_wind = 0,
 legend_title = "Wind Speed (m/s)",
 verbose = FALSE
)

Arguments

station Character string with station identifier code(s) (see aemet_stations()) or "all" for all the stations.
start Numeric value as start year (format: YYYY).
end Numeric value as end year (format: YYYY).
n_directions Numeric value as the number of direction bins to plot (petals on the rose). The number of directions defaults to 8.
windrose_period

n_speeds Numeric value as the number of equally spaced wind speed bins to plot. This is used if speed_cuts is NA (default 5).
speed_cuts Numeric vector containing the cut points for the wind speed intervals, or NA (default).
col_pal Character string indicating the name of the hcl.pals() color palette to be used for plotting.
calm_wind Numeric value as the upper limit for wind speed that is considered calm (default 0).
legend_title Character string to be used for the legend title.
verbose Logical TRUE/FALSE. Provides information about the flow of information between the client and server.

Value
A ggplot2 object

API Key
You need to set your API Key globally using aemet_api_key().

See Also
aemet_daily_period()
Other aemet_plots: climatestripes_station(), climatogram_normal(), climatogram_period(), ggclimat_walter_lieth(), ggstripes(), ggwindrose(), windrose_days()
Other wind: climaemet_9434_wind, ggwindrose(), windrose_days()

Examples

```r
windrose_period("9434",
  start = 2000, end = 2010,
  speed_cuts = 4
)
```
Index

* **aemet_api_data**
 aemet_daily_clim, 4
 aemet_extremes_clim, 6
 aemet_forecast_daily, 7
 aemet_last_obs, 11
 aemet_monthly, 12
 aemet_normal, 15
 aemet_stations, 16
* **aemet_api**
 get_data_aemet, 25
* **aemet_auth**
 aemet_api_key, 3
 aemet_detect_api_key, 6
* **aemet_plots**
 climastripes_station, 19
 climatogram_normal, 21
 climatogram_period, 22
 ggclimat_walter_lieth, 26
 ggstripes, 28
 ggwindrose, 30
 windrose_days, 31
 windrose_period, 33
* **climatogram**
 climaemet_9434_climatogram, 17
 climatogram_normal, 21
 climatogram_period, 22
 ggclimat_walter_lieth, 26
* **dataset**
 aemet_munic, 14
 climaemet_9434_climatogram, 17
 climaemet_9434_temp, 17
 climaemet_9434_wind, 18
* **forecasts**
 aemet_forecast_daily, 7
 aemet_forecast_tidy, 9
* **forecast**
 aemet_munic, 14
* **helpers**
 climaemet_news, 19
 dms2decdegrees, 23
 first_day_of_year, 24
* **stripes**
 climatem_9434_temp, 17
 climastripes_station, 19
 ggstripes, 28
* **wind**
 climatem_9434_wind, 18
 ggwindrose, 30
 windrose_days, 31
 windrose_period, 33
 aemet_api_key, 3, 6
 aemet_api_key(), 5–8, 12, 13, 15, 16, 20, 21, 23, 27, 29, 31, 32, 34
 aemet_daily(aemet_daily_clim), 4
 aemet_daily_clim, 4, 7, 8, 12, 13, 15, 16
 aemet_daily_clim(), 33
 aemet_daily_period(aemet_daily_clim), 4
 aemet_daily_period(), 34
 aemet_daily_period_all
 (aemet_daily_clim), 4
 aemet_detect_api_key, 3, 6
 aemet_extremes_clim, 5, 6, 8, 12, 13, 15, 16
 aemet_forecast_daily, 5, 7, 7, 10, 12, 13, 15, 16
 aemet_forecast_daily(), 9, 10, 14
 aemet_forecast_hourly
 (aemet_forecast_daily), 7
 aemet_forecast_hourly(), 9, 10, 14
 aemet_forecast_tidy, 8, 9
 aemet_forecast_tidy(), 8, 10
 aemet_forecast_vars_available
 (aemet_forecast_tidy), 9
 aemet_forecast_vars_available(), 10
 aemet_last_obs, 5, 7, 8, 11, 13, 15, 16
 aemet_monthly, 5, 7, 8, 12, 12, 15, 16
 aemet_monthly_clim(aemet_monthly), 12
 aemet_monthly_period(aemet_monthly), 12