Package ‘clinDR’

August 9, 2023

Version 2.4.1
Date 2023-07-30
Title Simulation and Analysis Tools for Clinical Dose Response Modeling
Maintainer Neal Thomas <snthomas99@gmail.com>
Depends R (>= 3.5.0), rstan (>= 2.17.3), shiny
Imports foreach, graphics, DoseFinding, stats, mvtnorm, utils, parallel, doParallel, ggplot2, tidyr, purrr, tibble, dplyr, glue, waiter
License GPL (>= 2)
NeedsCompilation no
Author Neal Thomas [aut, cre] (https://orcid.org/0000-0002-1915-8487), Jing Wu [aut], Mike K. Smith [aut]
Repository CRAN
Date/Publication 2023-08-09 04:20:05 UTC

R topics documented:

clinDR-package .. 3
"Extract.emaxsim" ... 4
"Extract.emaxsimB" .. 6
bpchkMonoEmax .. 8
checkMonoEmax ... 10
R topics documented:

coefEmax ... 12
compileStanModels ... 13
DRDensityPlot .. 14
dmaxalt ... 16
dmaxfun ... 18
dmaxPrior.control .. 19
dmaxsim ... 21
dmaxsimB ... 26
dmaxsolve ... 30
dfitEmax ... 31
dfitEmaxB ... 34
FixedMean ... 37
dmcmc.control ... 38
dmetaData ... 39
dnllogis ... 41
plot.emaxsim ... 43
plot.emaxsimB ... 44
plot.emaxsimBobj .. 45
plot.emaxsimobj ... 47
plot.dfitEmax ... 49
plot.dfitEmaxB ... 52
plot.plotB ... 54
plotB ... 57
plotBdensity .. 60
plotD ... 62
predict.dmaxalt .. 63
predict.emaxsim .. 65
predict.emaxsimB ... 66
predict.emaxsimBobj ... 68
predict.emaxsimobj ... 69
predict.dfitEmax .. 71
predict.dfitEmaxB ... 73
print.emaxsim ... 74
print.emaxsimB ... 76
print.emaxsimBobj .. 77
print.emaxsimobj ... 78
print.dfitEmax ... 79
print.dfitEmaxB ... 80
printemaxPrior ... 80
prior.control .. 81
RandEmax ... 83
randomEmax ... 85
runSimulations .. 86
SeEmax ... 87
selEstan ... 89
showStanModels ... 90
sigmaEmax ... 91
startEmax ... 92
Bayesian and maximum likelihood Emax model fitting, graphics and simulation for clinical dose response.

The functions `fitEmax` and `fitEmaxB` fit an Emax model to binary or continuous data using maximum likelihood or Bayesian estimation. They have several generic supporting functions. Functions to produce plots associated with dose response analyses are (`plotD`, `plotB`, `plot.fitEmax`, `plot.fitEmaxB`).

The functions `emaxsim` and `emaxsimB` perform simulations of 4- and 3-parameter Emax ML or Bayesian estimation. The ML estimates are replaced with alternative model fits when the primary estimation fails. Several supporting functions are supplied to analyze the output of `emaxsim` and `emaxsimB`, including analyses for specific simulated data sets. All of the data sets from dose response meta analyses are included in `metaData`.

The function `compileStanModels` must be executed once after the package is installed to create compiled STAN Emax models before the Bayes functions in the package can be executed. This requires 3-10 minutes to complete on most machines. The compiled code is 32-bit or 64-bit specific, and both must be created if both versions of R are used.

The Bayesian computations use the R package `rstan`. It can be installed from CRAN. Windows users should check the instructions for `rstan` at the https://mc-stan.org and https://github.com/stan-dev/rstan/wiki/RStan-Getting-Started. Note that Rtools must be installed, which is a simple, but often overlooked step. Instructions for its installation are given in the second URL.

Author(s)

Neal Thomas [aut, cre], Jing Wu[aut]

See Also

DoseFinding
Description

Extract a simulated data set from the output of emaxsim. Data are re-created using the stored random number seed.

Usage

```r
## S3 method for class 'emaxsim'
x[i, ...]
```

Arguments

- `x`: Output object from `emaxsim`
- `i`: Simulation replication to extract
- `...`: Parameters passed to other functions (none currently)

Details

Re-creates the ith simulated data set for subsequent analyses. Also returns all analyses done for the ith data set in `emaxsim`

Value

A list is returned with class(emaxsimobj) containing:

- `y`: Response vector
- `dose`: Doses corresponding to `y`
- `pop`: Population parameters; type of parameter depends on constructor function generating study data.
- `popSD`: Vector containing the population SD used to generate continuous data. NULL for binary data.
- `init`: Starting Emax parameters
- `est4`: 4-parameter Emax fit (ed50,lambda,emax,e0). NA if failed to converge or 3-parameter model requested.
- `est3`: 3-parameter Emax fit (ed50,emax,e0). NA if failed to converge or 4-parameter model successfully fit.
- `estA`: Alternative parameter estimates. NA if Emax model fit successfully
- `vc`: The variance-covariance matrix of the model parameters for the selected model.
- `residSD`: The residual SD based on the selected model.
- `bigC`: bigC= TRUE if the primary fit (from modType) yielded an ED50 > ED50 upper limit.
negC = TRUE if the primary fit (from modType) yielded a negative ED50 estimate< ED50 lower limit

modType When modType=4, the fitting begins with the 4 parameter model. If estimation fails or modType=3, the 3-parameter estimation is applied. If it fails, a best-fitting model linear in its parameters is selected.

fit Output of model determined by fitType

fitType Character vector with "4", "3", "L", "LL", or "E" for 4-Emax, 3-Emax, linear, log-linear, or exponential when an alternative model is selected.

ed50cutoff Upper allowed limit for ED50 estimates.

ed50lowcutoff Lower allowed limit for the ED50 estimates.

switchMod If switchMod is TRUE, the algorithm substitutes a simpler model if (1) convergence is not achieved, (2) the information matrix is not positive definite at the converged values, (3) the ED50 estimates are outside the cutoff bounds. If switchMod is F, only conditions (1) or (2) cause a simpler model to be used.

PL T if the 'plinear' algorithm in nls converged

predpop Population means for each dose group

dm Vector containing dose group means

dsd Vector containing dose group SDs

fitpred Dose groups means estimated from the model

sepred SEs for estimates in fitpred

sedif SEs for model-based estimates of difference with placebo

pVal, selContrast P-value and contrast selected from MCP-MOD test

idmax Index of default dose group for comparison to placebo

Note Extraction from a simulation object requires re-creation of the simulated data set. If the extracted object is to be used more than once, it is more efficient to save the extracted object than reuse [].

Author(s)
Neal Thomas

See Also
emaxsim, print.emaxsimobj, plot.emaxsimobj, update.emaxsimobj

Examples
Not run:
code change random number seed

nsim<-50
idmax<-5
doselev<-c(0,5,25,50,100)
n<-c(78,81,81,81,77)

population parameters for simulation
e0<-2.465375
ed50<-67.481113
dtarget<-100
diftarget<-9.032497
emax<-solveEmax(diftarget,dtarget,log(ed50),1,e0)
sdy<-7.967897
pop<-c(log(ed50),emax,e0)
meanlev<-emaxfun(doselev,pop)

FixedMean is specialized constructor function for emaxsim
gen.parm<-FixedMean(n,doselev,meanlev,sdy)

D1 <- emaxsim(nsim,gen.parm,modType=3)
e49<-D1[49] #### extract 49th simulation

End(Not run)

"Extract.emaxsimB" Extract a simulation from the output of emaxsimB

Description
Extract a simulated data set from the output of emaxsimB. Data are re-created using the stored random number seed.

Usage
S3 method for class 'emaxsimB'
x[i, ...]

Arguments

x Output object from emaxsimB
i Simulation replication to extract
... Parameters passed to other functions (none currently)

Details
Re-creates the ith simulated data set for subsequent analyses. Also returns all analyses done for the ith data set in emaxsimB
Value

A list is returned with class(emaxsimBobj) containing:

- **y**: Response vector
- **dose**: Doses corresponding to y
- **pop**: Population parameters; type of parameter depends on constructor function generating study data.
- **popSD**: Vector containing the population SD used to generate continuous data. NULL for binary data.
- **binary**: When TRUE, binary data modeled on the logit scale
- **modType**: modType=3, 4, for the hyperbolic and sigmoidal Emax models.
- **predpop**: Population means for each dose group
- **dm**: Vector containing dose group means
- **dsd**: Vector containing dose group SDs
- **fitpred**: Posterior means of the dose groups means
- **sepred**: SE (posterior SD) corresponding to the estimates in fitpred
- **sedif**: SE (posterior SD) for the differences with placebo
- **bfit**: Bayesian fitted model of class fitEmaxB.
- **prior, mcmc**: See fitEmax for documentation.
- **pVal, selContrast**: P-value and contrast selected from MCP-MOD test
- **idmax**: Index of default dose group for comparison to placebo

Note

Extraction from a simulation object requires re-creation of the simulated data set. If the extracted object is to be used more than once, it is more efficient to save the extracted object than reuse [].

Author(s)

Neal Thomas

See Also

emaxsimB, print.emaxsimBobj, plot.emaxsimBobj

Examples

```r
## Not run:
save.seed<-.Random.seed
set.seed(12357)
nsim<-50
```
population parameters for simulation

```r
e0 <- 2.465375
ed50 <- 67.481113
dtarget <- 100
diftarget <- 2.464592
emax <- solveEmax(diftarget, dtarget, log(ed50), 1, e0)
sdy <- 7.967897
pop <- c(log(ed50), emax, e0)
meanlev <- emaxfun(doselev, pop)
```

FixedMean is specialized constructor function for emaxsim

```r
gen <- FixedMean(n, doselev, meanlev, sdy)
prior <- emaxPrior.control(epmu = 0, epsca = 30, difTargetmu = 0,
difTargetsca = 30, dTarget = 100, p50 = 50, sigmalow = 0.1,
sigmaup = 30, parmDF = 5)
mcmc <- mcmc.control(chains = 1, warmup = 500, iter = 5000, seed = 53453, propInit = 0.15, adapt_delta = 0.95)
D1 <- emaxsimB(nsim, gen, prior, modType = 3, mcmc = mcmc, check = FALSE)
out <- D1[2]
```

End(Not run)

`bpchkMonoEmax`

Bayes posterior predictive test for Emax (monotone) model fit

Description

Bayes posterior predictive test for an Emax (monotone) model fit comparing the best response from lower doses to the response from the highest dose. `checkMonoEmax` is deprecated. See `bpchkMonoEmax`.

Usage

```r
bpchkMonoEmax(x, trend = 'positive', protSel = 1)
```
Arguments

x
Output object of class ‘fitEmaxB’.

trend
The default is 'positive', so high values for lower doses yield small Bayesian predictive probabilities. Set trend to 'negative' for dose response curves with negative trends.

protSel
The test is applied to the data from a single protocol. The protocol can be selected if the model was fit to data from more than one protocol. The protSel must match a protocol value input to fitEmaxB or it numerical index value, 1,2,...

Details

The Bayesian predictive p-value is the posterior probability that a dose group sample mean in a new study with the same sample sizes would yield a higher (or lower for negative trend) difference for one of the lower doses versus the highest dose than was actually obtained from the real sample. There must be at least two non-placebo dose groups (NA returned otherwise). Placebo response is excluded from the comparisons.

The function generates random numbers, so the random number generator/seed must be set before the function is called for exact reproducibility.

When fitEmaxB is applied to first-stage fitted model output with a non-diagonal variance-covariance matrix, the predictive draws are selected from a multivariate model with means computed from the MCMC-generated parameters and input asymptotic variance-covariance matrix vcest. If the fitted model was applied to binary data, the GOF statistic is computed based on the logit rather than observed dose group sample proportion scale. This differs from the setting with patient-level data input to fitEmaxB.

Value

Returns a scalar Bayesian predictive p-value.

Author(s)

Neal Thomas

References

See Also

plot.plotB, plotD, plot.fitEmax
checkMonoEmax

Examples

```r
## Not run:

data("metaData")
exdat<-metaData[metaData$taid==6 & metaData$poptype==1,]
prior<-emaxPrior.control(epmu=0,epsca=10,difTargetmu=0,difTargetsca=10,dTarget=80.0,
                        p50=3.75,sigmalow=0.01, sigmaup=20)
mcmc<-mcmc.control(chains=3)
msSat<-sum((exdat$sampsize-1)*(exdat$sd)^2)/(sum(exdat$sampsize)-length(exdat$sampsize))
fitout<-fitEmaxB(exdat$rslt,exdat$dose,prior,modType=4,
                 count=exdat$sampsize,msSat=msSat,mcmc=mcmc)
parms<-coef(fitout)[,1:4] #use first intercept
checkMonoEmax(fitout, trend='negative')

## End(Not run)
```

checkMonoEmax

Bayes posterior predictive test for Emax (monotone) model fit

Description

Bayes posterior predictive test for an Emax (monotone) model fit comparing the best response from lower doses to the response from the highest dose. checkMonoEmax is deprecated. See bpchkMonoEmax.

Usage

```r
checkMonoEmax(y, dose, parm, sigma2, nvec=rep(1,length(dose)), xbase=NULL, modelFun=emaxfun,
              trend='positive', binary= FALSE, logit=binary)
```

Arguments

- `y` Outcomes. Continuous `y` can be individual data or group means. Binary `y` can be individual data, group proportions, or 0/1 data with corresponding counts, as is required by fitEmaxB.
- `dose` Doses corresponding to outcomes
checkMonoEmax

parm
Matrix of simulated parameter values (each row is a simulated parameter vector). The `parm` values must be constructed for use in the model function `modFun`. The default is a 4-parameter Emax model with parameters (\log(ED50), \lambda, Emax, E0). For a 3-parameter model, set \lambda=1 for each simulated parameter vector.

sigma2
Simulated draws from the residual variance (assumed additive, homogeneous). The length of `sigma2` must be the same as the number of rows of `parm`. `sigma2` is ignored when `binary=TRUE`.

nvec
The number of observations contributing to each y. The default is 1 for patient-level data.

xbase
Optional covariates matching y. `nvec` must be 1 (patient-level) data. The coefficients for `xbase` are the final columns of `parm`.

modelFun
The mean model function. The first argument is a scalar dose, and the second argument is a matrix of parameter values. The rows of the matrix are random draws of parameter vectors for the model. The default function is the 4-parameter Emax function `emafun`.

trend
The default is 'positive', so high values for lower doses yield small Bayesian predictive probabilities. Set `trend` to 'negative' for dose response curves with negative trends.

binary
If TRUE, the inverse logit transform is applied to the (Emax) function output for comparison to dose group sample proportions, and the predictive data are sampled from a binomial distribution.

logit
`logit` is deprecated, use `binary`

Details
A sample of parameters from the joint posterior distribution must be supplied (typically produced by an MCMC program). The Bayesian predictive p-value is the posterior probability that a dose group sample mean in a new study with the same sample sizes would yield a higher (or lower for negative trend) difference for one of the lower doses versus the highest dose than was actually obtained from the real sample. There must be at least two non-placebo dose groups (NA returned otherwise). Placebo response is excluded from the comparisons.

The function generates random numbers, so the random number generator/seed must be set before the function is called for exact reproducibility.

Value
Returns a scalar Bayesian predictive p-value.

Author(s)
Neal Thomas

See Also
`plot.plotB, plotD, plot.fitEmax`
Examples

Not run:

data("metaData")
exdat<-metaData[metaData$taid==6 & metaData$poptype==1,]

prior<-emaxPrior.control(epmu=0,epsca=10,difTargetmu=0,difTargetsca=10,dTarget=80.0, p50=3.75,sigmalow=0.01,sigmaup=20)
mcmc<-mcmc.control(chains=3)

msSat<-sum((exdat$sampsize-1)*(exdat$sd)^2)/(sum(exdat$sampsize)-length(exdat$sampsize))

fitout<-fitEmaxB(exdat$rslt,exdat$dose,prior,modType=4, count=exdat$sampsize,msSat=msSat,mcmc=mcmc)

parms<-coef(fitout)[,1:4] #use first intercept

trend=quote(Var negative)

checkMonoEmax(y=exdat$rslt, dose=exdat$dose, parm=parms, sigma2=(sigma(fitout))^2, nvec=exdat$sampsize, trend=quote(Var negative))

End(Not run)

c coefEmax

Extract Emax model parameter estimates

Description

Extract Emax model parameter estimates. MLE for fitEmax. Matrix of MCMC generated parameters for fitEmaxB.

Usage

S3 method for class 'fitEmax'
coef(object, ...)

S3 method for class 'fitEmaxB'
coef(object, local=FALSE, ...)

S3 method for class 'emaxsim'
coef(object, ...)

S3 method for class 'emaxsimB'
coef(object, local=FALSE, ...)

Arguments

object Output of Emax fitting function

local When a prior distribution of type ’emaxPrior’ was used to create the object, specifying local=TRUE will output the local ’difTarget’ parameter estimates.

... No additional inputs supported
Value
Vector of MLE estimates of model parameter from `fitEmax`. Matrix of MCMC generated parameters for `fitEmaxB`. Matrix with posterior median parameter estimates for each `emaxsimB` simulation: \((\text{led50}, \lambda, e_{\text{max}}, e_{0})\) or \((\text{led50}, e_{\text{max}}, e_{0})\). For `emaxsim`, a list is returned with the model type fit for each simulation, and a matrix with the corresponding model coefficients. The order of the parameters is given in the `emaxsim` documentation.

Author(s)
Neal Thomas

See Also
`sigma`, `fitEmax`, `fitEmaxB`, `emaxsim`, `emaxsimB`

Examples
```r
doselev<-c(0,5,25,50,100,350)
n<-c(78,81,81,81,77,80)

### population parameters for simulation
e0<-2.465375
ed50<-67.481113
dtarget<-100
diftarget<-9.032497
emax<-solveEmax(diftarget,dtarget,log(ed50),1,e0)
sdy<-8.0
pop<-c(log(ed50),emax,e0)
dose<-rep(doselev,n)
meanlev<-emaxfun(dose,pop)
y<-rnorm(sum(n),meanlev,sdy)
testout<-fitEmax(y,dose,modType=4)
coef(testout)
```

Description
Compile rstan Emax models after package clinDR is installed.

Usage
```r
compileStanModels()
```
Details
The compiled models are stored in the models sub-directory of the installed clinDR package. The user must have write-access to the package directory. The package can be installed in a user-specified directory if the user does not have write privileges for the default package directory. Execution requires several minutes. The compiled models are 32- or 64- bit specific. Both sets must be compiled if the compiled R type is changed (they are stored in sub-directories comp32 or comp64). It is recommended to execute the function again if the package rstan is updated.

Package rstan must be functional for CompileStanModels to be successful. See https://github.com/stan-dev/rstan/wiki/RStan-Getting-Started. Note especially the instructions for installing Rtools, which is required for execution on a Windows machine.

Value
'basemodel.rds' and 'mrmmodel.rds' should be created in the package directory in the sub-directory 'models'.

Author(s)
Neal Thomas

DRDensityPlot
Plot Bayes or confidence interval density contours over a grid of points (usually dose or time)

Description
Density plot for distributions conditional on a variable. A grid of values are specified for the conditioning variable, which is plotted on the horizontal axis. The conditioning variable is typically dose or time.

Usage
DRDensityPlot(x,qL,qH,qlevL=c(0.025,0.05,0.10,0.25),xlim,ylim,xlab='x',ylab='y')

Arguments
x
A grid of conditioning values to be plotted on the horizontal axis. This grid typically represents dose or time.
qL
Lower percentiles, confidence or probability levels. qL is a matrix with rows corresponding to x, and columns corresponding to qlevL. The percentiles must be increasing in order and less that 0.50.
qH
Upper percentiles, confidence or probability levels. qH levels correspond to the qL levels but are ordered from highest to lowest (1-qlevL), with the smallest greater than 0.50.
qlevL Density intervals are formed with percentile boundaries at (qlevL, 1 - qlevL). qlevL
must be increasing between (0, 0.5).

xlim Plot limits for the x-axis

ylim Plot limits for the y-axis

xlab x-axis label

ylab y-axis label

Details

The function takes as input percentiles defining confidence intervals or Bayesian probability in-
tervals at different levels (e.g. 5, 95, 25, 75) for distributions conditional on a variable that is typically
dose or time. Regions defined by different confidence/probability levels are represented by different
levels of shading. The input parameter, qlevL, is used only to define the input in the matrices qL and qH.
The qlevL is not used for any numerical calculations, which must be done before executing
the function.

Value

Plotted output only.

Author(s)

Neal Thomas

See Also

plotBdensity

Examples

```r
## Not run:
data('Var metaData')
exdat<-metaData[metaData$taid==32,]
msSat<-sum((exdat$sampsize-1)*(exdat$sd)^2)/(sum(exdat$sampsize)-length(exdat$sampsize))
fitout<-fitEmax(exdat$rslt,exdat$dose,modType=3,count=exdat$sampsize,msSat=msSat)
dgrid<-seq(0,100,length=100)
seout95<-predict(fitout,dgrid,clev=0.95)
seout90<-predict(fitout,dgrid,clev=0.9)
seout80<-predict(fitout,dgrid,clev=0.8)
seout50<-predict(fitout,dgrid,clev=0.5)
qlev<-c(0.025,0.05,0.10,0.25)
qL<-cbind(seout95$ubdif,seout90$ubdif,seout80$ubdif,seout50$ubdif)
qH<-cbind(seout95$lbdif,seout90$lbdif,seout80$lbdif,seout50$lbdif)
```
emxalt

Fit 4- or 3-parameter Emax model substituting simpler curves if convergence not achieved.

Description

ML estimation for 4- and 3-parameter Emax model. If the 4-parameter model is requested, it is estimated and the 3-parameter model is fit only if the 4-parameter estimation fails. If 3-parameter estimation fails, the linear, log-linear, or exponential model producing the smallest residual SS is substituted. For binary data, the model is fit on the logit scale and then back-transformed.

Usage

```r
emxalt(y, dose, modType=3,binary=FALSE,
       iparm=NA,ed50cutoff=2.5*max(doselev),
       ed50lowcutoff=doselev[2]/1000,switchMod= TRUE,
       truncLambda=6)
```

Arguments

- `y` Response vector
- `dose` Doses corresponding to `y`
- `modType` When `modType=4`, the fitting begins with the 4 parameter model. If estimation fails or `modType=3`, the 3-parameter estimation is applied. If it fails, a best-fitting model linear in its parameters is selected.
- `binary` When specified, the Emax model is fit on the logit scale, and then the results are back-transformed to proportions.
- `iparm` Vector of optional initial values for the Emax fit. Starting values are computed if not specified.
- `ed50cutoff` Upper allowed limit for ED50 estimates.
- `ed50lowcutoff` Lower allowed limit for the ED50 estimates.
- `switchMod` If `switchMod` is `TRUE`, the algorithm substitutes a simpler model if (1) convergence is not achieved, (2) the information matrix is not positive definite at the converged values, (3) the ED50 estimates are outside the cutoff bounds. If `switchMod` is `F`, only conditions (1) or (2) cause a simpler model to be used.
- `truncLambda` When `modType=4` and the converged estimate of the Hill parameter lambda exceeds `truncLambda`, the model fit is judged unstable and discarded. Set `truncLambda=Inf` for no truncation.
Details

The partial linear method is used in nls. If it fails, gauss-newton is attempted. If both methods fail, the next simpler model is attempted. For the 4-parameter model, the next step is the 3-parameter model. For the 3-parameter model, a linear, log-linear \log(dose+1.0), and \exp(dose/\max(dose)) are fit using lm, and the 2-parm fit with the smallest residual SS is selected.

Value

A list assigned class "emaxalt" with the following elements:

- **dm**: Vector containing dose group means
- **dsd**: Vector containing dose group SDs
- **Sparm**: Vector of starting values for 3-parameter Emax fit.
- **fitType**: Character vector with "4", "3", "L", "LL", or "E" for 4-Emax, 3-Emax, linear, log-linear, or exponential when an alternative model is selected.
- **vc**: The variance-covariance matrix of the model parameters stored as a vector. The length is 16, 9, 4 depending on fitType.
- **fitpred**: Dose groups means estimated from the model
- **residSD**: The residual SD based on the selected model.
- **sepred**: SEs for estimates in fitpred
- **sedif**: SEs for model-based estimates of difference with placebo
- **bigC**: bigC= TRUE if the primary fit (from modType) yielded an ED50 > ED50 upper limit.
- **negC**: negC= TRUE if the primary fit (from modType) yielded a ED50 estimate < ED50 lower limit.
- **est4**: 4-pararmeter Emax fit (ed50,lambda,emax,e0). NA if failed to converge or 3-parameter model requested.
- **est3**: 3-pararmeter Emax fit (ed50,emax,e0). NA if failed to converge or 4-parameter model successfully fit.
- **estA**: Alternative parameter estimates. NA if Emax model fit successfully

Author(s)

Neal Thomas

See Also

emaxsim, nls

Examples

```r
save.seed<-.Random.seed
set.seed(12357)
```
doselev<-c(0,5,25,50,100)
n<-c(78,81,81,81,77)
dose<-rep(doselev,n)

population parameters for simulation
e0<-2.465375
ed50<-67.481113
dtarget<-100
diftarget<-9.032497
emax<-solveEmax(diftarget,dtarget,log(ed50),1,e0)
sdy<-7.967897
pop<-c(log(ed50),emax,e0)
meanresp<-emaxfun(dose,pop)
y<-rnorm(sum(n),meanresp,sdy)
simout<-emaxalt(y,dose)
simout2<-emaxalt(y,dose,modType=4)

Random.seed<-save.seed

emaxfun

Vectorized versions of the hyperbolic and sigmoidal Emax models

Description

Evaluate Emax models for a vector of dose levels for multiple sets of parameters.

Usage

`emaxfun(dose, parm)`

Arguments

- **dose**: A vector (or scalar) of dose levels
- **parm**: A vector or matrix with columns containing
 \(\log(\text{ed50}) \), Hill parameter if sigmoid model, \(\text{emax} \), \(\text{e0} \)

Details

The Hill parameter is omitted from param for the hyperbolic model

Value

Returns a matrix of Emax function evaluations. The rows correspond to the parameter replications, and the columns correspond to the dose levels.
Note
The ordering of the parameters was selected to facilitate use of the `plinear` algorithm in function `nls`.

Author(s)
Neal Thomas

See Also
dlogis

Examples

doselev<-c(0,5,25,50,100)
e0<-2.465375
ed50<-67.481113
dtarget<-100
difTarget<-9.032497
lambda=2
emax<-solveEmax(difTarget,dtarget,log(ed50),lambda,e0)
parm<-c(log(ed50),lambda,emax,e0)
plot(doselev,emaxfun(doselev,parm))

-emaxPrior.control- Set the parameters of the prior distribution for the Emax model implemented in fitEmaxB.

Description
Set the parameters of the prior distribution for the Emax model implemented in fitEmaxB.

Usage
emaxPrior.control(epmu=NULL,epsca=NULL,
difTargetmu=NULL,difTargetsca=NULL,
dTarget=NULL,p50=NULL,
sigmaLow=NULL,sigmaUp=NULL,
effDF=parmDF,parmDF=5,
loged50mu=0.0,loged50sca=1.73,
loglammu=0.0,loglamsca=0.425,parmCor=-0.45,
lowed50=log(0.001),highed50=log(1000),
lowlam=log(0.3),higllam=log(4.0),
basemu=NULL,basevar=NULL,binary=FALSE)
Arguments

epmu Mean for E0 in a t-prior distribution. Logistic scale for binary data.
epsca The scale parameter for E0 in a t-prior distribution. Logistic scale for binary data.
difTargetmu Mean for the prior distribution of the effect at dose dTarget versus placebo. Logistic scale for binary data.
difTargetsca The scale parameter for the prior distribution of the effect at dose dTarget versus placebo. Logistic scale for binary data.
dTarget Target dose for prior effect. Typically the highest dose planned and/or the proof-of-concept dose.
p50 Projected ED50. See references for its use in creating the prior distribution for the ED50.
sigmalow Lower bound for a uniform prior distribution for the residual SD (continuous data).
sigmaup Upper bound for a uniform prior distribution for the residual SD (continuous data).
effDF The degrees of freedom for the prior distributions for the placebo and difTarget parameters. If a vector of length 2 is specified, the first value is the degrees of freedom for placebo and the second for difTarget.
parmDF The degrees of freedom of the bivariate log-t prior distribution for the ED50 and lambda parameters.
loged50mu Mean of prior t-distribution for the log(ED50/P50). See references for its default value and interpretation.
loged50sca Scale (analogous to SD) of the prior t-distribution for the log(ED50/P50).
loglammu Mean of prior t-distribution for the Hill parameter lambda. See references for its default value and interpretation.
loglamsca Scale (analogous to SD) of the prior t-distribution for the Hill parameter lambda.
parmCor Correlation for the bivariate log-t prior distribution for the ED50 and lambda parameters.
lowled50, highled50, lowllam, highllam Bounds applied to the prior distributions for the log(ED50/P50) and log(lambda). The original (unbounded) priors are modified to be conditional on being within the bounds. This is done for numerical stability and plausibility of the parameter values.
basemu A vector of prior means for the covariate regression parameters.
basevar The prior variance-covariance matrix for the covariate regression parameters. The covariate regression parameters are a priori independent of the other dose response model parameters.
binary Set to TRUE for binary data applications. Used to check for consistency in usage. The default is FALSE.
Details

The prior distribution is based on meta-analyses of dose response described in the references. The E0 and difTarget parameters have independent t-distribution prior distributions. For binary data, these parameters are computed on the logistic scale. The prior means and scales of these parameters must be assigned compound-specific values. The predicted ED50 at the study design stage must also be specified as 'P50'. For continuous data, the prior distribution for the residual SD is uniform on a user-specified scale.

The prior distribution of the log(ED50) has a t-distribution centered at log(P50), with scale, degrees of freedom (parmDF), and offset to the P50, defaulting to values given in the references (these can be changed, but they are difficult to interpret outside the context of the meta-analyses). If modType=4, the prior distribution for the Hill parameter is also t-distribution with parmDF degrees of freedom and corParm correlation with the log(ED50).

Value

List of class emaxPrior of prior parameter values for use in fitEmaxB. default is a derived variable set to TRUE when the default values are used for loged50 and loglambda.

Author(s)

Neal Thomas

References

See Also

fitEmaxB

Description

Simulate dose response data and apply 4- or 3- parameter Emax MLE estimation. For binary data, the model is fit on the logit scale and then back-transformed. When MLE estimation fails, models with fewer parameters (including models linear in their parameters) are substituted. Summaries of estimation performance are returned for further analyses. An MCP-MOD test is also performed for each simulated data set.
Usage

`emaxisim(
 nsim,
genObj,
modType=3,
binary=FALSE,
seed=12357,
nproc = parallel::detectCores(),
negEmax=FALSE,
ed50contr=NULL,
lambdaccontr=NULL,
testMods=NULL,
idmax=length(doselev),
iparm=NA,
ed50cutoff=2.5*max(doselev),
ed50lowcutoff=doselev[2]/1000,
switchMod= TRUE,
truncLambda=6,
description="")`

Arguments

`nsim` Number of simulation replications
`genObj` Object containing inputs and function to create simulated data sets. These objects are created by special constructor functions; the current choices are `FixedMean` and `RandEmax`.
`modType` When `modType=4`, the fitting begins with the 4 parameter model. If estimation fails or `modType=3`, the 3-parameter estimation is applied. If it fails, a best-fitting model linear in its parameters is selected.
`binary` When specified, the Emax model is fit on the logit scale, and then the results are back-transformed to proportions.
`seed` Seed for random number generator used to create data.
`nproc` The number of processors to use in parallel computation of the simulations, which are divided into equal-sized computational blocks. When `nproc=1` a single local processor.
`negEmax` When `TRUE`, the intended effect is assumed to be negative.
`ed50contr` A vector of ED50 values for creating a global null test using the MCP-MOD package DoseFinding based on Emax model-based contrasts. The default is 3 contrasts: the mid-point between pbo and the lowest dose, the mid-point between the 2 highest doses, and the median of the dose levels. When there are <=4 doses including pbo, the median-based contrast is excluded.
`lambdaccontr` Hill parameters matched to the `ed50contr`. The default value is 1 for each contrast model.
`testMods` The model object for a MCP-MOD test created by `Mods` from package DoseFinding. If specified, the other contrast inputs are ignored. The `Mods` call should use the
unique sorted dose levels. The direction of the trend should be specified in the call to `Mods`. The `negEmax` is stored for use by support functions, but it does not determine the direction of the effect when `testMods` is specified. The validity of `testMods` is not checked.

idmax
Index of the default dose group for comparison to placebo. Most analysis functions allow other dose groups to be specified. The default is the index of the highest dose.

iparm
Starting values for the Emax fit. If unspecified, starting values are computed. The order of the variables is `(log(ED50),Emax,E0)` or `(log(ED50),lambda,Emax,E0)`. Note the transformation of ED50.

ed50cutoff
The upper limit for the ED50 parameter estimates. The default is large enough to ensure a near linear fit to the data from an Emax model.

ed50lowcutoff
Lower allowed limit for the ED50 estimates.

switchMod
If `switchMod` is TRUE, the algorithm substitutes a simpler model if (1) convergence is not achieved, (2) the information matrix is not positive definite at the converged values, (3) the ED50 estimates are outside the cutoff bounds. If `switchMod` is F, only conditions (1) or (2) cause a simpler model to be used.

truncLambda
When `modType=4` and the converged estimate of the Hill parameter lambda exceeds `truncLambda`, the model fit is judged unstable and discarded. Set `truncLambda=Inf` for no truncation. Four parameter model fits are also discarded when lambda is less than 0.1.

description
Optional text describing the simulation setting that is stored with the simulation output.

Details

Continuous data can be simulated from any dose response curve with homogeneous normally distributed residuals. The estimation procedure starts with ML estimation of a 4- or 3-parameter Emax model depending on modType. If modType=3 or 4-parameter estimation fails, a 3 parameter Emax model is fit by maximum likelihood non-linear least squares. If 1) nls fails to converge for a 3 parameter Emax model, 2) the ED50 estimate is <=0, or 3) the ED50 estimate exceeds `ed50cutoff`, a linear, log-linear (offset of 1.0), or scaled exponential (exp(dose/max(dose))), is fit using simple linear least squares estimation. The model selected has the smallest residual SS.

Binary data are handled similarly using maximum likelihood implemented with the nlm function. The models are fit on the logit scale and then back-transformed for estimation of dose response. Reduced linear models are selected based on the corresponding likelihood deviance.

MCP-MOD tests are created from contrasts based on the Emax function using the DoseFinding package. Different ED50 and lambda (Hill) parameters can be specified to form the contrasts. A contrast matrix output from the DoseFinding package can be specified instead, allowing for other contrast choices.

Value

A list is returned with class(eminax) containing:

description
User description of simulation
<table>
<thead>
<tr>
<th>Variable</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>binary</td>
<td>Binary response data.</td>
</tr>
<tr>
<td>modType</td>
<td>User supplied starting Emax model</td>
</tr>
<tr>
<td>genObj</td>
<td>List object with data and function used to generate study data</td>
</tr>
<tr>
<td>pop</td>
<td>Matrix with rows containing population parameters for each simulation. Type of parameter depends on constructor function generating study data.</td>
</tr>
<tr>
<td>popSD</td>
<td>Vector containing the population SD used to generate continuous data. NULL for binary data.</td>
</tr>
<tr>
<td>init</td>
<td>Matrix with rows containing the starting Emax parameters for each simulation</td>
</tr>
<tr>
<td>est4</td>
<td>Matrix with 4 parameter Emax fit. NA if failed to converge or modType=3</td>
</tr>
<tr>
<td>est3</td>
<td>Matrix with 3 parameter Emax fit. NA if failed to converge or 4-parameter estimation was successful.</td>
</tr>
<tr>
<td>estA</td>
<td>Matrix with alternative parameter estimates. NA if Emax model fit successfully</td>
</tr>
<tr>
<td>vc</td>
<td>Variance-covariance matrix for the estimated parameters stored as a vector for each simulation. The vc vector stored has 16, 9, or 4 elements depending on fitType (with NA values on the end if elements are unused).</td>
</tr>
<tr>
<td>residSD</td>
<td>The residual SD based on the selected model.</td>
</tr>
<tr>
<td>fitType</td>
<td>Character vector with "4", "3", "L", "LL", or "E" for 4-Emax, 3-Emax, linear, log-linear, or exponential when an alternative model is selected.</td>
</tr>
<tr>
<td>pVal</td>
<td>The nsim p-values from the global null test. The p-values are 1-sided computed using MCP-Mod.</td>
</tr>
<tr>
<td>selContrast</td>
<td>The index of the test contrast producing the smallest p-value.</td>
</tr>
<tr>
<td>testMods</td>
<td>Object of class Mods from R package DoseFinding that defines the contrasts used in MCP-MOD testing. The functions can be plotted with DoseFinding loaded.</td>
</tr>
<tr>
<td>negEmax</td>
<td>User input stored for subsequent reference.</td>
</tr>
<tr>
<td>ed50cutoff</td>
<td>Upper allowed limit for ED50 estimates</td>
</tr>
<tr>
<td>ed50lowcutoff</td>
<td>Lower allowed limit for the ED50 estimates.</td>
</tr>
<tr>
<td>switchMod</td>
<td>If switchMod is TRUE, the algorithm substitutes a simpler model if (1) convergence is not achieved, (2) the information matrix is not positive definite at the converged values, (3) the ED50 estimates are outside the cutoff bounds. If switchMod is F, only conditions (1) or (2) cause a simpler model to be used.</td>
</tr>
<tr>
<td>negC</td>
<td>negC=TRUE if the primary fit (from modType) yielded a ED50 estimate < ED50 lower limit.</td>
</tr>
<tr>
<td>bigC</td>
<td>bigC=TRUE if the primary fit (from modType) yielded an ED50> ED50 upper limit.</td>
</tr>
<tr>
<td>predpop</td>
<td>Matrix with population means for each dose group</td>
</tr>
<tr>
<td>mv</td>
<td>Matrix with rows containing dose group sample means</td>
</tr>
<tr>
<td>sdv</td>
<td>Matrix with rows containing dose group sample SD</td>
</tr>
<tr>
<td>fitpredv</td>
<td>Matrix with rows containing dose groups means estimated from the model</td>
</tr>
<tr>
<td>sepredv</td>
<td>Matrix with rows containing SE for fitpredv</td>
</tr>
</tbody>
</table>
emaxsim

sedifv
Matrix with rows containing SE for model-based differences with placebo

rseed
Starting random number seed for each simulated data set set that can be assigned to .Random.seed. To reproduce the data, the random number generator must also be changed to RNGkind("L'Ecuyer-CMRG").

idmax
Index of default dose group for comparison to placebo (e.g., for plotting Z-statistics).

Author(s)
Neal Thomas

See Also
print.emaxsim, summary.emaxsim, plot.emaxsim, coef.emaxsim, sigma.emaxsim, vcov.emaxsim, predict.emaxsim, emaxfun

Examples

```r
## Not run:
## emaxsim changes the random number seed
nsim<-50
idmax<-5
doselev<-c(0,5,25,50,100)
n<-c(78,81,81,81,77)
Ndose<-length(doselev)

### population parameters for simulation
e0<-2.465375
ed50<-67.481113
dtarget<-100
diftarget<-2.464592
emax<-solveEmax(diftarget,dtarget,log(ed50),1,e0)
sdy<-7.967897
pop<-c(log(ed50),emax,e0)
meanlev<-emaxfun(doselev,pop)

###FixedMean is specialized constructor function for emaxsim
gen<-FixedMean(n,doselev,meanlev,sdy)

D1 <- emaxsim(nsim,gen,modType=3)
summary(D1,testalph=0.05)

D4 <- emaxsim(nsim,gen,modType=4)
summary(D4,testalph=0.05)

## End(Not run)
```
Description

Simulate dose response data and apply 4- or 3- parameter sigmoidal or hyperbolic Bayesian estimation. The prior distribution is input by the user with default values for some parameters based on the empirical distribution estimated from dose response meta-analyses. For binary response data, the Emax model is fit on the logit scale, and then back-transformed.

Usage

```r
eamaxsimB(nsim, genObj, prior, modType = 4,
            binary = FALSE, seed=12357,
            check = FALSE, nproc=parallel::detectCores(),
            negEmax = FALSE, ed50contr = NULL,
            lambdacontr = NULL, testMods = NULL,
            idmax = length(doselev),
            mcmc = mcmc.control(),
            customCode=NULL, customParms=NULL,
            description = "")
```

Arguments

- **nsim**: Number of simulation replications
- **genObj**: Object containing inputs and function to create simulated data sets. These objects are created by special constructor functions; the current choices are `FixedMean` and `RandEmax`.
- **prior**: Prior specification through an object of type ‘emaxPrior’ or ‘prior’. See `emaxPrior.control` and `prior.control` for details. The ‘emaxPrior’ specifies the magnitude of the potential effect for a specified dose (typically the highest anticipated dose and/or the dose in a POC study), while the ‘prior’ specifies the theoretical maximum effect (the emax parameter). The ‘prior’ specification is deprecated and will be removed.
- **modType**: When modType=3, a hyperbolic Emax model is fit. When modType=4, a sigmoid Emax model is fit.
- **binary**: When specified, the Emax model is fit on the logit scale, and then the results are back-transformed to proportions.
- **seed**: Seed for random number generator used to create data. A separate seed can be passed to `rstan` through the MCMC object.
- **check**: When TRUE, a single simulated data set is created and the data and `rstan` object are returned for convergence checking. The data are in the form needed for developing `customCode`. Note that `customCode` is not called when `check=TRUE`.
- **nproc**: The number of processors to use in parallel computation of the simulations, which are divided into equal-sized computational blocks. When `nproc=1` a single local processor.
negEmax
When TRUE, the intended effect is assumed to be negative.
ed50contr
A vector of ED50 values for creating a global null test using the MCP-MOD package DoseFinding based on Emax model-based contrasts. The default is 3 contrasts: the mid-point between pbo and the lowest dose, the mid-point between the 2 highest doses, and the median of the dose levels. When there are <=4 doses including pbo, the median-based contrast is excluded.
lambdacontr
Hill parameters matched to the ed50contr. The default value is 1 for each contrast model.
testMods
The model object for a MCP-MOD test created by Mods from package DoseFinding. If specified, the other contrast inputs are ignored. The Mods call should use the unique sorted dose levels. The direction of the trend should be specified in the call to Mods. The negEmax is stored for use by support functions, but it does not determine the direction of the effect when testMods is specified. The validity of testMods is not checked.
imax
Index of the default dose group for comparison to placebo. Most analysis functions allow other dose groups to be specified. The default is the index of the highest dose.
mcmc
MCMC settings created using mcmc.control
customCode
An optional user supplied function that computes custom estimates/decision criteria from each simulated data set and its Bayesian model fit. The output are stored in a list, customOut, of length nsim. See the Details section below for a description of the mandatory inputs to the customCode function.
customParms
Optional parameters that can be passed to customCode.
description
Optional text describing the simulation setting that is stored with the simulation output.

Details
The Bayesian model fits are implemented in rstan using function fitEmaxB. The function compileStanModels must be executed once to create compiled STAN code before emaxsimB can be used.

Continuous data can be simulated from any dose response curve with homogeneous normally distributed residuals.

Binary data are handled similarly. The models are fit on the logit scale and then back-transformed for estimation of dose response. Reduced linear models are selected based on the corresponding likelihood deviance.

MCP-MOD tests are created from contrasts based on the Emax function using the DoseFinding package. Different ED50 and lambda (Hill) parameters can be specified to form the contrasts. A contrast matrix output from the DoseFinding package can be specified instead, allowing for other contrast choices.

Customized code:
For binary data, the inputs to the function customCode for each simulated data set will be (parms,pVal,dose,y), where parms is the matrix of parameters generated from the posterior distribution with columns in the order given in function emaxfun, pVal is the MCP-MOD p-value, dose and y are the patient-level simulated data. For continuous data, the inputs are (parms,residSD,pVal,dose,y), where residSD are the variance parameters generated from their posterior distribution. The customParms supply...
other user-inputs such as a target efficacy level. When it is not null, the customCode inputs must be
(parms,pVal,dose,y,customParms) or (parms,residSD,pVal,dose,y,customParms).

Value

A list is returned with class(emaxsim) containing:

<table>
<thead>
<tr>
<th>Description</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>description</td>
<td>User description of simulation</td>
</tr>
<tr>
<td>localParm</td>
<td>localParm=TRUE when the prior prior distribution is input using emaxPrior.</td>
</tr>
<tr>
<td>binary</td>
<td>Binary response data.</td>
</tr>
<tr>
<td>modType</td>
<td>Type of Emax model fit (3 or 4 parameters)</td>
</tr>
<tr>
<td>genObj</td>
<td>List object with data and function used to generate study data</td>
</tr>
<tr>
<td>pop</td>
<td>Matrix with rows containing population parameters for each simulation. Type of parameter depends on constructor function generating study data.</td>
</tr>
<tr>
<td>popSD</td>
<td>Vector containing the population SD used to generate continuous data. NULL for binary data.</td>
</tr>
<tr>
<td>mcmc</td>
<td>mcmc input settings</td>
</tr>
<tr>
<td>prior</td>
<td>Input prior distribution.</td>
</tr>
<tr>
<td>est</td>
<td>Matrix with posterior median parameter estimates for each simulation: (led50,lambda,emax,e0,difTarget) or (led50,emax,e0,difTarget). The difTarget are omitted for the deprecated distribution.</td>
</tr>
<tr>
<td>estlb,estub</td>
<td>Array with lower posterior (0.025,0.05,0.1) and upper posterior (0.975,0.95,0.9) percentiles of the model parameters. The array ordering is model parameters, simulation, and percentile.</td>
</tr>
<tr>
<td>residSD</td>
<td>The posterior median of the residual SD for each simulation.</td>
</tr>
<tr>
<td>pVal</td>
<td>The nsim p-values from the global null test. The p-values are 1-sided computed using MCP-Mod.</td>
</tr>
<tr>
<td>selContrast</td>
<td>The index of the test contrast producing the smallest p-value.</td>
</tr>
<tr>
<td>testMods</td>
<td>Object of class Mods from R package DoseFinding that defines the contrasts used in MCP-MOD testing. The functions can be plotted with DoseFinding loaded.</td>
</tr>
<tr>
<td>gofP</td>
<td>Goodness of fit test computed by checkMonoEmax.</td>
</tr>
<tr>
<td>negEmax</td>
<td>User input stored for subsequent reference.</td>
</tr>
<tr>
<td>predpop</td>
<td>Matrix with population means for each dose group</td>
</tr>
<tr>
<td>mv</td>
<td>Matrix with rows containing dose group sample means</td>
</tr>
<tr>
<td>sdv</td>
<td>Matrix with rows containing dose group sample SD</td>
</tr>
<tr>
<td>msSat</td>
<td>Pooled within-dose group sample variance</td>
</tr>
<tr>
<td>fitpredv</td>
<td>Matrix with rows containing dose groups means estimated by the posterior medians of the MCMC generated values.</td>
</tr>
<tr>
<td>sepredv</td>
<td>Matrix with rows containing SE (posterior SD) associated with fitpredv</td>
</tr>
<tr>
<td>fitdifv</td>
<td>Matrix with rows containing dose groups mean differences with placebo estimated by the posterior medians of the differences of the MCMC generated values.</td>
</tr>
</tbody>
</table>
Matrix with rows containing SE (posterior SD) for the differences with placebo

Array with lower posterior (0.025,0.05,0.1) and upper posterior (0.975,0.95,0.9) percentiles of differences between dose group means and placebo. The array ordering is dose group minus placebo, simulation, and percentile.

The proportion of divergent MCMC iterations from each simulated analysis.

Starting random number seed for each simulated data set that can be assigned to .Random.seed. To reproduce the data, the random number generator must also be changed to RNGkind("L'Ecuyer-CMRG").

Index of default dose group for comparison to placebo (e.g., for plotting Z-statistics).

List with customized output. It will be NULL if customCode is not specified.

The default modType was changed from 3 to 4 for clinDR version >2.0

Neal Thomas

print.emaxsimB, summary.emaxsimB, plot.emaxsimB, coef.emaxsimB, sigma.emaxsimB, emaxfun

Not run:

emaxsimB changes the random number seed

```r	nsim<-50
idmax<-5
doselev<-c(0,5,25,50,100)
n<-c(78,81,81,81,77)
Ndose<-length(doselev)

e0<-2.465375
ed50<-67.481113
dtarget<-100
```

population parameters for simulation

e0<-2.465375
ed50<-67.481113
dtarget<-100

Solve Emax function for target value

Description

Solve the Emax function for dose or Emax to yield a specified response.

Usage

```
solveEmax(target, dose, led50, lambda, e0, pboadj=TRUE)
solveDose(target, led50, lambda, emax, e0, pboadj=TRUE)
```
Arguments

- **target**: The targetted response. If the Emax model is specified on the logit scale for binary data, target and e0 must be logit transformed also.
- **dose**: The dose yielding target. It is specified for `solveEmax`, and returned for `solveDose`.
- **led50, lambda, e0**: Emax model parameters (ed50 log transformed).
- **emax**: The Emax model parameter for `solveDose`. The value returned for `solveEmax`.
- **pboadj**: When TRUE, target is placebo-adjusted.

Author(s)

Neal Thomas

See Also

- `fitEmax`, `fitEmaxB`, `emaxsim`, `emaxsimB`

Examples

```r
e0<-10
dose<-1
led50<-log(0.5)
lambda<-2
target<- -1.5
emax<-solveEmax(target,dose,led50,lambda,e0)
emax

dose1<-solveDose(target,led50,lambda,emax,e0)
dose1
emaxfun(dose=dose1,parm=c(led50,lambda,emax,e0)) - e0
```

fitEmax

ML fit of hyperbolic or sigmoidal Emax models to continuous/binary dose response data.

Description

Calls Newton-Raphson optimizers, nls and nlm, for a hyperbolic or sigmoidal Emax model. Different intercepts for multiple protocol-data are supported. For binary data, the Emax model is on the logit scale.
Usage

fitEmax(y, dose, iparm, xparm, modType=4,
prot=rep(1,length(y)), count=rep(1,length(y)), xbase=NULL,
binary=FALSE, diagnostics=TRUE, msSat=NULL,
pboAdj=rep(FALSE, max(prot)), optObj=TRUE)

Arguments

y Outcome for each patient. Missing Y values are not permitted. Dose/protocol group means for grouped continuous data. For binary data, y must be 0/1 and counts must be supplied for each 0/1 value.

dose Dose for each patient.
iparm Optional starting values for the Newton-Raphson algorithm. The order of the variables is (log(ED50), Emax, E0) or (log(ED50), lambda, Emax, E0). Note the transformation of ED50. If there is more than one protocol, the E0 is automatically duplicated.
xparm Optional starting values for the baseline covariate slopes (if any). xparm must be specified when iparm and xbase are specified. startEmax is used to obtain starting values if no starting values are specified.

modType modType=3 (default) for the 3-parameter hyperbolic Emax model. modType=4 for the 4-parameter sigmoidal Emax model.
prot Protocol (group) membership used to create multiple intercepts. The default is a single protocol.
count Counts for the number of patients when the Y are dose continuous group means or binary 0/1 values. Default is 1 (ungrouped data).
xbase A matrix of baseline covariates with rows corresponding to y that enter as linear additive predictors. The baseline covariates must be centered about their (protocol-specific) means. xbase does not include an intercept or protocol indicators. Covariates cannot be specified with PBO adjusted or aggregated input.
diagnostics Print trace information per iteration and any error messages from the optimizing methods. Printing can be suppressed for use in simulation studies.

binary When TRUE, the y are assumed to be coded 0/1, and the the means reported are proportions. The Emax model is specified on the logit scale, and proportions are estimated from the model by back-transformation.

msSat If continuous Y are dose/protocol group means rather than individual measurements, the within group variance, msSat, should be supplied. This variance is the mean square from the model saturated in dose and protocol. It is used for goodness-of-fit (GOF) testing, and to improve the residual variance estimate for the Emax model. If it is not supplied, statistics needed for GOF will not be available, and the residual SD (and associated SE) will have low degrees of freedom.
pboAdj For published data with only pbo-adjusted dose group means and SEs, the model is fit without an intercept(s). If initial parameters are supplied, the intercept (E0) should be assigned 0. A zero for the placebo mean should not be included in Y. This option is not available for binary data. Potential correlation between between placebo-adjusted means is ignored.

optObj Include the output object from the R optimization code in the fitEmax output.
Details

Fits the 3- or 4- Emax model using nls. A newton-raphson algorithm is tried first followed by a partial linear optimization if needed. Binary data are fit using nlm.

Value

A list assigned class "fitEmax" with:

- **fit**: The parameter estimates and their variance-covariance matrix.
- **y, dose, modType, prot, count, binary, pboAdj**: Input values.
- **gofTest**: Goodness of fit p-value based on likelihood ratio comparison of the model to a saturated fit.
- **nll**: $-2 \log$likelihood for the Emax model and the saturated model. Residual sums of squares are returned for continuous data models. These statistics can be used to construct other tests using multiple calls to fitEmax (e.g., 3 vs 4 parameter Emax models, or a common intercept model across protocols).
- **df**: Residual degrees of freedom for the Emax model and the saturated model.
- **optobj**: When requested, the fit object returned by the R optimization functions.

Author(s)

Neal Thomas

See Also

nls, nlm, nllogis, predict.fitEmax, plot.fitEmax, coef.fitEmax

Examples

```r
## the example changes the random number seed

doselev<-c(0, 5, 25, 50, 100, 350)
n<-c(78, 81, 81, 81, 77, 80)

### population parameters for simulation
e0<-2.465375
ed50<-67.481113
dtarget<-100
diftarget<-9.032497
emax<-solveEmax(diftarget, dtarget, log(ed50), 1, e0)
sdy<-8.0
pop<-c(log(ed50), emax, e0)
dose<-rep(doselev, n)
meanlev<-emaxfun(dose, pop)
```
fitEmaxB <- rnorm(sum(n), meanlev, sdy)

testout <- fitEmax(y, dose, modType = 4)

fitEmaxB

Bayesian fit of hyperbolic or sigmoidal Emax models to continuous/binary dose response data.

Description

Uses R package rstan to fit a Bayesian hyperbolic or sigmoidal Emax model. Different intercepts for multiple protocol-data are supported. For binary data, the Emax model is on the logit scale.

Usage

fitEmaxB(y, dose, prior, modType = 4, prot = rep(1, length(y)), count = rep(1, length(y)), xbase = NULL, binary = FALSE, msSat = NULL, vcest = NULL, pboAdj = FALSE, mcmc = mcmc.control(), estan = NULL, diagnostics = TRUE, nproc = getOption("mc.cores", 1L))

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>y</td>
<td>Outcome for each patient. Missing Y values are not permitted. Dose/protocol group means for grouped continuous data. For binary data, y must be 0/1 and counts must be supplied for each 0/1 value.</td>
</tr>
<tr>
<td>dose</td>
<td>Dose for each patient.</td>
</tr>
<tr>
<td>prior</td>
<td>Prior specification through an object of type 'emaxPrior' or 'prior'. See emaxPrior.control and prior.control for details. The 'emaxPrior' specifies the magnitude of the potential effect for a specified dose (typically the highest anticipated dose and/or the dose in a POC study), while the 'prior' specifies the theoretical maximum effect (the emax parameter). The <code>prior</code> specification is deprecated and will be removed.</td>
</tr>
<tr>
<td>modType</td>
<td>modType = 3 (default) for the 3-parameter hyperbolic Emax model. modType = 4 for the 4-parameter sigmoidal Emax model.</td>
</tr>
<tr>
<td>prot</td>
<td>Protocol (group) membership used to create multiple intercepts. The default is a single protocol. The prior distribution for the placebo response is re-used independently for each intercept.</td>
</tr>
<tr>
<td>count</td>
<td>Counts for the number of patients when the Y are dose continuous group means or binary 0/1 values. Default is 1 (ungrouped data).</td>
</tr>
<tr>
<td>xbase</td>
<td>A matrix of baseline covariates with rows corresponding to y that enter as linear additive predictors. The baseline covariates must be centered about their (protocol-specific) means. xbase does not include an intercept or protocol indicators. Covariates cannot be specified with PBO adjusted or aggregated input.</td>
</tr>
</tbody>
</table>
When `TRUE`, the `y` are assumed to be coded 0/1, and the means reported are proportions. The Emax model is specified on the logit scale, and proportions are estimated from the model by back-transformation.

If continuous `Y` are dose/protocol group means rather than individual measurements, the within group variance, `msSat`, should be supplied. This variance is the mean square from the model saturated in dose and protocol. It is used to improve the residual variance estimate for the Emax model. If it is not supplied, the residual SD (and associated SE) will have low degrees of freedom.

The input, `Y`, can be estimates of dose group responses from a first-stage model. The `vcest` is the variance-covariance matrix of the model-based estimates. The most common usage is when a saturated model is fit using maximum likelihood estimation to longitudinal data to produce dose group estimates that are valid under the MAR assumption for missing values. Other applications are possible, see the Pinheiro, et al reference. The count and `msSat` are ignored when `vcest` is specified. Covariates `xbase` cannot be specified with `vcest`, but covariates can be included in the first stage modeling.

For published data with only pbo-adjusted dose group means and SEs, the model is fit without an intercept(s). If initial parameters are supplied, the intercept (E0) should be assigned 0. A zero for the placebo mean should not be included in `Y`. This option is not available for binary data. Potential correlation between between placebo-adjusted means is ignored.

Inputs controlling `rstan` execution. See `mcmc.control` for details.

The compiled `rstan` Emax model is usually loaded automatically. It can be load to an object using the function `selEstan` and passed to `fitEmaxB` for repeated executions to improve efficiency and stability.

Printed output from `rstan`. See Details for more information.

The number of processor requested for `STAN` MCMC computations. Defaults to the value set by the `rstan` installation. When set explicitly, `nproc` is usually 1 or the number of MCMC chains. If greater than the number of chains, it is set to the number of chains.

The function `compileStanModels` must be executed once to create compiled STAN code before `fitEmaxB` can be used.

MCMC fit of a Bayesian hyperbolic or sigmoidal Emax model. The prior distributions available are based on the publication Thomas, Sweeney, and Somayaji (2014), Thomas and Roy (2016), and Wu, et al (2017).

The posterior distributions are complex because the distributions of the Emax and ED50 parameters change substantially as a function of the lambda, often creating 'funnel' type conditions. Small numbers of divergences are common with the 4-parameter model and do not appear easily avoided. Extensive simulation using evaluations with `emaxsimB` support the utility of the resulting approximate posterior distributions. The number of divergences can be viewed using `diagnostics=TRUE`. The usual convergence diagnostics should always be checked.
Value

A list assigned class "fitEmaxB" with:

- estanfit: The rstan object with the model fit.
- y, dose, prot, count, nbase[rows of xbase], xbase, dimFit[rows of vcest], vcest, modType, binary, pboAdj, msSat, prior, mcmc, localParm[TRUE when emaxPrior specified]
- Input values.

Note

The default modType was changed from 3 to 4 for clinDR version >2.0

Author(s)

Neal Thomas

References

See Also

fitEmax, predict.fitEmaxB, plot.fitEmaxB, coef.fitEmaxB

Examples

```r
## Not run:
data("metaData")
exdat<-metaData[metaData$taid==1,]
prior<-emaxPrior.control(epmu=0,epsca=4,difTargetmu=0,difTargetsca=4,dTarget=20,
p50=(2+5)/2,
sigmalow=0.01,sigmaup=3)
mcmc<-mcmc.control(chains=3)
msSat<-sum((exdat$sampsize-1)*(exdat$sd)^2)/(sum(exdat$sampsize)-length(exdat$sampsize))
fitout<-fitEmaxB(exdat$rslt,exdat$dose,prior,modType=4,prot=exdat$protid,
count=exdat$sampsize,msSat=msSat,mcmc=mcmc)
plot(fitout)
```
FixedMean

End(Not run)

FixedMean

Fixed means (proportions) random data constructor for emaxsim for continuous or binary data

Description

Creates a list object that contains inputs and a function to create simulated data sets with a common mean (proportion) for use in emaxsim with normal or continuous data.

Usage

```r
FixedMean(n, doselev, meanlev, resSD, parm = NULL, binary = FALSE)
```

Arguments

- **n**: Sample size for each dose group.
- **doselev**: Dose levels (including 0 for placebo) in the study corresponding to `n`. Must be in increasing order.
- **meanlev**: Mean response at each doselev. For binary data, these are the proportion of responders (no logit transformation).
- **resSD**: Standard deviation for residuals within each dose group (assumed common to all dose groups).
- **parm**: Population parameters that are saved for later reference, but are not used when creating simulated data. `parm` can contain parameters for a 3- or 4- parameter Emax model that generated `meanlev`. They should be stored in the order given in `emaxfun`. Default is `NULL`.
- **binary**: Normal data with homogeneous variance are generated unless `binary` is `TRUE`, and then means are interpreted as proportions and 0/1 data are generated.

Value

A list of length 2. The first element is itself a list named `genP` that contains named elements `n`, `resSD`, `doselev`, `dose`, `parm`, `binary`, and the element `meanlev`, which is specific to `FixedMean`. The second element is a function named `genFun` that takes `genP` as input and returns a list with named elements `meanlev`, `parm`, `resSD`, `y`.

Author(s)

Neal Thomas

See Also

`emaxsim`, `RandEmax`
Examples

```r
## Not run:
## example changes the random number seed

doselev<-c(0,5,25,50,100)
n<-c(78,81,81,81,77)

### population parameters for simulation
e0<-2.465375
ed50<-67.481113
dtarget<-100
diftarget<-9.032497
emax<-solveEmax(diftarget,dtarget,log(ed50),1,e0)
sdy<-7.967897
pop<-c(log(ed50),emax,e0)

meanlev<-emaxfun(doselev,pop)

###FixedMean is specialized constructor function for emaxsim
genp<-FixedMean(n,doselev,meanlev,sdy,pop)

### binary example
n<-rep(500,5)
doselev<-c(0,5,25,50,1000)
dose<-rep(doselev,n)
e0<- qlogis(0.2)
ed50<-20
diftarget<-qlogis(0.6)-qlogis(0.2)
lambda<-2
dtarget<-100
emax<-solveEmax(diftarget,dtarget,log(ed50),lambda,e0)

pop<-c(log(ed50),lambda,emax,e0)
meanlev<-plogis(emaxfun(doselev,pop))
genp<-FixedMean(n,doselev,meanlev,sdy,pop,binary=TRUE)
tapply(genp$genFun(genp$genP)$y,dose,mean)
meanlev

## End(Not run)
```
metaData

Description

Set MCMC controls. Also control spread of initial parameter values.

Usage

```r
mcmc.control(chains = 1, thin = 1,
warmup = 1000, iter = 3333* thin+warmup,
propInit = 0.50, seed = 12357, adapt_delta = 0.9)
```

Arguments

- **chains**
 Number of chains

- **thin**
 Number of discarded sampled parameter values. `warmup` and `iter` include `thin`, so for example, to output 1000 samples, `iter` must be 1000 times `thin`.

- **warmup**
 See rstan documentation for function sampling.

- **iter**
 See rstan documentation for function sampling.

- **propInit**
 Initial values for E0 and Emax are derived from the prior mean plus/minus `propInit` times the prior SD. `propInit` can be set to a small proportion if very diffuse prior distributions are specified.

- **seed**
 Seed passed to rstan.

- **adapt_delta**
 See rstan documentation for function sampling.

Note

Some defaults were changed with version>=2.0. For earlier versions, `warmup = 500, iter = 5000* thin, and adapt_delta=0.8`

metaData

Dose response data from several published meta-analyses

Description

Dose response data from over 200 compounds included in published meta-analyses. The data are aggregated in a single data frame in a common format.

Usage

```r
data('metaData')
```
Format

The data frame has one row for each compound, protocol within compound, and dose group within protocol. Compound and protocol level descriptors are repeated on each row of the data frame.

- **drugid**: A numerical ID identifying each drug.
- **taid**: A drug can be studied in more than one therapeutic area. The taid ID identifies each TA/drug combination.
- **protid**: Numerical (1,2,3,...) ID for protocols specific to each TAID.
- **gname**: Generic drug name.
- **bname**: Branded(USA) drug name.
- **drugtype**: Drug classified as SMALL MOLECULE, BIOLOGIC, OTHER.
- **route**: Route of administration, e.g., oral, subcutaneous,...
- **routeShort**: Abbreviated format for route.
- **oralForm**: Formulation (e.g., TABLET, POWDER,...) for drugs with oral administration.
- **fdaapproved**: NA if status was not yet determined.
- **protno**: Sponsor assigned protocol name/number.
- **nctno**: Clintrial.gov protocol ID.
- **protyear**: When available, year of first patient/first visit. In some cases, date of journal publication.
- **design**: PARELLEL, CROSSOVER,...
- **actcomp**: Indicator if an active comparator was included in the protocol.
- **etype**: etype=1 for the designated primary endpoint. For completeness, where there was ambiguity in the selection of the endpoint, additional endpoint data was included on separate rows and indicated by etype=2,3,... Most analyses subset on etype=1.
- **poptype**: For a compound and TA, there can be distinctly different populations with anticipated response differences, e.g., treatment-naive and pre-treated patients. The population with the most studied doses has poptype=1. For completeness, additional populations are included and identified by poptype=2,3,... Most analyses subset on poptype=1.
- **primsource**: IRO/PRO investigator/patient reported outcome; L lab, V vitals.
- **primtype**: Primary endpoint is BINARY, CONTINOUS, TIMETOEVENT.
- **primtime**: time units to primary endpoint from randomization.
- **timeunit**: DAY, HR, MIN, MONTH, WK for primary endpoint.
- **indication**: Disease description.
- **broadta**: Broad TA classification of the indication.
- **endpointLong, endpointShort**: Endpoint name and an abbreviated form using for example, cfb and pcfb for change from baseline and percent change from baseline.
- **dose**: Total daily dose for small molecules, total weekly dose for biologics in mg or mg/kg for weight-based dosing.
nllogis

- **tload**: Amount of any loading dose
- **nload**: Number of visits with a loading dose
- **regimen**: Dosing frequency
 - **primregimen**: primregimen=1 for most doses/regimens, but primregimen=2 for a few regimens that clearly differed from the most common regimen for the same total dose. Most analyses subset on primregimen=1
- **rslt**: The sample dose group mean (continuous) or proportion (binary) of the primary endpoint. Analyses of the time-to-event endpoints was compound specific (either a mean or a proportion was estimated).
- **se**: Standard error of rslt
- **sd**: Dose group sample standard deviation for continuous data
- **lcl, ucl, alpha**: alpha-level interval (lcl,ucl) when confidence intervals were extracted from the original data source because se were not reported
- **sampsize**: Sample size reported for rslt. The handling of missing data by the protocol sponsors varied, but ‘completers’ was most common.
- **ittsize**: The number randomized. The counts are usually available, except for internal data before 2009, where it was not collected.
- **pmiss**: Percent of missing data.

Details

Compound sampling plans and other details are given in the publications:

Examples

```r
data('metaData')
names(metaData)
```

nllogis

The negative log likelihood function for a 3- or 4- parameter Emax model on the logit scale for binary dose response.

Description

The negative log likelihood function evaluated with a single input set of parameters for the binary Emax model on the logistic scale. For use with function fitEmax
Usage

\texttt{nllogis(parms,y,dose,}
\quad \texttt{prot=rep(1,length(y)),}
\quad \texttt{count=rep(1,length(y)),}
\quad \texttt{xbase=NULL)}

Arguments

- \texttt{parms}: Emax model parameter values. The order of the variables is (log(ED50),Emax,E0) or (log(ED50),lambda,Emax,E0). There must be an E0 for each protocol. Note the transformation of ED50.
- \texttt{y}: Binary outcome variable for each patient. Missing values are deleted. Must be coded 0/1.
- \texttt{dose}: Dose for each patient.
- \texttt{prot}: Protocol (group) membership used to create multiple intercepts. The default is a single protocol. The value of \texttt{prot} must be 1,2,3,...
- \texttt{count}: Counts for the number of patients with each dose/y value. Default is 1 (ungrouped data).
- \texttt{xbase}: Optional matrix of baseline covariates that enter the model linearly. If there is a single covariate, it should be converted to a matrix with one column.

Details

The negative log likelihood for the 3- or 4- Emax model on the logit scale for binary data. Note the ordering of the parameters and their transformations. A 3 vs 4 parameter model is determined by the length of \texttt{parms}.

Value

Negative log likelihood value is returned.

Author(s)

Neal Thomas

See Also

\texttt{nlm, fitEmax}

Examples

data('metaData')
exdat<-metaData[metaData$taid==8,]

cy<-round(exdat$sampsize*exdat$rs1t)
y<-c(rep(1,length(cy)),rep(0,length(cy)))
cy<-c(cy,exdat$sampsize-cy)
drep<-c(exdat$dose,exdat$dose)
plot.emaxsim

Plot the output of emaxsim

Description

A Q-Q plot of the dose response estimate of the mean at a specified dose minus the population value divided by the standard error of the estimator (computed using the delta method). Estimates based on alternative models when the Emax estimation fails are highlighted in red.

Usage

S3 method for class 'emaxsim'
plot(x, id = x$idmax, plotDif= TRUE, ...)

Arguments

x
Output of emaxsim

id
Index of the dose to be assessed (placebo index=1).

plotDif
If true (default), the estimates and population values are differences with placebo. IF false, absolute dose response values are used.

...
Optional parameters passed to the plotting function

Value

No output is returned.

Author(s)

Neal Thomas

See Also

emaxsim, print.emaxsim, summary.emaxsim

Examples

Not run:
nsim<-50
idmax<-5
doselev<-c(0,5,25,50,100)
n<-c(78,81,81,81,77)

population parameters for simulation
e0<-2.465375
ed50<-67.481113
dtarget<-100
diftarget<-9.032497
emax<-solveEmax(diftarget,dtarget,log(ed50),1,e0)
sdy<-7.967897
pop.parm<-c(log(ed50),emax,e0)
meanlev<-emaxfun(doselev,pop.parm)

###FixedMean is specialized constructor function for emaxsim
gen.parm<-FixedMean(n,doselev,meanlev,sdy)
D1 <- emaxsim(nsim,gen.parm)
plot(D1,id=3)

End(Not run)

plot.emaxsimB
Plot the output of emaxsimB

Description

A Q-Q plot of the posterior mean of the mean dose response at a specified dose minus the population value divided by the posterior SD of the mean difference.

Usage

```r
## S3 method for class 'emaxsimB'
plot(x, id = x$idmax, plotDif = TRUE, ...)
```

Arguments

- `x`
 Output of `emaxsimB`
- `id`
 Index of the dose to be assessed (placebo index=1).
- `plotDif`
 If true (default), the estimates and population values are differences with placebo.
 IF false, absolute dose response values are used.
- `...`
 Optional parameters passed to the plotting function

Value

- ggplot object is returned

Author(s)

- Neal Thomas
See Also

emaxsimB, print.emaxsimB, summary.emaxsimB

Examples

```r
## Not run:
## emaxsimB changes the random number seeds
nsim<-50
idmax<-5
doselev<-c(0,5,25,50,100)
n<-c(78,81,81,81,77)
Ndose<-length(doselev)

### population parameters for simulation
e0<-2.465375
ed50<-67.481113
dtarget<-100
diftarget<-2.464592
emax<-solveEmax(diftarget,dtarget,log(ed50),1,e0)
sdy<-7.967897
pop<-c(log(ed50),emax,e0)
meanlev<-emaxfun(doselev,pop)

### FixedMean is specialized constructor function for emaxsim
gen<-FixedMean(n,doselev,meanlev,sdy)
prior<-emaxPrior.control(epmu=0,epsca=30,difTargetmu=0,
difTargetsca=30,dTarget=100,p50=50,sigmalow=0.1,
sigmaup=30,parmDF=5)
mcmc<-mcmc.control(chains=1,warmup=500,iter=5000,seed=53453,propInit=0.15,adapt_delta = 0.95)

D1 <- emaxsimB(nsim,gen, prior, modType=3,mcmc=mcmc,check=FALSE)

plot(D1,id=3)
## End(Not run)
```

plot.emaxsimBobj

Plot dose response from a data set generated by emaxsimB

Description

Plot of population dose response curve, sample dose group means, posterior and posterior predictive intervals, and the model-based estimated (posterior means) dose response curve.
Usage

```r
## S3 method for class 'emaxsimBobj'
plot(
  x, clev=0.9, plotDif=FALSE,
  plotPop=c('m','3','4'),
  logScale=FALSE, plotResid=FALSE,
  plot=TRUE, ... )
```

Arguments

- `x` Extracted data object from `emaxsimB`
- `clev` Level for posterior intervals
- `plotDif` When TRUE, the difference with placebo is plotted.
- `plotPop` When plotPop='m', the mean values at each dose in the designs are joined using linear interpolation. Otherwise, the the population Emax parameters must be supplied with the data generator (see `FixedMean` or `RandEmax`). If the Emax parameters are not available, linear interpolation is used.
- `logScale` Not implemented
- `plotResid` Not implemented
- `plot` Return plotting output without plotting.
- `...` Other plot parameters. See `plot.fitEmaxB` for details

Note

The estimated curve is the posterior mean evaluated along a grid of dose values.

Examples

```r
## Not run:

## emaxsimB changes the random number seed

nsim<-50
idmax<-5
doselev<-c(0,5,25,50,100)
n<-c(78,81,81,81,77)
Ndose<-length(doselev)

### population parameters for simulation
e0<-2.465375
ed50<-67.481113
dtarget<-100
diftarget<-2.464592
emax<-solveEmax(diftarget,dtarget,log(ed50),1,e0)
sdy<-7.967897
pop<-c(log(ed50),emax,e0)
```
plot.emaxsimobj

Plot dose response from a data set generated by emaxsim

Description

Plot of population dose response curve, dose group means with CIs, predictive intervals, and the model-based estimated dose response curve.
Usage

```r
## S3 method for class 'emaxsimobj'
plot(
x, xlim, xat=NULL, ylim, xlab, ylab,
    plotDif=FALSE,
    plotResid=FALSE,
    clev = 0.9,
    plotPop=c('m','3','4'),
    negC = FALSE,
    logScale=FALSE,
    predict=TRUE,
    plot=TRUE, ...)
```

Arguments

- `x`: Extracted data object from `emaxsim`
- `xlim`: x-axis limits
- `xat`: The points at which tick-marks are to be drawn. Errors occur if the points are outside the range of `xlim`. By default (when NULL) tickmark locations are computed.
- `ylim`: y-axis limits
- `xlab`: x-axis label
- `ylab`: y-axis label
- `plotDif`: When `TRUE`, the difference with placebo is plotted.
- `plotResid`: When `TRUE`, residuals (dose group means) are plotted.
- `clev`: Level for confidence intervals
- `plotPop`: Plot population dose response curve when `plotPop=`‘m’ using linear interpolation between population means, when `plotPop=`‘3’ or ‘4’, using the population Emax parameters that must be supplied with the data generator (see FixedMean or RandEmax). If the Emax parameters are not available, linear interpolation is used.
- `negC`: If the ED50<lower ED50 limit, `TRUE` causes the Emax model to be plotted in addition to the alternative model selected.
- `logScale`: If `TRUE`, log scale is used for dose.
- `predict`: When `TRUE`, predictive intervals are plotted with grey errorbars in addition to the confidence intervals.
- `plot`: Return plotting output without plotting.
- `...`: Other plot parameters (not used).

Value

ggplot object is returned
Author(s)
Neal Thomas

See Also
emaxsim, print.emaxsimobj, summary.emaxsimobj, update.emaxsimobj

Examples

```r
## Not run:
## emaxsim changes the random number seed

nsim<-50
idmax<-5
doselev<-c(0.5,25,50,100)
n<-c(78,81,81,81,77)

### population parameters for simulation
e0<-2.465375
ed50<-67.481113
dtarget<-100

diftarget<-9.032497
emax<-solveEmax(diftarget,dtarget,log(ed50),1,e0)

sdy<-7.967897
pop<-c(log(ed50),emax,e0)
meanlev<-emaxfun(doselev,pop)

###FixedMean is specialized constructor function for emaxsim
gen.parm<-FixedMean(n,doselev,meanlev,sdy)
D1 <- emaxsim(nsim,gen.parm)
e49<-D1[49]

plot(e49,clev=0.8)
## End(Not run)
```

Description

Plot an Emax model stored in an object created by function fitEmax.
Usage

S3 method for class 'fitEmax'
plot(
 x, int=0, plotResid=FALSE, clev=0.9,
 predict=TRUE, plotci=TRUE, plotDif=FALSE,
 xlab='Dose',
 ylab=ifelse(plotResid, 'Residuals', ifelse(plotDif, 'Difference With Placebo', 'Response')),
 ncol=NULL,
 symbol=NULL, symbolLabel='Group', symbolShape=8,
 symbolColor='red', symbolSize=4,
 bwidth=NULL,
 xlim=NULL,
 xat=NULL,
 ylim=NULL,
 logScale=FALSE,
 ngrid=200,
 plot=TRUE, ...)

Arguments

x Output of `fitEmax` with class "fitEmax".

int The index for the protocol (intercept) to use for the predictions and computation of dose group means and standard errors. The default value is 0, which displays all protocols in a grid layout.

plotResid If TRUE, a residual plot of the observed dose group means is produced instead of a dose response curve plot.

clev Confidence level for intervals about the estimated mean for each dose.

predict When predict=TRUE, predictive intervals for sample dose group means are plotted. They are gray-shaded bars. If there is >1 symbol group mean for a protocol/dose combination, then the smaller sample size is used when computing the prediction interval.

plotci When plotCI=TRUE, confidence intervals for the population dose group means are plotted. They are black bars.

plotDif Plot difference between doses and placebo. It is assumed the lowest dose in each protocol is placebo.

xlab Label for the x-axis

ylab Label for the y-axis

ncol When more than one protocol is plotted, ncol specifies the number of side by side plots in the plot grid. The default is 3 or 5 depending on the plot type

symbol An optional grouping variable. The values of symbol must correspond to the original data used in `fitEmax`.

symbolLabel Label given to symbol in plot legend.
symbolShape A character vector with named elements giving the shapes assigned to different levels of variable symbol. If a single shape is specified, it is replicated for all dose group means. See package ggplot2 for symbol mappings.

symbolColor A character vector with named elements giving the colors assigned to different levels of variable symbol. If a single color is specified, it is replicated for all dose group means. See package ggplot2 for color mappings.

symbolSize The size of the symbol for the dose group sample means. Set symbolSize=0 to suppress plotting the means.

bwidth Width of the cap on the predictive interval bars.

xlim Plot limits for the x-axis

xat The points at which tick-marks are to be drawn. Errors occur if the points are outside the range of xlim. By default (when NULL) tickmark locations are computed.

ylim Plot limits for the y-axis

logScale If TRUE, log scale is used for dose.

nggrid The number doses evaluated when plotting the curve.

plot Return plotting output without plotting.

Details
Model estimates, standard errors, and confidence bounds are computed using function SeEmax.
The function generates random numbers when predict=TRUE, so the random number generator/seed must be set before the function is called for exact reproducibility.

Value
A list with ggplot object, and a matrix with the confidence and prediction interval limits.

Author(s)
Neal Thomas

See Also
nls

Examples
example changes the random number seed

doselev<-c(0,5,25,50,100,350)
n<-c(78,81,81,81,77,80)

population parameters for simulation
e0<-2.465375
ed50<-67.481113
dtarget<-100
diftarget<-9.032497
emax<-solveEmax(diftarget,dtarget,log(ed50),1,e0)
sdy<-8.0
pop.parm<-c(log(ed50),emax,e0)
dose<-rep(doselev,n)
meanlev<-emaxfun(dose,pop.parm)
y<-rnorm(sum(n),meanlev,sdy)
testout<-fitEmax(y,dose,modType=4)
plot(testout)

Description

Plot an Emax model stored in an object created by function fitEmaxB.

Usage

S3 method for class 'fitEmaxB'
plot(
x, int=0, plotResid=FALSE, clev=0.9,
predict=TRUE, plotci=TRUE, plotDif=FALSE,
xlab=’Dose’,
ylab=ifelse(plotResid,’Residuals’,ifelse(plotDif,
’Difference With Placebo’,’Response’)),
ncol=NULL,
symbol=NULL,symbolLabel=’Group’,symbolShape=8,
symbolColor=’red’,symbolSize=4,
bwidth=NULL,
xlim=NULL,
xat=NULL,
ylim=NULL,
logScale=FALSE,
ngrid=200,
plot=TRUE, ...)

Arguments

x Output of fitEmaxB with class “fitEmaxB”.
int The index for the protocol (intercept) to use for the predictions and computation of dose group means/proportions. The default value is 0, which displays all protocols in a grid layout.
plotResid
If TRUE, a residual plot of the observed dose group means/proportions less the model-based MCMC median estimates of the means/proportions.

clev
Level for posterior probability intervals about the mean/proportion for each dose.

predict
When predict=TRUE, predictive intervals for sample dose group means/proportions are plotted. They are gray-shaded bars. If there is >1 symbol group mean/proportion for a protocol/dose combination, then the smaller sample size is used when computing the prediction interval.

plotci
When plotCI=TRUE, posterior intervals for the population dose group means/proportions are plotted. They are black bars.

plotDif
Plot difference between doses and placebo. It is assumed the lowest dose in each protocol is placebo.

xlab
Label for the x-axis

ylab
Label for the y-axis

ncol
When more than one protocol is plotted, ncol specifies the number of side by side plots in the plot grid. The default is 3 or 5 depending on the plot type

symbol
An optional grouping variable. The values of symbol must correspond to the original data used in fitEmax.

symbolLabel
Label given to symbol in plot legend.

symbolShape
A character vector with named elements giving the shapes assigned to different levels of variable symbol. If a single shape is specified, it is replicated for all dose group means/proportions. See package ggplot2 for symbol mappings.

symbolColor
A character vector with named elements giving the colors assigned to different levels of variable symbol. If a single color is specified, it is replicated for all dose group means/proportions. See package ggplot2 for color mappings.

symbolSize
The size of the symbol for the dose group sample means. Set symbolSize=0 to suppress plotting the means.

bwidth
Width of the cap on the predictive interval bars.

xlim
Plot limits for the x-axis

xat
The points at which tick-marks are to be drawn. Errors occur if the points are outside the range of xlim. By default (when NULL) tickmark locations are computed.

ylim
Plot limits for the y-axis

logScale
If TRUE, log scale is used for dose.

ngrid
The number doses evaluated when plotting the curve.

plot
Return plotting output without plotting.

... No additional plotting options are currently used.

Details
Model-based medians, standard deviations, and interval bounds for the dose groups means/proportions based on the MCMC parameters evaluated in the Emax function.
The function generates random numbers when predict=TRUE, so the random number generator/seed must be set before the function is called for exact reproducibility.

If baseline covaraites were included in the fit, then the mean of the predictions for the protocol given by int is plotted. This can be computationally intensive when the dosing grid is dense, the MCMC sample size is large, and the input sample size is large. Consider reducing ngrid in this situation. Note that the protocol must be specified, or the prediction defaults to patients from the first protocol.

Value

A list with ggplot object, and posterior and prediction interval limits.

Author(s)

Neal Thomas

See Also

fitEmaxB

Examples

Not run:

data("metaData")
exdat<-metaData[metaData$taid==1,]
prior<-emaxPrior.control(epmu=0,epsca=4,difTargetmu=0,difTargetsca=4,dTarget=20,
p50=(2+5)/2,
sigmalow=0.01,sigmaup=3)
mcmc<-mcmc.control(chains=3)
msSat<-sum((exdat$sampsize-1)*(exdat$sd)^2)/(sum(exdat$sampsize)-length(exdat$sampsize))
fitout<-fitEmaxB(exdat$rslt,exdat$dose,prior,modType=4,prot=exdat$protid,
count=exdat$sampsize,msSat=msSat,mcmc=mcmc)
plot(fitout)

End(Not run)
Usage

```r
## S3 method for class 'plotB'
plot( x,
    plotDif= FALSE, plotMed= FALSE,
    plotResid=FALSE, predict= TRUE,
    logScale=FALSE,
    xlim, xat=NULL,
    ylim, xlab,
    ylab, labac='Act Comp', shapeac=8, colac='red',
    symbolLabel='Group', symbolShape=8,
    symbolColor='red', symbolSize=4, ...)
```

Arguments

- `x`: `plotB` object output from function `plotB`.
- `plotDif`: Plot difference between doses and placebo. It is assumed the lowest dose is placebo. If `activeControl`, the difference is with the active control mean, and the active controls are not plotted.
- `plotMed`: If `TRUE`, model-based curves are medians rather than means.
- `plotResid`: If `TRUE`, a plot of the residuals formed from the dose group means minus the posterior dose group means.
- `predict`: When `predict=TRUE`, predictive intervals for sample dose group proportions are plotted. They are gray-shaded bars.
- `logScale`: If `TRUE`, log scale is used for dose.
- `xlim`: x-axis limits
- `xat`: The points at which tick-marks are to be drawn. Errors occur if the points are outside the range of `xlim`. By default (when NULL) tickmark locations are computed.
- `ylim`: y-axis limits
- `xlab`: x-axis label
- `ylab`: y-axis label
- `labac`: x-axis label for the active control group.
- `shapeac`: Shape of the symbol for the active control group.
- `colac`: Color of the symbol for the active control group.
- `symbolLabel`: Label given to symbol in plot legend.
- `symbolShape`: A character vector with names giving the shapes assigned to different levels of variable `symbol`. If a single shape is specified, it is replicated for all dose groups. See package `ggplot2` for symbol mappings.
- `symbolColor`: A character vector with names giving the colors assigned to different levels of variable `symbol`. If a single color is specified, it is replicated for all dose groups. See package `ggplot2` for color mappings.
symbolSize The size of the symbol for the dose group sample means. Set symbolSize=0 to
supress plotting.

... Additional parameters (not used)

Details

Produce additional plots from output of plotB without any re-computing. A plot is produced by
default on return from the function. When active control is specified, the plot is ’printed’ within
the function. If there is a symbol group variable, it must be specified when plotB is executed. The
symbol label, shape, color, and size must be re-specified in subsequent plot requests.

Value

ggplot object of the dose response curve, which will be plotted by default unless the output of the
plot is assigned. When an active control group is present, the value returned is an invisible list with
the ggplot for the dosing data, and a second ggplot for the ac data.

Note

PlotB can also be used with draws from a prior distribution to evaluate the prior dose response
curve.

Author(s)

Neal Thomas

See Also

plotB, plotD, plot.fitEmax

Examples

Not run:
data(“metaData”)
exdat<-metaData[metaData$taid==6 & metaData$poptype==1,]
prior<-emaxPrior.control(epmu=0, epsca=100, difTargetmu=0, difTargetsca=100, dTarget=80.0,
p50=3.75, sigmalow=0.01, sigmaup=20)
mcmc<-mcmc.control(chains=3)
msSat<-sum((exdat$sampsize-1)*(exdat$sd)^2)/(sum(exdat$sampsize)-length(exdat$sampsize))
fitout<-fitEmaxB(exdat$rslt, exdat$dose, prior, modType=4,
 count=exdat$sampsize, msSat=msSat, mcmc=mcmc)
parms<-coef(fitout)[,1:4] # use first intercept
outB<-plotB(exdat$rslt, exdat$dose, parms, sigma2=(sigma(fitout))^2,
ylab=“Change in EDD”)
plot(outB, plotDif=TRUE)

End(Not run)
plotB

Plot Bayes dose response curve and dose group means

Description

Plot a dose response curve fit by Bayes MCMC methods (with optional posterior interval bars). Also plot dose group means (with optional CI bars)

Usage

plotB(y, dose, parm, sigma2, count=rep(1,length(y)), dgrid=sort(unique(c(seq(0,max(dose),length=50), dose))), predict= TRUE,plotDif=FALSE,plotMed=FALSE, plotResid=FALSE,clev=0.9, binary=c('no','logit','probit','BinRes'),BinResLev, BinResDir=c('>','<'), activeControl=FALSE,ac,yac, countac=rep(1,length(yac)), labac='Act Comp',shapeac=8,colac='red', symbol,symbolLabel='Group',symbolShape=8, symbolColor='red',symbolSize=4, xlim,ylim,xat=NULL,xlab="Dose", ylab=ifelse(plotDif,"Diff with Comparator","Mean"), modelFun=emaxfun,makePlot=TRUE, ...)

Arguments

y Outcomes, which may be sample means (see counts). LSmeans from a saturated anacova model can be supplied, in which case it is assumed that the Bayesian dose response model also included the additive baseline covariates.

dose Doses corresponding to outcomes

parm Matrix of simulated parameter values (each row is a simulated parameter vector). The parm values must be constructed for use in the model function modFun. The default is a 4-parameter Emax model with parameters (log(ED50),lambda,Emax,E0). For a 3-parameter model, set lambda=1 for each simulated parameter vector.

sigma2 Simulated draws from the residual variance (assumed additive, homogeneous). The length of sigma2 must be the same as the number of rows of parm. Set sigma2 to all ones for binary data.

count Sample sizes for means-only summarized data.
The Bayes posterior summaries are evaluated and plotted on the dose response model.

If TRUE (default), the plotted intervals are predictive intervals for the dose group sample means.

Plot difference between doses and placebo. It is assumed the lowest dose is placebo. If activeControl, the difference is with the active control mean, and the active controls are not plotted.

If TRUE, model-based curves are medians rather than means.

If TRUE, a plot of the residuals formed from the dose group means minus the posterior dose group means.

Level for confidence and Bayes intervals

If binary is 'logit' or 'probit', \(y \) is assumed to be binary and the appropriate backtransformation is applied to the Emax model output. If binary is 'BinRes', the continuous variable \(y \) is converted to a binary responder variable using `BinResLev` and `BinResDir`. The continuous Emax model output is converted to binary estimation and prediction assuming normally distributed residuals.

A cut level for a responder variable formed from a continuous endpoint. Rates are computed from the (continuous outcome) model parameters assuming normally distributed residuals. The input \(y \) variable is converted to a responder variable.

If `BinResDir`='>', the responder variable is 1 when \(y \) is greater than the cut level, otherwise, it is 1 when \(y \) is less than the cut level.

When TRUE, active comparator data must be supplied. Each dose group (including PBO) are compared to the active comparator rather than PBO.

Simulations from the posterior distribution of the mean response on active comparator. The number of simulations must match those for the dose response model. For binary data, the simulated values must be transformed to the proportion scale. This differs from the simulated model parameters.

Outcomes for the active comparator group. The coding conventions for \(y \) are used.

Sample sizes for summarized data corresponding to count.

\(x \)-axis label for the active control group.

Shape of the symbol for the active control group.

Color of the symbol for the active control group.

An optional grouping variable for the dose group sample means.

Label given to symbol in plot legend.

A character vector with names giving the shapes assigned to different levels of variable `symbol`. If a single shape is specified, it is replicated for all dose groups. See package `ggplot2` for symbol mappings.

A character vector with names giving the colors assigned to different levels of variable `symbol`. If a single color is specified, it is replicated for all dose groups. See package `ggplot2` for color mappings.
symbolSize The size of the symbol for the dose group sample means. Set symbolSize=0 to suppress plotting.
xlim Plot limits for the x-axis
ylim Plot limits for the y-axis
xat The points at which tick-marks are to be drawn. Errors occur if the points are outside the range of xlim. By default (when NULL) tickmark locations are computed.
xlab x-axis label
ylab y-axis label
modelFun The mean model function. The first argument is a scalar dose, and the second argument is a matrix of parameter values. The rows of the matrix are random draws of parameter vectors for the model. The default function is the 4-parameter Emax function emaxfun.
makePlot If FALSE, create numerical output but no plot.
... Parameters passed to generic plot function (not used)

Details

A sample of parameters from the joint posterior distribution must be supplied (typically produced by BUGS). The Bayesian dose response curve is the Bayes posterior mean (or median) at each value on dgrid. The bar (interval) is the (clev/2,1-clev/2) Bayes posterior interval (which can differ from the Bayes HPD interval). The intervals are plotted only at the dose levels included in the study. Predictive intervals are formed by adding independent random draws from the sampling distributions of the dose group sample means to the population means.

The function generates random numbers when predict=TRUE, so the random number generator/seed must be set before the function is called for exact reproducibility.

Value

Returns an object of class plotB. Three inputs are saved for later plotting: doses in the original design, dgrid, and clev. The following matrices are saved:

pairwise The dose group means and their differences with placebo. If a baseline is supplied, the means are lsmeans adjusted to the mean baseline value.
modelABS Model-based posterior mean, median, posterior (clev/2,1-clev/2) intervals for the population means and sample means. One row per dose group
modelABSG Same as modelABS but computed on the input grid of doses.
modelDIF Same as modelABS but with differences from placebo.
modelDIFG Same as modelDIF but computed on the input grid of doses.

Note

PlotB can also be used with draws from a prior distribution to evaluate the prior dose response curve.
plotBdensity

Density plot displaying Bayes prior or posterior dose response

Description

Density plot over a grid of doses displaying the prior or posterior distribution for the mean dose response computed from simulated input model parameters.

Usage

plotBdensity(dgrid, parm, modelFun=emaxfun, qlevL=c(0.025, 0.05, 0.10, 0.25),...
Arguments

dgrid The Bayes prior or posterior summaries are evaluated and plotted on the dgrid
dosing values

parm Matrix of simulated parameter values (each row is a simulated parameter vec-
tor). The parm values must be constructed for use in the model function modFun. The
default is a 4-parameter Emax model with parameters (log(ED50),lambda,Emax,E0). For a 3-parameter model, set lambda=1 for each simulated parameter vector.

modelFun The mean model function. The first argument is a scalar dose, and the sec-
ond argument is a matrix of parameter values. The rows of the matrix are ran-
dom draws of parameter vectors for the model. The default function is the 4-
parameter Emax function emaxfun.

qlevL Intervals are formed with percentile boundaries at (qlevL,1-qlevL). qlevL must
be increasing between (0,0.5).

plotDif If TRUE, plot difference between doses and placebo.

logit Default is F. If T, inverse logit transform applied to Emax function output for
comparison to dose group sample proportions.

... Parameters passed to generic plot function

Details

A sample of parameters from the joint prior or posterior distribution must be supplied (typically produced by BUGS). A density plot with contours corresponding to the perentiles in qlevL created by function DRDensityPlot.

Value

A list containing two matrices with the number of rows equal to the number dose grid points, and columns corresponding to percentiles in qlevL:

qL Lower percentiles from qlevL
qH Upper percentiles 1-qlevL.

Author(s)

Neal Thomas

References

See Also

plot.plotB, plotD, plot.fitEmax, DRDensityPlot
Examples

```r
## Not run:
data("metaData")
exdat<-metaData[metaData$taid==6 & metaData$poptype==1,]

prior<-emaxPrior.control(epmu=0,epsca=10,difTargetmu=0,difTargetsca=10,dTarget=80.0,
p50=3.75,sigmalow=0.01,sigmaup=20)
mcmc<-mcmc.control(chains=3)

msSat<-sum((exdat$sampsize-1)*(exdat$sd)^2)/(sum(exdat$sampsize)-length(exdat$sampsize))
fitout<-fitEmaxB(exdat$rslt,exdat$dose,prior,modType=4,
                 count=exdat$sampsize,msSat=msSat,mcmc=mcmc)
parms<-coef(fitout)[,1:4] # use first intercept

dgrid<-seq(0,1,length=100)
pout<-plotBdensity(dgrid,parm=parms)
pout2<-plotBdensity(dgrid,parm=parms,plotDif=TRUE,
                   xlab="Var Dose",ylab="Var Dif with PBO")

## End(Not run)
```

plotD

Basic plot of dose group means

Description

Plot dose group means vs dose with options to connect points by lines, and include CI about each dose group mean based on within-group SDs

Usage

```r
plotD(y, dose, baseline, se = TRUE, line = TRUE,
      meansOnly=FALSE,sem=NULL,clev = 0.9,
      xlab='Dose',ylab='Response', logScale=FALSE)
```

Arguments

- **y**: Outcomes
- **dose**: Doses corresponding to outcomes
- **baseline**: If present, ANACOVA means are plotted, adjusted for baseline. Baseline is optional.
- **se**: If T, plot CI for each dose group.
- **line**: If T, dose group means are connected by a line
predict.emaxalt

Description

Estimated mean and standard error for specified doses computed from the output of a model fit by function `emaxalt`. Also returns mean difference with placebo and their standard errors.

Usage

```r
## S3 method for class 'emaxalt'
predict(object, dose, dref = 0, ...)```

### Value

Returns a list with the ggplot object and two vectors with the dose group means and their standard errors.

### Author(s)

Neal Thomas

### See Also

`plot.fitEmax`, `plotB`
### Arguments

- **object**: Output of `emaxalt`
- **dose**: Vector (can be a single value) of doses where dose response curve is to be evaluated.
- **dref**: A reference dose (0 by default) for contrasts, but other values can be specified. If specified, a single reference value must be given.
- **...**: Optional arguments are not used.

### Value

A list containing:

- **fitpred**: Vector with mean dose response estimate for each specified dose.
- **fitdif**: Corresponding differences with placebo.
- **sepred**: SEs for fitpred.
- **sedif**: SEs for fitdif.

### Author(s)

Neal Thomas

### See Also

`emaxalt`, `predict.emaxsimobj`, `predict.emaxsim`

### Examples

```r
Not run:
random number seed changed by this example

doselev<-c(0,5,25,50,100)
n<-c(78,81,81,81,77)
dose<-rep(doselev,n)

population parameters for simulation
e0<-2.465375
ed50<-67.481113
dtarget<-100
diftarget<-9.032497
emax<-solveEmax(diftarget,dtarget,log(ed50),1,e0)
sdy<-7.967897
pop.parm<-c(log(ed50),e0,emax)
meanresp<-emaxfun(dose,pop.parm)
y<-rnorm(sum(n),meanresp,sdy)
simout<-emaxalt(y,dose)
```
predict.emaxsim

```
predict(simout, c(75, 150))
simout2 <- emaxalt(y, dose, modType = 4)
predict(simout2, c(75, 150))
```

## End(Not run)

---

**predict.emaxsim**

Mean response and SE for specified doses for each replicate data set in an emaxsim object

**Description**

Estimated mean/proportion and standard error for each simulated data set in an emaxsim object. Also returns mean difference with placebo and their standard errors.

**Usage**

```r
S3 method for class 'emaxsim'
predict(object,
dose, dref=0, ...)
```

**Arguments**

- **object**: Output of `emaxsim`
- **dose**: Vector (can be a single value) of doses where dose response curve is to be evaluated.
- **dref**: A reference dose (0 by default) for contrasts, but other values can be specified. If specified, a single reference value must be given.
- **...**: Optional arguments are not used.

**Value**

A list containing:

- **fitpredv**: Matrix with mean dose response estimate for each simulated data set. Number of columns is the number of doses specified.
- **fitdifv**: Matrix with mean dose response estimate minus mean placebo response for each simulated data set. Number of columns is the number of doses specified.
- **sepredv**: Matrix of SEs for `fitpredv`.
- **sedifv**: Matrix of SEs for `fitdifv`.

**Author(s)**

Neal Thomas
See Also

`emaxsim`, `summary.emaxsim`, `plot.emaxsim`

Examples

```r
Not run:
random number seed changed by this example
nsim<-50
idmax<-5
doselev<-c(0,5,25,50,100)
n<-c(78,81,81,81,77)

population parameters for simulation
e0<-2.465375
ed50<-67.481113
dtarget<-100
diftarget<-9.032497
emax<-solveEmax(diftarget,dtarget,log(ed50),1,e0)
sdy<-7.967897
pop.parm<-c(log(ed50),emax,e0)
meanlev<-emaxfun(doselev,pop.parm)

###FixedMean is specialized constructor function for emaxsim
gen.parm<-FixedMean(n,doselev,meanlev,sdy)
D1 <- emaxsim(nsim,gen.parm)
predout<-predict(D1,c(75,150))

End(Not run)
```

**predict.emaxsimB**

*Mean response and SE for each replicate data set in an emaxsimB object*

**Description**

Return warning and explanation that only predicted values at doses included in the study are available. The code needed to obtain predicted values at other doses is indicated.

**Usage**

```
S3 method for class 'emaxsimB'
predict(object,
 dose, dref=0, ...)
```
predict.emaxsimB

Arguments

- **object**: Output of `emaxsim`
- **dose**: Vector (can be a single value) of doses where dose response curve is to be evaluated.
- **dref**: A reference dose (0 by default) for contrasts, but other values can be specified. If specified, a single reference value must be given.
- ... Optional arguments are not used.

Value

No output.

Author(s)

Neal Thomas

See Also

`emaxsimB`, `summary.emaxsimB`, `plot.emaxsimB`

Examples

```r
Not run:
nsim<-50
idmax<-5
doselev<-c(0,5,25,50,100)
n<-c(78,81,81,81,77)
Ndose<-length(doselev)

population parameters for simulation
e0<-2.465375
ed50<-67.481113
dtarget<-100
diftarget<-2.464592
eMAX<-solveEmax(diftarget,dtarget,log(ed50),1,e0)
sdy<-7.967897
pop<-c(log(ed50),emax,e0)
meanlev<-emaxfun(doselev,pop)

###FixedMean is specialized constructor function for emaxsim
gen<-FixedMean(n,doselev,meanlev,sdy)
prior<-emaxPrior.control(epmu=0,epsca=30,difTargetmu=0,
difTargetsca=30,dTarget=100,p50=50,sigmalo=0.1,
sigmau=30,parmDF=5)
mcmc<-mcmc.control(chains=1,warmup=500,iter=5000,seed=53453,
propInit=0.15,adapt_delta = 0.95)
```
D1 <- emaxsimB(nsim, gen, prior, modType=3, seed=12357, mcmc=mcmc, check=FALSE)
predict(D1, dose=20)
## End(Not run)

### predict.emaxsimBobj

Mean response estimates (posterior means) and SE (posterior SD) for specified doses for a simulated emaxsimBobj object

**Description**

Estimated mean and standard error for specified doses (posterior means and SD) computed from the output of a simulated data set created by function emaxsimB. Also returns mean difference with placebo and their standard errors.

**Usage**

```r
S3 method for class 'emaxsimBobj'
predict(object, dose, dref=0, clev=0.9, ...)
```

**Arguments**

- `object`: Output of the extract function [] applied to an object createad by `emaxsimB`.
- `dose`: Vector (can be a single value) of doses where dose response curve is to be evaluated.
- `dref`: A reference dose (0 by default) for contrasts, but other values can be specified. If specified, a single reference value must be given.
- `clev`: Specified probability of the posterior interval
- `...`: Optional arguments are not used.

**Value**

A list containing:

- `pred`: Vector with mean dose response estimates for each specified dose.
- `fitdif`: Corresponding differences with placebo.
- `se`: SEs (posterior SD) for `pred`.
- `sedif`: SEs (posterior SD) for `fitdif`.
- `lb`, `ub`, `lbdif`, `ubdif`: Bounds of `clev` posterior intervals.
predict.emaxsimobj

Author(s)
Neal Thomas

See Also
eamaxsim, summary.emaxsim, predict.emaxsim

Examples

```r
Not run:
emaxsimB changes the random number seed
nsim<50
doselev<-c(0.5,25,50,100)
n<-c(78,81,81,81,77)
Ndose<-length(doselev)

population parameters for simulation
e0<-2.465375
ed50<-67.481113
dtarget<-100
diftarget<-2.464592
emax<-solveEmax(diftarget,dtarget,log(ed50),1,e0)
sdy<-7.967897
pop<-c(log(ed50),emax,e0)
meanlev<-emaxfun(doselev,pop)

###FixedMean is specialized constructor function for emaxsim
gen<-FixedMean(n,doselev,meanlev,sdy)
prior<-emaxPrior.control(epmu=0,epsca=30,difTargetmu=0,
difTargetsca=30,dTarget=100,p50=50,sigmalow=0.1,
sigmaup=30,parmDF=5)
mcmc<-mcmc.control(chains=1,warmup=500,iter=50000,seed=53453,propInit=0.15,adapt_delta = 0.95)
D1 <- emaxsimB(nsim,gen, prior, modType=3,mcmc=mcmc,check=FALSE)
predict(D1[1],dose=c(75,125))

End(Not run)
```

predict.emaxsimobj  Mean response and SE for specified doses for a simulated emaxsimobj

Description
Estimated mean/proportion and standard error for specified doses computed from the output of a simulated data set created by function emaxsim. Also returns mean difference with placebo and their standard errors.
Usage

```r
S3 method for class 'emaxsimobj'
predict(object,
 dose, dref = 0,
 ...)
```

Arguments

- `object`: Output of the extract function `[]` applied to an object created by `emaxsim`.
- `dose`: Vector (can be a single value) of doses where dose response curve is to be evaluated.
- `dref`: A reference dose (0 by default) for contrasts, but other values can be specified. If specified, a single reference value must be given.
- `...`: Optional arguments are not used.

Value

A list containing:

- `fitpred`: Vector with mean dose response estimate for each specified dose.
- `fitdif`: Corresponding differences with placebo.
- `sepred`: SEs for `fitpred`.
- `sedif`: SEs for `fitdif`.

Author(s)

Neal Thomas

See Also

`emaxsim`, `summary.emaxsim`, `predict.emaxsim`

Examples

```r
Not run:
emaxsim changes the random number seed
sim <- 50
idmax <- 5
doselev <- c(0, 5, 25, 50, 100)
n <- c(78, 81, 81, 81, 77)

population parameters for simulation
e0 <- -2.465375
ed50 <- 67.481113
dtarget <- 100
diftarget <- 9.032497
emax <- solveEmax(diftarget, dtarget, log(ed50), 1, e0)
```
sdy<-7.967897
pop.parm<-c(log(ed50),emax,e0)
meanlev<-emaxfun(doselev,pop.parm)

###FixedMean is specialized constructor function for emaxsim
gen.parm<-FixedMean(n,doselev,meanlev,sdy)
D1 <- emaxsim(nsim,gen.parm)
d10<-D1[10]
predict(d10,c(75,150))

## End(Not run)

---

**predict.fitEmax**

*Estimated mean/proportion and confidence intervals derived from the maximum likelihood fit of a 3- or 4- parameter Emax model.*

**Description**

The estimated means from an Emax model is computed along with confidence bounds. The results are computed for a vector of input dose levels. For binary outcomes, the results are computed on the logit scale and then back-transformed.

**Usage**

```r
S3 method for class 'fitEmax'
predict(object,dosevec,clev=0.9,
 int=1,dref=0, xvec=NULL, ...)
```

**Arguments**

- **object**: Output of `fitEmax` with class “fitEmax”.
- **dosevec**: Vector of doses to be evaluated.
- **clev**: Confidence level for intervals about the estimated mean/proportion at each dosevec.
- **int**: The index for the protocol (intercept) to use for the predictions.
- **dref**: Differences in response between doselev and dref are computed.
- **xvec**: The vector of centered baseline values for the prediction model when xbase was specified in the model fit. Centering must be done using the protocol-specific means consistent with int. See details for the default calculations when xvec is not specified.
- **...**: No additional parameters will be utilized.
Details
Model estimates, standard errors, and confidence bounds are computed with the function `SeEmax`. If baseline covariates were included in the fit and `xvec` is not specified, then the predicted value is the mean of the predictions for all patients in the specified protocol. Note that the protocol must be specified, or the prediction defaults to patients from the first protocol. Note that for binary data, the distinction between the mean of the predicted values and the predicted value as the mean of the covariates can be important.

Value
A list with estimated dose group means/proportions, lower bound, upper bound, SE, and corresponding values for differences with the reference dose. One value for each dose in `dosevec`.

Author(s)
Neal Thomas

See Also
`nls`

Examples

```r
Not run:
this example changes the random number seed
doselev<-c(0,5,25,50,100,350)
n<-c(78,81,81,81,77,80)

population parameters for simulation
e0<-2.465375
ed50<-67.481113
dtarget<-100
diftarget<-9.032497
emax<-solveEmax(diftarget,dtarget,log(ed50),1,e0)
sdy<8.0
pop.parm<-c(log(ed50),emax,e0)
dose<-rep(doselev,n)
meanlev<-emaxfun(dose,pop.parm)
y<-rnorm(sum(n),meanlev,sdy)
testout<-fitEmax(y,dose,modType=4)
predout<-predict(testout,dosevec=c(20,80),int=1)

End(Not run)
```
predict.fitEmaxB

Estimated mean and posterior intervals derived from a Bayesian hyperbolic or sigmoidal Emax model.

Description

The mean/proportion response for different doses estimated from a Bayesian Emax model is computed along with corresponding posterior intervals. The results are computed for a vector of input dose levels. The estimates are posterior means or medians of the MCMC generated means/proportions. For binary outcomes, the estimated response rates are computed on the logit scale and then back-transformed before forming the estimates and posterior intervals.

Usage

## S3 method for class 'fitEmaxB'
predict(object, dosevec, clev = 0.9, int = 1, dref = 0, xvec=NULL, ...)

Arguments

- **object**: Output of `fitEmax` with class "fitEmaxB".
- **dosevec**: Vector of doses to be evaluated.
- **clev**: Level for the posterior intervals about the mean/proportion at each dosevec.
- **int**: The index for the protocol (intercept) to use for the predictions.
- **dref**: Differences in response between doselev and dref are computed.
- **xvec**: The vector of centered baseline values for the prediction model when `xbase` was specified in the model fit. Centering must be done using the protocol-specific means consistent with `int`. See details for the default calculations when `xvec` is not specified.
- **...**: No additional parameters will be utilized.

Details

Results computed from simple tabulations of the MCMC parameters evaluated in the Emax function.

If baseline covariates were included in the fit and `xvec` is not specified, then the predicted value is the mean of the predictions for all patients in the specified protocol. Note that the protocol must be specified, or the prediction defaults to patients from the first protocol. Note that for binary data, the distinction between the mean of the predicted values and the predicted value at the mean of the covariates can be important.

Value

A list with estimated mean/proportion (pred, predMed), lower bound, upper bound, posterior SD, and corresponding values for differences with the reference dose. One value for each dose in `dosevec`. The MCMC response means (proportions for binary data) are in `simResp`, and the residual SD for continuous data are in `sigsim`.
print.emaxsim

Print simulation output from emaxsim

Description

Prints key summary variables of Emax estimation performance for each simulation. Can be used to identify simulated data sets yielding problems with common estimation methods.

Usage

```r
S3 method for class 'emaxsim'
print(x,
 nprint = min(length(x$fitType), 20),
 id = x$idmax,
 digits = 3, ...)
```

Arguments

- **x** Output of `emaxsim`
- **nprint** Number of simulations to print. If a vector of length 2, `nprint` is the range of simulations to print.
- **id** Output includes the stdBias for the dose with index `id` vs placebo
digits Number of decimal digits to print for Z and p-values

Note
Printed output returned as invisible matrix.

Note
The stdBias printed is the difference between the estimated dose response at the dose with index id and its population value. The difference is divided by the SE of the estimator computed using the delta method.

Author(s)
Neal Thomas

See Also
emaxsim, summary.emaxsim, plot.emaxsim

Examples

## Not run:
## emaxsim changes the random number seed
nsim<-50
idmax<-5
doselev<-c(0,5,25,50,100)
n<-c(78,81,81,81,77)

### population parameters for simulation
e0<-2.465375
ed50<-67.481113
dtarget<-100
diftarget<-9.032497
emax<-solveEmax(diftarget,dtarget,log(ed50),1,e0)
sdy<-7.967897
pop.parm<-c(log(ed50),emax,e0)
meanlev<-emaxfun(doselev,pop.parm)

###FixedMean is specialized constructor function for emaxsim
gen.parm<-FixedMean(n,doselev,meanlev,sdy)
D1 <- emaxsim(nsim,gen.parm)
print(D1,c(31,50),digits=2,id=4)
print(D1,c(1,20))
## implicitly calls print with default parameter settings

## End(Not run)

---

### Description

Prints key summary variables of Emax estimation performance for each simulation. Can be used to identify simulated data sets yielding unusual estimates.

### Usage

```r
S3 method for class 'emaxsimB'
print(x,
 nprint = min(nsim, 20),
 id = x$idmax,
 digits = 3, ...)
```

### Arguments

- `x` Output of `emaxsimB`
- `nprint` Number of simulations to print. If a vector of length 2, `nprint` is the range of simulations to print.
- `id` Output includes the stdBias for the dose with index `id` vs placebo
- `digits` Number of decimal digits to print for Z and p-values
- `...` Other print parameters (none currently implemented)

### Value

Printed output returned as invisible matrix.

### Note

The stdBias printed is the difference between the posterior mean of the dose response at the dose with index `id` and its population value. The difference is divided by the SE (posterior SD).

### Author(s)

Neal Thomas

### See Also

`emaxsimB`, `summary.emaxsimB`, `plot.emaxsimB`
print.emaxsimBobj

### Examples

```r
Not run:
emaxsimB changes the random number seed
sim<-50
idmax<-5
doselev<-c(0, 5, 25, 50, 100)
n<-c(78, 81, 81, 81, 77)
Ndose<-length(doselev)

population parameters for simulation
e0<-2.465375
ed50<-67.481113
dtarget<-100
diftarget<-2.464592
emax<-solveEmax(diftarget, dtarget, log(ed50), 1, e0)
sdy<-7.967897
pop<-c(log(ed50), emax, e0)
meanlev<-emaxfun(doselev, pop)

FixedMean is specialized constructor function for emaxsim
gen<-FixedMean(n, doselev, meanlev, sdy)
prior<-emaxPrior.control(epmu=0, epsca=30, difTargetmu=0,
difTargetsca=30, dtarget=100, p50=50, sigmalow=0.1,
sigmaup=30, parmDF=5)
mcmc<-mcmc.control(chains=1, warmup=500, iter=5000, seed=53453, propInit=0.15, adapt_delta = 0.95)
D1 <- emaxsimB(nsim, gen, prior, modType=3, mcmc=mcmc, check=FALSE)
print(D1)

End(Not run)
```

print.emaxsimBobj

Print a summary of the fitted Emax model

### Description

Print a summary of the fitted Emax model. Printed output returned as invisible matrix.

### Usage

```r
S3 method for class 'emaxsimBobj'
print(x, nprint=min(length(x$y),20), ...)
```
print.emaxsimobj

Arguments

- **x**
  - Object output by the extractor function `[]` for `emaxsimB`

- **nprint**
  - Number of observations to print. If a vector of length 2, `nprint` is the range of data to print.

- **...**
  - No options implemented.

Description

Print a data set that has been extracted from `emaxsim` output

Usage

```r
S3 method for class 'emaxsimobj'
print(x, nprint = min(length(x$y), 20), ...)
```

Arguments

- **x**
  - Extracted simulation object

- **nprint**
  - Number of observations to print. If a vector of length 2, `nprint` is the range of data to print.

- **...**
  - No other parameters currently implemented

Value

Printed output returned as invisible matrix.

Author(s)

Neal Thomas

See Also

`emaxsim`, `plot.emaxsimobj`, `summary.emaxsimobj`

Examples

```r
Not run:
save.seed<-.Random.seed
set.seed(12357)
nsim<-50
idmax<-5
```
doselev<-c(0, 5, 25, 50, 100)
n<-c(78, 81, 81, 81, 77)

### population parameters for simulation
e0<-2.465375
ed50<-67.481113
dtarget<-100
diftarget<-9.032497
emax<-solveEmax(diftarget, dtarget, log(ed50), 1, e0)
sdy<-7.967897
pop<-c(log(ed50), emax, e0)
meanlev<-emaxfun(doselev, pop)

### FixedMean is specialized constructor function for emaxsim
gen.parm<--FixedMean(n, doselev, meanlev, sdy)
D1 <- emaxsim(nsim, gen.parm)
e49<-D1[49]

print(e49,c(101, 200))

## End(Not run)

---

### print.fitEmax

**Print a summary of the fitted Emax model**

**Description**

Print a summary of the fitted Emax model

**Usage**

```
S3 method for class 'fitEmax'
print(x, ...)
```

**Arguments**

- **x**  
  Object output by `fitEmax`
- **...**  
  No options implemented.
print.fitEmaxB

*Print a summary of the fitted Bayesian Emax model*

**Description**

Print a summary of the fitted Bayesian Emax model

**Usage**

```r
S3 method for class 'fitEmaxB'
print(x, ...)
```

**Arguments**

- `x` Object output by `fitEmaxB`
- `...` No options implemented.

printemaxPrior

*Print protocol or sap text describing the prior distribution for the model parameters of the input emaxPrior object*

**Description**

Print templated description of the prior distribution for the Emax model parameters. The level of detail is adjusted for protocol/sap. By default, the prior object is printed as a list without documentation.

**Usage**

```r
S3 method for class 'emaxPrior'
print(x, doc=FALSE, diffuse=NULL, file="", modType=c('4','3'), docType=c('sap','protocol'), ...)
```

**Arguments**

- `x` Object created by function `emaxPrior.control` 
- `doc` When TRUE, documentation for the prior distribution is returned. Default is FALSE and the prior input is returned as a list for default printing 
- `diffuse` When TRUE, the scale parameters are described as creating diffuse prior distributions for the corresponding efficacy parameters. When FALSE, sections are identified where the user must add justification for the informative prior distributions. An error message is printed if doc=TRUE and diffuse is not specified
- `file` File for ascii output
modType: Character value (‘4’ or ‘3’) that determines whether the 4-parameter sigmoidal Emax parameter is included, or the 3-parameter hyperbolic model is assumed with the Hill (slope) parameter set to 1.

docType: When ‘protocol’, the prior description is less detailed.

... No other inputs are supported.

Details

If the object is entered at the command line, the implied print function is called without the required diffuse flag. The object will be printed as a list. The list output will be followed by error/warning messages noting the absence of the required input.

Value

Ascii text or text file that can be edited for inclusion in a protocol/sap.

Author(s)

Neal Thomas.

See Also

emaxPrior.control

Examples

prior<-emaxPrior.control(epmu=0,epsca=4,difTargetmu=0,difTargetsca=4,dTarget=20,
p50=(2+5)/2,
sigma=0.01,sigmaup=3)

print(prior,doc=TRUE,diffuse=TRUE)
prior.control

Usage

prior.control(epmu = NULL, epsd = NULL, emaxmu = NULL,
            emaxsd = NULL, p50 = NULL,
            sigmalow = NULL, sigmaup = NULL,
            led50mu = 0.79, led50sca = 0.6, edDF = 3,
            lama = 3.03, lamb = 18.15, lamsca = 6,
            basemu= NULL, basevar= NULL,
            binary = FALSE)

Arguments

epmu               Mean for E0 in a normal prior distribution. Logistic scale for binary data.
epsd               SD for E0 in a normal prior distribution. Logistic scale for binary data.
emaxmu             Mean for Emax in a normal prior distribution. Logistic scale for binary data.
emaxsd             SD for Emax in a normal prior distribution. Logistic scale for binary data.
p50                Projected ED50. See reference for its use in creating the prior distribution for the ED50.
sigmalow           Lower bound for a uniform prior distribution for the residual SD (continuous data).
sigmaup            Upper bound for a uniform prior distribution for the residual SD (continuous data).
led50mu            Mean of log-t prior distribution for the ED50 before final scaling. See reference for its interpretation in the prior distribution for the ED50.
led50sca           Scale (analogous to SD) of the log-t prior distribution for the ED50.
edDF               The degrees of freedom of the log-t prior distribution for the ED50.
lama               Parameter in the re-scaled beta distribution for Hill slope parameter in the sigmoidal Emax model. See reference for its use and empirical basis.
lamb               Parameter in the re-scaled beta distribution for Hill slope parameter in the sigmoidal Emax model.
lamsca             The beta prior distribution for the Hill parameter is re-scaled to have support on (0, lamsca).
basemu             A vector of prior means for the covariate regression parameters.
basevar            The prior variance-covariance matrix for the covariate regression parameters. The covariate regression parameters are apriori independent of the other dose response model parameters.
binary             Set to TRUE for binary data applications. Used to check for consistency in usage.

Details

The prior distributions are based on two meta-analyses of dose response described in the references. Each parameter is independent in the prior distribution. The E0 and Emax parameters have normal prior distributions. For binary data, these parameters are computed on the logistic scale. The predicted ED50 must be specified as 'P50'. The prior distribution of the log(ED50) has a t-distribution centered at log(P50), with scale, degrees of freedom, and offset to the P50, defaulting to values...
given in the references (these can be changed, but they are difficult to interpret outside the context of the meta-analyses). If modType=4, the prior distribution for the Hill parameter is a beta distribution scaled to (0,lamsca). The default degrees of freedom were obtained from the meta-analyses. For continuous data, the prior distribution for the residual SD is uniform on a user-specified scale.

Value

List of prior parameter values for use in fitEmaxB.

Author(s)

Neal Thomas

References


See Also

fitEmaxB

---

**RandEmax**

*Random data constructor function for emaxsim creating random parameters for an Emax model for continuous or binary data.*

Description

Creates a list object that contains inputs and a function to create simulated data sets for emaxsim. Data sets are created by generating random parameters from beta or log-normal distributions for a 3/4 parameter Emax model. For binary data, the Emax model is on the logit scale and then back-transformed. RandEmax is deprecated. See randomEmax.

Usage

```r
RandEmax(n, doselev, parmEmax, parmE0, p50, parmED50=c(3,0.79,0.6), parmLambda=c(3.03,18.15,0,6), resSD, dfSD=Inf, binary=FALSE)
```
Arguments

- **n**: Sample size for each dose group.
- **doselev**: Dose levels (including 0 for placebo) included in the study corresponding to `n`. Must be in increasing order.
- **parmEmax**: Vector with mean and standard deviation for a random normal Emax.
- **parmE0**: Vector with mean and standard deviation for a random normal intercept.
- **p50**: The predicted ED50.
- **parmED50**: The log(ED50) is generated from a t-distribution with df=parmED50[1], mean=log(p50)+parmED50[2], and scale=parmED50[3]. The default values are taken from the reference below.
- **parmLambda**: For a beta distributed sigmoid lambda, a vector with (df1,df2,lower bound, upper bound). For a hyperbolic model, lambda=1.
- **resSD**: Standard deviation for residuals within each dose (normal data only).
- **dfSD**: If a finite value is specified, the within-dose group SD is randomly generated from resSD times sqrt(dfSD/chisquare(dfSD))), which is the form of a posterior distribution for a SD based on an existing sample.
- **binary**: When TRUE, 0/1 data are generated from the Emax model, which is computed on the logit scale and then backtransformed to yield proportions.

Details

All parameters are independent. Normal data are generated from the dose response curves with homogeneous-variance normal residuals. Binary data are 0/1 generated from Bernoulli distributions with proportions computed by transforming the Emax model output from the logit to proportion scale. Default values are based on recommendations in Thomas, N., Sweeney, K., and Somayaji, V. (2014). Meta-analysis of clinical dose response in a large drug development portfolio. <doi:10.1080/19466315.2014.924876>

Value

A list of length 2. The first element is itself a list named `genP` that contains named elements `n`, `resSD`, `dfSD`, `doselev`, `dose`, `binary` and the elements `parmE0`, `p50`, `parmED50`, `parmEmax`, and `parmLambda` which are specific to `RandEmax`. The second element is a function named `genFun` that takes `genP` as input and returns a list with named elements `meanlev`, `parm`, `resSD`, `y`.

Author(s)

Neal Thomas

See Also

- `emaxsim`, `FixedMean`

Examples

```r
simParm<-RandEmax(n=c(99,95,94,98),doselev=c(0,5,10,25,50,150),
parmE0=c(-2.6,2.5),p50=25,parmEmax=c(-1.25,2),resSD=3.88)
```
**randomEmax**  
*Random data constructor function for emaxsim(B) creating random parameters for an Emax model for continuous or binary data.*

---

**Description**

Creates a list object that contains inputs and a function to create simulated data sets for emaxsim(B). Data sets are created by generating random parameters from an emaxPrior.control() object for a 3/4 parameter Emax model. For binary data, the Emax model is on the logit scale and then back-transformed.

**Usage**

```r
randomEmax(x, n, doselev, modType = c('4', '3'))
```

**Arguments**

- **x**: Object of type emaxPrior created by function emaxPrior.control, that specifies a prior distribution for the Emax model parameters.
- **n**: Sample size for each dose group.
- **doselev**: Dose levels (including 0 for placebo) included in the study corresponding to n. Must be in increasing order.
- **modType**: Specifies a 4-parameter sigmoidal Emax model, or a 3-parameter hyperbolic Emax model

**Details**

Normal data are generated from the dose response curves with homogeneous-variance normal residuals. Binary data are 0/1 generated from Bernoulli distributions with proportions computed by transforming the Emax model output from the logit to proportion scale. Default values are based on recommendations in the references.

**Value**

A list of length 2. The first element is itself a list named genP that contains named elements n, doselev, dose, modType and the emaxPrior object x. The second element is a function named genFun that takes genP as input and returns a list with named elements meanlev, parm, resSD, y.

**Author(s)**

Neal Thomas
References


See Also

emaxsimB, emaxsim, FixedMean

Examples

prior<-emaxPrior.control(epmu=0,epsca=4,
difTargetmu=0,difTargetsca=4,dTarget=20,
p50=(2+5)/2,
sigmalow=0.01,sigmaup=3)

simParm<-randomEmax(x=prior,n=c(99,95,98,94,98,98),
  doselev=c(0,5,10,25,50,150),modType="4")

# D1 <- emaxsimB(nsim=10,simParm,prior,nproc=1)

runSimulations

Shiny app for function emaxsim(B)

Description

Shiny app for function emaxsim(B)

Usage

runSimulations()

Note

The code section of the shiny app provides the code required for batch execution of the current shiny results.

The 'Analysis' section of the shiny app must be visited before an example can be run.

For Bayesian output, the clinDR package function compileStanModels() must be executed once before using the shiny app or any of the package functions utilizing Bayes methods.
Author(s)
Neal Thomas, Mike K. Smith

See Also
emaxsimB

Examples
if (interactive()) {
  runSimulations()
}

SeEmax

Asymptotic SE for dose response estimates from a 3- or 4-parameter Emax model

Description
Compute the asymptotic SE for dose response estimates based on the asymptotic variance-covariance matrix from the fit of a 3- or 4-parameter Emax model.

Usage
SeEmax(fit, doselev, modType, dref=0, nbase=0, x=NULL, binary=FALSE, clev=0.9)

Arguments
fit Output of nls fit to a 3- or 4-parameter Emax model. The order of the parameters in the fit must be (log(ed50),emax,e0) or (log(ed50),lambda,emax,e0). Alternatively, fit can be a list with the first element the coefficient vector, and the second element the variance-covariance matrix. List input can be used with multiple protocols and baseline covariates (see details).

doselev SEs are evaluated at vector of doses

modType modType=3,4 for a 3 or 4 parameter model.

dref A reference dose (0 by default) for contrasts, but other values can be specified. If specified, a single reference value must be given.

nbase The number of baseline predictors included in the model.

x The model is evaluated at baseline covariate values, x. If x is a matrix, then each row is a vector of baseline predictors, and the results are for the dose response averaged over all of the predictors in x.

binary Emax model on logistic scale, then backtransformed.

clev Confidence level for intervals.
Details

The Emax models supported by SeEmax should now be fit using \texttt{fitEmax} and \texttt{predict.fitEmax}. SeEmax remains available primarily for backward compatibility.

SeEmax can be used with models that allow different placebo response for multiple protocols by selecting the intercept for a specific protocol. Coefficients for baseline covariates can also be included following the intercept. The variance-covariance matrix from the full model must be subsetted to match the included coefficients (i.e., the rows and columns corresponding to the omitted intercepts must be removed). List input must be used for the more general models.

Value

Returns a list:

- \texttt{doselev} Doses to evaluate
- \texttt{dref} Differences in response between doselev and dref are computed.
- \texttt{fitpred} Estimated dose response at doselev
- \texttt{sepred} SE for estimated dose responses
- \texttt{fitdif} Estimated response at doselev minus estimated response at placebo
- \texttt{sedif} SE for fitdif estimated differences
- \texttt{fitref} Estimated dose response at the reference dose.
- \texttt{seref} SE for the estimated dose response at the reference dose
- \texttt{covref} The covariance between each estimated response and the estimated response at the reference dose. These covariances can be used to compute asymptotic variances of differences after back-transformation (e.g., for logistic regression with binary data).

Author(s)

Neal Thomas

References


See Also

\texttt{fitEmax}

Examples

```r
Not run:
this example changes the random number seed
doselev<-c(0,5,25,50,100,250)
n<-c(78,81,81,81,77,80)
dose<-rep(doselev,n)
```
### population parameters for simulation

e0 <- 2.465375
ed50 <- 67.481113
led50 <- log(ed50)
lambda = 1.8

dtarget <- 100
diftarget <- -9.032497
emax <- solveEmax(diftarget, dtarget, log(ed50), lambda, e0)

sdy <- 7.967897
pop <- c(led50, lambda, emax, e0)
meanresp <- emaxfun(dose, pop)
y <- rnorm(sum(n), meanresp, sdy)
nls.fit <- nls(y ~ e0 + (emax * dose^lambda)/(dose^lambda + exp(led50*lambda)),
start = pop, control = nls.control(maxiter = 100), trace=TRUE, na.action=na.omit)

SeEmax(nls.fit, doselev = c(60, 120), modType = 4)
SeEmax(list(coef(nls.fit), vcov(nls.fit)), c(60, 120), modType = 4)

## End(Not run)

---

selEstan

**Select a pre-compiled rstan Emax model**

**Description**

Emax models for use in fitEmaxB and emaxsimB which have been pre-compiled are loaded for use outside of the fitting functions. This is most useful for repeated simulations in which the loading of the compiled models from a disk file can be performed once. fitEmaxB will load the model automatically for single execution, so the model does not need to be pre-loaded.

**Usage**

selEstan(Emod = c("basemodel.rds", "mrmmodel.rds"))

**Arguments**

- **Emod**

  Two parameterizations of the emax function are currently supported. ‘basemodel’ uses the maximal effect ‘emax’ parameter. ‘mrmmodel’ uses the effect of the drug at a high dose specified by the user versus placebo. The ‘emax’ effect model is deprecated and will be eliminated.
showStanModels

Value
An Emax 'stanmodel'.

Author(s)
Neal Thomas

See Also
fitEmaxB, emaxsimB

Examples

## Not run:
estan<-selEstan()
## End(Not run)

showStanModels Display STAN model code.

Description
Display the STAN Bayesian model code for fitting Emax models

Usage
showStanModels(emod=c('basemodel.stan','mrmodel.stan'))

Arguments
emod Two parameterizations of the emax function are currently supported. 'baseline' uses the maximal effect 'emax' parameter. 'mrmodel' uses the effect of the drug at a high dose specified by the user versus placebo. The 'emax' effect model is deprecated and will be eliminated.

Author(s)
Neal Thomas

See Also
fitEmaxB, emaxsimB

Examples

## Not run:
showStanModels()
## End(Not run)
sigmaEmax

**Description**

Extract Emax model residual SD estimates.

**Usage**

```r
S3 method for class 'fitEmax'
sigma(object, ...)
S3 method for class 'fitEmaxB'
sigma(object, ...)
S3 method for class 'emaxsim'
sigma(object, ...)
S3 method for class 'emaxsimB'
sigma(object, ...)
```

**Arguments**

- `object`: Output of Emax fitting and simulation functions
- `...`: None additional inputs supported

**Value**

MLE estimate of the residual SD from `fitEmax`. Vector of MLE estimates of the residual SD for each `emaxsim` simulation. Vector of MCMC generated residual SD for `fitEmaxB`. Vector of posterior median estimates of the residual SD for each `emaxsimB` simulation.

**Author(s)**

Neal Thomas

**See Also**

`coef`, `fitEmax`, `fitEmaxB`, `emaxsim`, `emaxsimB`

**Examples**

```r
doselev<-c(0,5,25,50,100,350)
n<-c(78,81,81,81,77,80)

population parameters for simulation
e0<-2.465375
ed50<-67.481113
dtarget<-100
diftarget<-9.032497
```
emax<-solveEmax(diftarget,dtarget,log(ed50),1,e0)

sdy<-8.0
pop<-c(log(ed50),emax,e0)
dose<-rep(doselev,n)
meanlev<-emaxfun(dose,pop)

y<-rnorm(sum(n),meanlev,sdy)
testout<-fitEmax(y,dose,modType=4)
sigma(testout)

startEmax

Compute starting parameter values for the 3- or 4- Emax model.

Description

Compute starting parameter values for iterative procedures for estimating parameters of the 3- or 4-parameter Emax model

Usage

startEmax(y,
  dose,
  baseline,
  count=rep(1,length(y)),
  modType=3,
  binary=FALSE,
  lbED50=doselev[2]/10,
  ubED50=max(doselev),
  lbLambda=0.5,
  ubLambda=5)

Arguments

y Outcome (response) variable for the Emax modeling.

binary The default is continuous (binary=FALSE). When (binary=TRUE), y must be 0/1 and starting values are returned for an Emax model on the logit scale.

dose Dose variable corresponding to each outcome value.

baseline Optional baseline covariate(s) of same length as y. When baseline is specified, starting values are created from anacova adjusted dose group means.

count Counts for the number of patients with each dose/y value. Default is 1 (ungrouped data).

modType modType=3 (default) for the 3-parameter Emax model. modType=4 for the 4-parameter Emax model.

lbED50 If the starting ED50 is below lbED50, it is set to lbED50.
If the starting ED50 is above ubED50, it is set to ubED50.
If the starting lambda is below lbLambda, it is set to lbLambda.
If the starting lambda is above ubLambda, it is set to ubLambda.

Value

Returns a vector with named elements for the starting values for a 3 or 4 parameter Emax model. The order is log(ED50), (lambda, 4 parm), emax, and e0. If baseline is specified, a 'beta' starting parameter is also returned at the end of the vector.

Note

The method is modified from functions created by J. Rogers and start functions supplied with R (SSfp1). The ED50 (and lambda) are computed using the logit-linear relationship between the proportion of the mean response out of the max response and the log(dose). The method assumes placebo data are present, but it will return a starting value even if it is not present. A minimum of four dose levels is required for 4-parameter starting values.

Author(s)

Neal Thomas

See Also

nls, emaxalt

Examples

data("metaData")
exdat<-metaData[metaData$taid==6 & metaData$poptype==1,]
startEmax(exdat$rslt,exdat$dose)

summary.emaxsim

Summary of output of emaxsim

Description

Detailed summary of repeated sampling properties of Emax estimation and comparison with simple pairwise comparisons.

Usage

# S3 method for class 'emaxsim'
summary(object, testalpha = 0.05, clev = 0.9,
   seSim = FALSE, ...)

---

summary.emaxsim  Summary of output of emaxsim
Arguments

object  Output of `emaxsim`
testalpha  Alpha level for a one-sided MCP-MOD trend test
clev  Nominal confidence level for reported CIs
seSim  If TRUE, then simulation standard errors are reported in parentheses. These should be distinguished from standard errors for estimators in the simulation.
...  Other unspecified parameters (none currently utilized)

Details

For pairwise comparisons, the 'most favorable pairwise comparison' means the dose with the best difference versus placebo is compared to the population mean response for the selected dose, thus the target value for coverage, bias, and RMSE changes depending on the selected dose.

Value

The function produces annotated output summarizing the properties of the estimation procedures. The summaries are also returned as an invisible list for extracting results.

Author(s)

Neal Thomas

See Also

`emaxsim`, `print.emaxsim`, `plot.emaxsim`

Examples

```r
Not run:
emaxsim changes the random number seed
nsim<-50
doselev<-c(0,5,25,50,100)
n<-c(78,81,81,81,77)

population parameters for simulation
e0<-2.465375
ed50<-67.481113
dtarget<-100
diftarget<-9.032497
emax<-solveEmax(diftarget,dtarget,log(ed50),1,e0)
sdy<-7.967897
pop.parm<-c(log(ed50),emax,e0)
meanlev<-emaxfun(doselev,pop.parm)

###FixedMean is specialized constructor function for emaxsim
gen.parm<-FixedMean(n,doselev,meanlev,sdy)
```
summary.emaxsimB

D1 <- emaxsim(nsim, gen.parm)
summary(D1, testalph=0.05, clev=0.95)

## End(Not run)

summary.emaxsimB  Summary of output of emaxsimB

Description

Detailed summary of repeated sampling properties of Bayesian Emax estimation and comparison with simple pairwise comparisons.

Usage

## S3 method for class 'emaxsimB'
summary(object, testalpha = 0.05,
clev = c('0.9','0.95','0.8'),
seSim = FALSE, ...)

Arguments

object      Output of emaxsimB
testalpha   Alpha level for a one-sided MCP-MOD trend test.
clev        Posterior probabilities for reported intervals
seSim       If TRUE, then simulation standard errors are reported in parentheses. These should be distinguished from posterior SD in the simulations.
...          Other unspecified parameters (none currently utilized)

Details

For pairwise comparisons, the 'most favorable pairwise comparison' means the dose with the best difference versus placebo is compared to the population mean response for the selected dose, thus the target value for coverage, bias, and RMSE changes depending on the selected dose.

Value

The function produces annotated output summarizing the properties of the estimation procedures. The summaries are also returned as an invisible list for extracting results.

Author(s)

Neal Thomas

See Also

emaxsim, print.emaxsim, plot.emaxsim
Examples

```r
Not run:

emaxsimB changes the random number seed
nsim<-50
idmax<-5
doselev<-c(0,5,25,50,100)
n<-c(78,81,81,81,77)
Ndose<-length(doselev)

population parameters for simulation
e0<-2.465375
ed50<-67.481113
dtarget<-100
diftarget<-2.464592
emax<-solveEmax(diftarget,dtarget,log(ed50),1,e0)
sdy<-7.967897
pop<-c(log(ed50),emax,e0)
meanlev<-emaxfun(doselev,pop)

###FixedMean is specialized constructor function for emaxsim
gen<-FixedMean(n,doselev,meanlev,sdy)
prior<-emaxPrior.control(epmu=0,epsca=30,difTargetmu=0,
difTargetsca=30,dTarget=100,p50=50,sigmalow=0.1,
sigmaup=30,parmDF=5)
mcmc<-mcmc.control(chains=1,warmup=500,iter=5000,seed=53453,propInit=0.15,adapt_delta = 0.95)
D1 <- emaxsimB(nsim,gen, prior, modType=3,mcmc=mcmc,check=FALSE)

summary(D1,testalph=0.05,clev='0.95')
```

## End(Not run)

**summary.emaxsimBobj**  
*Summarize Emax fit to a data set generated by emaxsimB*

**Description**

Summary of the Bayesian Emax fit to a simulated data set

**Usage**

```r
S3 method for class 'emaxsimBobj'
summary(object, ...)
```
summary.emaxsimBobj

Arguments

  object    Extracted simulation object
  ...      No other parameters are currently implemented

Value

  Printed output only. No values are returned.

Author(s)

  Neal Thomas

See Also

  emaxsimB, plot.emaxsimBobj, print.emaxsimBobj

Examples

```r
Not run:

emaxsimB changes the random number seed
nsim<-50

doselev<-c(0,5,25,50,100)
n<-c(78,81,81,81,77)
Ndose<-length(doselev)

population parameters for simulation
e0<-2.465375
ed50<-67.481113

dtarget<-100
diftarget<-2.464592
diff<--solveEmax(diftarget,dtarget,log(ed50),1,e0)

sdy<-7.967897
pop<-c(log(ed50),diff,e0)

meanlev<-emaxfun(doselev,pop)

###FixedMean is specialized constructor function for emaxsim

gen<-FixedMean(n,doselev,meanlev,sdy)

prior<-emaxPrior.control(epmu=0,epsca=30,difTargetmu=0,
difTargetsca=30,dTarget=100,p50=50,sigmalow=0.1,
sigmalow=30,parmDF=5)
mcmc<-mcmc.control(chains=1,warmup=500,iter=5000,seed=53453,propInit=0.15,adapt_delta = 0.95)

D1 <- emaxsimB(nsim,gen, prior, modType=3,mcmc=mcmc,check=FALSE)
summary(D1[1])

End(Not run)
```
Description

Summary of the Emax or alternative fit to a simulated data set

Usage

## S3 method for class 'emaxsimobj'
summary(object, ...)

Arguments

object
Extracted simulation object

... No other parameters are currently implemented

Value

Printed output only. No values are returned.

Author(s)

Neal Thomas

See Also

emaxsim, plot.emaxsimobj, print.emaxsimobj

Examples

## emaxsim changes the random number seed
nsim<-3
doselev<-c(0.5,25,50,100)
n<-c(78,81,81,81,77)

### population parameters for simulation
e0<-2.465375
ed50<-67.481113
dtarget<-100
diftarget<-9.032497
emax<-solveEmax(diftarget,dtarget,log(ed50),1,e0)
sdy<-7.967897
pop<-c(log(ed50),emax,e0)
meanlev<-emaxfun(doselev,pop)
###FixedMean is specialized constructor function for emaxsim
gen.parm<-FixedMean(n,doselev,meanlev,sdy)
D1 <- emaxsim(nsim,gen.parm,nproc=1)
e3<-D1[3]

summary(e3)

---

**summary.fitEmax**

*Print a summary of the fitted Emax model*

**Description**

Print a summary of the fitted Emax model

**Usage**

```r
S3 method for class 'fitEmax'
summary(object, ...)
```

**Arguments**

- **object**  
  Object output by `fitEmax`
- **...**  
  No options implemented.

---

**summary.fitEmaxB**

*Print a summary of the fitted Bayesian Emax model*

**Description**

Print a summary of the fitted Bayesian Emax model

**Usage**

```r
S3 method for class 'fitEmaxB'
summary(object, ...)
```

**Arguments**

- **object**  
  Object output by `fitEmaxB`
- **...**  
  No options implemented.
targetBeta  

*Find a scaled Beta distribution matching specified probabilities*

**Description**

Find the (a,b) parameters of a scaled Beta distribution with specified cumulative probabilities for two specified points from the distribution.

**Usage**

```
targetBeta(minval,pminV,pmaxV,maxval=1,aInit=1,bInit=1,upB=1)
```

**Arguments**

- **minval**  
The minimum value with a targeted cumulative probability
- **pminV**  
The targeted cumulative probability less than minval
- **pmaxV**  
The targeted cumulative probability less than maxval
- **maxval**  
The maximum value with a targeted cumulative probability
- **aInit**  
An initial guess for the first parameter of the scaled Beta distribution with the specified probabilities.
- **bInit**  
An initial guess for the second parameter of the scaled Beta distribution with the specified probabilities.
- **upB**  
The upper limit of the scaled Beta distribution. It is specified by the user.

**Details**

The Beta distribution with the targeted probabilities is found from starting values using the `optim` function.

**Value**

Returns the (a,b) parameters of the scaled beta distribution if one with the specified probabilities can be found. An error message is returned otherwise.

**Author(s)**

Neal Thomas

**Examples**

```R
set quartiles at .15 and 1.0 for a beta distribution on (0,3)
targetBeta(minval=.15,pminV=0.25,pmaxV=0.75,maxval=1.0,upB=3)
```
targetCI

### Description

Compute the dose with confidence interval exceeding a target change from placebo for each simulated example in an emaxsim object.

### Usage

```
targetCI (object, target, dgrid, clev=0.90, high= TRUE)
```

### Arguments

- `object`: An emaxsim object
- `target`: Target improvement from placebo
- `dgrid`: The lowest dose is found by a search over a user-specified grid of doses. If `dgrid` is a single value, it is interpreted as the number of equally-spaced doses to select from zero to the highest dose in the simulated design.
- `clev`: One-sided confidence interval level.
- `high`: When TRUE, lower bounds are computed and must be higher than the target. When FALSE, upper bounds must be less than the target.

### Value

Returns a vector with the lowest dose meeting the criteria. If a simulated example does not have a qualifying dose, Inf is returned.

### Note

If the grid is very large (>200), execution will slow as a large number of estimates and SEs are computed.

### Author(s)

Neal Thomas

### See Also

emaxsim, predict.emaxsim, targetD
## Examples

### Not run:

```r
emaxsim changes the random number seed
sim<-100
doselev<-c(0,5,25,50,100)
n<-c(78,81,81,81,77)

population parameters for simulation
e0<-2.465375
ed50<-67.481113
dtarget<-100
diftarget<-9.032497
emax<-solveEmax(diftarget,dtarget,log(ed50),1,e0)
sdy<-7.967897
pop<-c(log(ed50),emax,e0)
meanlev<-emaxfun(doselev, pop)

FixedMean is specialized constructor function for emaxsim
gen.parm<FixedMean(n,doselev,meanlev,sdy)

D1 <- emaxsim(nsim,gen.parm,modType=3)
target<-6
tD<-(target*ed50)/(emax-target)
selectedDose<-targetCI(D1,target,dgrid=c(1:100)+0.5,clev=0.80,high=TRUE)

End(Not run)
```

---

### targetD

*Compute the MLE (and its SE) of the dose achieving a specified target improvement from placebo.*

#### Description

The MLE (se) of the dose required to achieve a targetted improvement from placebo. The fit can be from a 3- or 4-parameter Emax model or output from function emaxalt, or an object of class emaxsimobj. The Emax model is on the logit scale for binary data.

#### Usage

```r
targetD (fit, target, modType=4, binary=FALSE)
```
Arguments

fit Output of \texttt{nls} fit to a 3- or 4-parameter Emax model. The order of the parameters in the fit must be (log(ed50), emax, e0) or (log(ed50), lambda, emax, e0). fit can also be a list with the first element the coefficient vector, and the second element the variance-covariance matrix. Alternatively, fit may be of class \texttt{emaxalt} or \texttt{emaxsimobj}, and the target dose is based on the fitted model.

target Targeted change from placebo (positive or negative).

modType Value is 3 or 4 for the 3 or 4-parameter Emax model output from \texttt{nls} with parameters in the order (ed50, emax, e0) or (ed50, lambda, emax, e0). \texttt{modType} is ignored if fit is from \texttt{emaxalt} or \texttt{emaxsimobj}.

binary When TRUE, the fit is assumed to be for binary data on the logistic scale. target is input as a risk difference, and transformed internally. When the fit is of class \texttt{emaxalt} or \texttt{emaxsimobj}, the binary status is taken from the object and \texttt{binary} is ignored.

Value

Returns a vector with two elements:

targetDose The MLE of the dose achieving the target.

seTD SE for target.dose

Note

Asymptotic SE computed using the delta method.

Author(s)

Neal Thomas

See Also

\texttt{SeEmax, emaxalt}

Examples

```r
Not run:

emaxsim changes the random number seed
doselev<-c(0, 5, 25, 100, 250)
n<-c(78, 81, 81, 77, 80)
dose<-rep(doselev, n)

population parameters for simulation
e0<-2.465375
ed50<-67.481113
dtarget<-100
diftarget<-9.032497
```
emax<-solveEmax(diftarget,dtarget,log(ed50),1,e0)

sdy<-7.967897
pop<-c(led50=log(ed50),emax=emax,e0=e0)
meanresp<-emaxfun(dose,pop)
y<-rnorm(sum(n),meanresp,sdy)
nls.fit<-nls(y ~ e0 + (emax * dose)/(dose + exp(led50)),
          start = pop, control = nls.control(
          maxiter = 100),trace=TRUE,na.action=na.omit)

## End(Not run)

---

**update.emaxsimobj**

Update estimation in a data set generated by emaxsim

**Description**

Allows re-estimation for a data set generated by emaxsim using a different starting value. Typically used to test different starting values when nls has failed to converge.

**Usage**

```
S3 method for class 'emaxsimobj'
update(object, new.parm, modType=object$modType,...)
```

**Arguments**

- **object**: Extracted simulation object
- **new.parm**: New starting value for Emax estimation. Must have order (ed50,emax,e0)
- **modType**: When modType=4, the fitting begins with the 4 parameter model. If estimation fails or modType=3, the 3-parameter estimation is applied. If it fails, a best-fitting model linear in its parameters is selected.
- **...**: No other parameters currently used.
Value

A list is returned with class(emaxsimobj). It has the same format as those extracted by object[ ].

Author(s)

Neal Thomas

See Also

emaxsim

Examples

## Not run:

## emaxsim changes the random number seed
nsim<-50
idmax<-5
doselev<-c(0,5,25,50,100)
n<-c(78,81,81,81,77)

### population parameters for simulation
e0<-2.465375
ed50<-67.481113

dtarget<-100
diftarget<-9.032497
emax<-solveEmax(diftarget,dtarget,log(ed50),1,e0)

sdy<-7.967897
pop<-c(log(ed50),emax,e0)
meanlev<-emaxfun(doselev, pop)

### FixedMean is specialized constructor function for emaxsim
gen<-FixedMean(n, doselev, meanlev, sdy)
D1 <- emaxsim(nsim, gen)
e49<-D1[49]

#### re-try estimation starting at the population value
e49u<- update(e49, pop)

## End(Not run)
Description

Extract Emax model variance-covariance matrix for ML estimates

Usage

## S3 method for class 'fitEmax'
vcov(object, ...)
## S3 method for class 'emaxsim'
vcov(object, ...)

Arguments

object Output of Emax fitting and simulation functions
... None additional inputs supported

Value

Variance-Covariance matrix for the MLE estimates of the parameters from fitEmax. The lower half of the variance-covariance matrix for the estimated parameters stored as a vector in column-major order for each emaxsim simulation. The vc matrix has 16, 9, or 4 elements depending on fitType.

Author(s)

Neal Thomas

See Also

fitEmax, emaxsim

Examples

doselev<-c(0,5,25,50,100,350)
n<-c(78,81,81,81,77,80)

### population parameters for simulation
e0<-2.465375
ed50<-67.481113
dtarget<-100
diftarget<-9.032497
done<-solveEmax(diftarget,dtarget,log(ed50),1,e0)
sdy<-8.0
pop<-c(log(ed50),done,e0)
dose<-rep(doselev,n)
meanlev<-emaxfun(dose,po)
y<-rnorm(sum(n),meanlev,sdy)
testout<-fitEmax(y,dose,modType=4)
vco(testout)
## Index

* **Bayes**
  - emaxsimB, 26
  - plot.emaxsimB, 44
* **Emax**
  - emaxsimB, 26
  - plot.emaxsimB, 44
  - printemaxPrior, 80
* **datasets**
  - metaData, 39
* **dose response**
  - fitEmaxB, 34
* **hplot**
  - DRDensityPlot, 14
  - plot.plotB, 54
  - plotB, 57
  - plotBdensity, 60
  - plotD, 62
* **mcmc**
  - fitEmaxB, 34
* **nonlinear**
  - bpchkMonoEmax, 8
  - checkMonoEmax, 10
  - coefEmax, 12
  - DRDensityPlot, 14
  - emaxalt, 16
  - emaxfun, 18
  - emaxsim, 21
  - emaxsolve, 30
  - fitEmax, 31
  - FixedMean, 37
  - nllogis, 41
  - plot.emaxsim, 43
  - plot.emaxsimobj, 47
  - plot.fitEmax, 49
  - plot.fitEmaxB, 52
  - plot.plotB, 54
  - plotB, 57
  - plotBdensity, 60
  - predict.emaxalt, 63
  - predict.emaxsim, 65
  - predict.emaxsimB, 66
  - predict.emaxsimBobj, 68
  - predict.fitEmax, 71
  - print.emaxsim, 74
  - print.emaxsimB, 76
  - print.emaxsimobj, 78
  - RandEmax, 83
  - randomEmax, 85
  - SeEmax, 87
  - sigmaEmax, 91
  - startEmax, 92
  - summary.emaxsim, 93
  - summary.emaxsimB, 95
  - summary.emaxsimBobj, 96
  - summary.emaxsimobj, 98
  - targetBeta, 100
  - targetCI, 101
  - targetD, 102
  - update.emaxsimobj, 104
  - vcovEmax, 105
* **package**
  - clinDR-package, 3
* **prior**
  - printemaxPrior, 80
* **package**
  - bpchkMonoEmax, 8
  - checkMonoEmax, 10
  - clinDR-package, 3
  - coef, 91
  - coef.emaxsim, 25
  - coef.emaxsim(coefEmax), 12
  - coef.emaxsimB, 29
  - coef.emaxsimB(coefEmax), 12
  - coef.fitEmax, 33
  - coef.fitEmax(coefEmax), 12
  - coef.fitEmaxB, 36
  - coef.fitEmaxB(coefEmax), 12
coefEmax, 12
compileStanModels, 13
dlogis, 19
DoseFinding, 3
DRDensityPlot, 14, 61
emaxalt, 16, 64, 93, 103
emaxfun, 18, 23, 27, 29, 37
emaxPrior.control, 19, 26, 34, 81
emaxsim, 3–5, 13, 17, 21, 31, 37, 43, 48, 49, 65–67, 69, 70, 74, 75, 78, 84, 86, 91, 94, 95, 98, 101, 105, 106
emaxsimB, 3, 6, 7, 13, 26, 31, 44–46, 66, 68, 76, 78, 86, 87, 90, 91, 95, 97
emaxsolve, 30
fitEmax, 3, 13, 31, 36, 41, 42, 50, 71, 73, 79, 91, 99, 106
fitEmaxB, 3, 13, 27, 31, 34, 52, 54, 80, 90, 91, 99
FixedMean, 22, 26, 37, 46, 48, 84, 86
mcmc.control, 27, 35, 38
metaData, 3, 39
Mods, 22, 23, 27
nlllogis, 33, 41
nlm, 33, 42
nls, 17, 33, 51, 72, 87, 93, 103
plot.emaxsim, 25, 43, 66, 75, 94, 95
plot.emaxsimB, 29, 44, 67, 76
plot.emaxsimBobj, 7, 45, 97
plot.emaxsimobj, 5, 47, 78, 98
plot.fitEmax, 3, 9, 11, 33, 49, 56, 60, 61, 63
plot.fitEmaxB, 3, 36, 52
plot.plotB, 9, 11, 54, 60, 61
plotB, 3, 55, 56, 57, 63
plotBdensity, 15, 60
plotD, 3, 9, 11, 56, 60, 61, 62
predict.emaxalt, 63
predict.emaxsim, 25, 64, 65, 69, 70, 101
predict.emaxsimB, 66
predict.emaxsimBobj, 68
predict.emaxsimobj, 64, 69
predict.fitEmax, 33, 71
predict.fitEmaxB, 36, 73
print.emaxPrior (printemaxPrior), 80
print.emaxsim, 25, 43, 74, 94, 95
print.emaxsimB, 29, 45, 76
print.emaxsimBobj, 7, 77, 97
print.emaxsimobj, 5, 49, 78, 98
print.fitEmax, 79
print.fitEmaxB, 80
printemaxPrior, 80
prior.control, 26, 34, 81
RandEmax, 22, 26, 37, 46, 48, 83
randomEmax, 85
rstan, 34
runSimulations, 86
SeEmax, 51, 72, 87, 103
selectstan, 89
showStanModels, 90
sigma, 13
sigma.emaxsim, 25
sigma.emaxsimB (sigmaEmax), 91
sigma.emaxsimB, 29
sigma.emaxsimB (sigmaEmax), 91
sigma.fitEmax (sigmaEmax), 91
sigma.fitEmaxB (sigmaEmax), 91
sigmaEmax, 91
solveDose (emaxsolve), 30
solveEmax (emaxsolve), 30
startEmax, 92
summary.emaxsim, 25, 43, 66, 69, 70, 75, 93
summary.emaxsimB, 29, 45, 67, 76, 95
summary.emaxsimBobj, 96
summary.emaxsimobj, 49, 78, 98
summary.fitEmax, 99
summary.fitEmaxB, 99
targetBeta, 100
targetCI, 101
targetD, 101, 102
update.emaxsimobj, 5, 49, 104
vcov.emaxsim, 25
vcov.emaxsimB (vcovEmax), 105
vcov.fitEmax (vcovEmax), 105
vcovEmax, 105