Package ‘clordr’

March 24, 2022

Type Package

Title Composite Likelihood Inference and Diagnostics for Replicated Spatial Ordinal Data

Version 1.7.0

Maintainer Ting Fung (Ralph) Ma <tingfung.ma@wisc.edu>

Description Composite likelihood parameter estimate and asymptotic covariance matrix are calculated for the spatial ordinal data with replications, where spatial ordinal response with covariate and both spatial exponential covariance within subject and independent and identically distributed measurement error. Parameter estimation can be performed by either solving the gradient function or maximizing composite log-likelihood. Parametric bootstrapping is used to estimate the Godambe information matrix and hence the asymptotic standard error and covariance matrix with parallel processing option. Moreover, the proposed surrogate residual, which extends the results of Liu and Zhang (2017) <doi:10.1080/01621459.2017.1292915>, can act as a useful tool for model diagnostics.

License GPL-2

Imports pbivnorm (>= 0.6.0), MASS (>= 7.3-45), rootSolve (>= 1.7), parallel, doParallel (>= 1.0.11), foreach (>= 1.2.0), tmvmixnorm (>= 1.0.2), utils, stats

Encoding UTF-8

LazyData false

RoxygenNote 7.1.1

NeedsCompilation no

Author Ting Fung (Ralph) Ma [cre, aut], Pingping Wang [aut], Jun Zhu [aut], Dipankar Bandyopadhyay [ctb], Yincai Tang [ctb]

Repository CRAN

Date/Publication 2022-03-24 19:20:02 UTC
R topics documented:

cl .. 2
cl.rord .. 3
cl.rord ... 4
clic .. 6
cl_l .. 7
merge.list 8
sim.rord ... 8
 surrogate.residual 10

Index 12

\textit{cl} \hspace{1cm} \textit{Composite Likelihood Calculation for Spatial Ordinal Data without Replications (for implementation)}

\section*{Description}

\texttt{cl} Calculate the negative composite log-likelihood value and score function for a particular subject given parameter value and other input variables.

\section*{Usage}

\texttt{cl(theta, y, X, dwdv, cmwdv, lt, wn, base, J, p)}

\section*{Arguments}

\begin{itemize}
 \item \texttt{theta} a vector of parameter value.
 \item \texttt{y} a vector of observation for the subject.
 \item \texttt{X} covariate for the particular subject.
 \item \texttt{dwdv} corresponding distance of selected pair.
 \item \texttt{cmwdv} combination of the pairs included into the composite likelihood.
 \item \texttt{lt} number of parameter (i.e. length of theta).
 \item \texttt{wn} number of pairs with distance.
 \item \texttt{base} identity matrix with dimension \texttt{J+1}.
 \item \texttt{J} number of category among (ALL) observed response.
 \item \texttt{p} number of covariate (i.e. number of column of \texttt{X}).
\end{itemize}

\section*{Value}

\texttt{cl} returns a list: composite log-likelihood value and a vector of first-order partial derivatives for \texttt{theta}.
cl.rord

cl.rord

Composite Likelihood Calculation for Replications of Spatial Ordinal Data (for illustration)

Description

cl.rord Calculate the negative composite log-likelihood value for replications of spatial ordinal data at given value of parameter value. Note that this function is not directly used in cl.rord but illustration only.

Usage

```r
cl.rord(theta, response, covar, location, radius = 4)
```

Arguments

- `theta` a vector of parameter value
- `response` a matrix of observation (row: spatial site and column: subject).
- `covar` regression (design) matrix, including intercepts.
- `location` a matrix contains spatial location of sites within each subject
- `radius` radius for selecting pairs for the composite likelihood estimation.

Value

cl.rord returns a list: negative composite log-likelihood, a vector of first-order partial derivatives for theta.

Examples

```r
set.seed(1203)

n.subject <- 10
n.lat <- n.lon <- 10
n.site <- n.lat*n.lon

beta <- c(1,2,1) # First 1 here is the intercept
midalpha <- c(1.15, 2.18); sigma2 <- 0.7; phi <- 0.8

true = c(midalpha,beta,sigma2,phi)

Xi = rnorm(n.subject,0,1); Xj <- rbinom(n.site,1,0.6)

VV <- matrix(NA, nrow = n.subject*n.site, ncol = 3)

for(i in 1:n.subject){
  for(j in 1:n.site){
    VV[(i-1)*n.site+j,] <- c(1,Xi[i],Xj[j])
  }
}
```
location = cbind(rep(seq(1,n.lat,length=n.lat),n.lat),rep(1:n.lon, each=n.lon))
sim.data <- sim.rord(n.subject, n.site, n.rep = 2, midalpha, beta, sigma2, phi, covar=VV, location)

cl.rord(theta=true,response=sim.data[[1]], covar=VV, location, radius = 4)

cle.rord

Composite Likelihood Estimation for Replications of Spatial Ordinal Data

Description

cle.rord Estimate parameters (including regression coefficient and cutoff) for replications of spatial ordinal data using pairwise likelihood approach.

Usage

cle.rord(
 response,
 covar,
 location,
 radius = 4,
 n.sim = 100,
 output = TRUE,
 SE = TRUE,
 parallel = FALSE,
 n.core = max(detectCores()/2, 1),
 ini.sp = c(0.5, 0.5),
 est.method = TRUE,
 maxiter = 100,
 rtol = 1e-06,
 factr = 1e+07
)

Arguments

response a matrix of observation (row: spatial site and column: subject).
covar regression (design) matrix, including intercepts.
location a matrix contains spatial location of sites within each subject.
radius radius for selecting pairs for the composite likelihood estimation.
n.sim number of simulation used for parametric bootstrapping (and hence used for asymptotic variance and standard error).
output logical flag indicates whether printing out result (default: TRUE).
SE logical flag for detailed output.
parallel logical flag indicates using parallel processing (default: FALSE).
n.core number of physical cores used for parallel processing (when parallel is TRUE, default value is max(detectCores()/2,1)).
ini.sp initial estimate for spatial parameter, φ, σ^2 (default: c(0.5,0.5)).
est.method logical flag (default) TRUE for rootsolve and FALSE for L-BFGS-B.
maxiter maximum number of iterations in the root solving of gradient function (default: 100).
rtol relative error tolerance in the root solving of gradient function (default: 1e-6).
factr reduction in the objective (-logCL) within this factor of the machine tolerance for L-BFGS-B (default: 1e7).

Details

Given vector of ordinal responses, the design matrix, spatial location for sites, weight radius (for pair selection), and the prespecified number of simulation used for estimating the Godambe information matrix. Initial estimate is obtained by fitting model without spatial dependence (using MASS::polr()) and optional guess of spatial parameters. The function first estimates parameters of interest by either solving the gradient of composite log-likelihood using rootSolve::multiroot() or maximize the composite log-likelihood by optim(...,method="L-BFGS-B"). The asymptotic covariance matrix and standard error of parameters are then estimated by parametric boostrapping. Although the default root solving option is typically more efficient, it may encounter runtime error if negative value of φ is evaluated (and L-BFGS-B approach should be used).

Value

cle.rord returns a list contains:
vec.par: a vector of estimator for θ = (α, β, φ, σ^2);
vec.se: a vector of standard error for the estimator;
mat.asyvar: estimated asymptotic covariance matrix H^{-1}(θ)J(θ)H^{-1}(θ) for the estimator;
mat.Hessian: Hessian matrix at the parameter estimate;
mat.J: Sensitivity matrix estimated by parametric boostrapping; and
CLIC: Composite likelihood information criterion (see help manual of clic() for detail).

Examples

set.seed(1228)
n.subject <- 20
n.lat <- n.lon <- 10
n.site <- n.lat*n.lon
beta <- c(1,2,-1) # First 1 here is the intercept
midalpha <- c(1.15, 2.18) ; phi <- 0.6 ; sigma2 <- 0.7
true <- c(midalpha,beta,phi,sigma2)
Xi <- rnorm(n.subject,0,1) ; Xj <- rbinom(n.site,1,0.6)
VV <- matrix(NA, nrow = n.subject*n.site, ncol = 3)
for(i in 1:n.subject){ for(j in 1:n.site){
 VV[(i-1)*n.site+j] <- c(1,Xi[i],Xj[j])
 }
}

location <- cbind(rep(seq(1,n.lat,length=n.lat),n.lat),rep(1:n.lon, each=n.lon))
sim.data <- sim.rord(n.subject, n.site, n.rep = 2, midalpha, beta, phi, sigma2, covar=VV, location)

options(digits=3)
result <- cle.rord(response=sim.data[[1]], covar=VV,
 location = location ,radius = 4, n.sim = 100, output = TRUE, parallel=TRUE, n.core =2)
result$vec.par
 # alpha2 alpha3 beta0 beta1 beta2 phi sigma^2
 # 1.249 2.319 1.169 1.990 -1.000 0.668 0.678

result$vec.se
 # alpha2 alpha3 beta0 beta1 beta2 phi sigma^2
 # 0.0704 0.1201 0.1370 0.2272 0.0767 0.0346 0.1050

clic

clic

Composite likelihood Information Criterion

Description

clic Calculating the Composite likelihood information criterion proposed by Varin and Vidoni (2005)

Usage

clic(logCL, mat.hessian, mat.J)

Arguments

- **logCL**: value of composite log-likelihood.
- **mat.hessian**: hessian matrix.
- **mat.J**: Sensitivity matrix

Details

Varin and Vidoni (2005) proposed the information criterion in the form:
\[-2 \times \log CL(\theta) + 2 \times \text{trace}(H^{-1}(\theta)J(\theta))\]
Value

CLIC: Composite likelihood information criterion proposed by Varin and Vidoni (2005)
clic: Composite likelihood information criterion proposed by Varin and Vidoni (2005)

References

cl_l

Composite Likelihood Calculation for Spatial Ordinal Data without Replications (for implementation)

Description

cl_l Calculate the negative composite log-likelihood value for a particular subject given parameter value and other input variables

Usage

\[
\text{cl}_l(\theta, y, X, dwdv, cmwdv, lt, wn, base, J, p)
\]

Arguments

- `theta`: a vector of parameter value
- `y`: a vector of observation for the subject.
- `X`: covariate for the particular subject
- `dwdv`: corresponding distance of selected pair
- `cmwdv`: combination of the pairs included into the composite likelihood
- `lt`: number of parameter (i.e. length of theta)
- `wn`: number of pairs
- `base`: identity matrix with dimension \(J+1 \)
- `J`: number of category among (ALL) observed response.
- `p`: number of covariate (i.e. number of column of \(X \))

Value

\(c_l \) returns a list: composite log-likelihood value and a vector of first-order partial derivatives for \(\theta \).
merge.list

Composite Likelihood Calculation for Spatial Ordinal Data without Replications (for implementation)

Description

Composite Likelihood Calculation for Spatial Ordinal Data without Replications (for implementation)

Usage

S3 method for class 'list'
merge(x, y = NULL, mergeUnnamed = TRUE)

Arguments

x an object to be merged into list of object.
y an object to be merged into list.
mergeUnnamed select an element if it has a.) an empty name in y and mergeUnnamed is true or
b.) a name _not_ contained in x

Value

merge.list returns a list: a merged list

sim.rord

Simulation of Replications of Spatial Ordinal Data

Description

sim.rord Simulate replications of spatial ordinal data

Usage

sim.rord(
 n.subject,
 n.site,
 n.rep = 100,
 midalpha,
 beta,
 phi,
 sigma2,
 covar,
 location
)
Arguments

- `n.subject`: number of subjects.
- `n.site`: number of spatial sites for each subject.
- `n.rep`: number of simulation. Parameter inputs include:
 - `midalpha`: cutoff parameter (excluding -Inf and +Inf);
 - `beta`: regression coefficient;
 - `phi`: dependence parameter for spatial dependence; and
 - `sigma2`: `sigma^2` (variance) for the spatial dependence.
- `covar`: regression (design) matrix, including intercepts.
- `location`: a matrix contains spatial location of sites within each subject.

Value

`sim.rord` returns a list (length `n.rep`) of matrix (`n.subject*n.site`) with the underlying parameter as inputs.

Examples

```r
set.seed(1203)
n.subject <- 100
n.lat <- n.lon <- 10
n.site <- n.lat*n.lon

beta <- c(1,2,-1) # First 1 here is the intercept
midalpha <- c(1.15, 2.18) ; phi <- 0.8 ; sigma2 <- 0.7
true <- c(midalpha,beta,sigma2,phi)

Xi <- rnorm(n.subject,0,1) ; Xj <- rbinom(n.site,1,0.6)
VV <- matrix(NA, nrow = n.subject*n.site, ncol = 3)
for(i in 1:n.subject){ for(j in 1:n.site){
    VV[(i-1)*n.site+j,] <- c(1,Xi[i],Xj[j])
}
}

location <- cbind(rep(seq(1,n.lat,length=n.lat),n.lat),rep(1:n.lon, each=n.lon))
sim.data <- sim.rord(n.subject, n.site, n.rep = 2, midalpha, beta, phi, sigma2, covar=VV, location)

length(sim.data)
head(sim.data[[1]])
dim(sim.data[[1]])
hist(sim.data[[1]])
```
surrogate.residual simulate the surrogate residual with the given parameter value and co-
variate for model diagnostics.

Usage

```r
surrogate.residual(
  response,  # a matrix of observation (row: spatial site and column: subject).
covar,     # regression (design) matrix, including intercepts.
location,  # a matrix contains spatial location of sites within each subject.
seed = NULL,  # seed input for simulation (default = NULL).
midalpha,   # cutoff for latent ordinal response.
beta,       # regression coefficient for covar.
sigma2,     # $\sigma^2$ for exponential covariance.
phi,         # spatial correlation for exponential covariance.
burn.in = 20,  # burn-in length (i.e. declaring the initial sample).
output = TRUE)  # logical flag indicates whether printing out result (default: TRUE).
```

Arguments

- **response**: a matrix of observation (row: spatial site and column: subject).
- **covar**: regression (design) matrix, including intercepts.
- **location**: a matrix contains spatial location of sites within each subject.
- **seed**: seed input for simulation (default = NULL). Parameter values:
 - **midalpha**: cutoff for latent ordinal response.
 - **beta**: regression coefficient for covar.
 - **sigma2**: σ^2 for exponential covariance.
 - **phi**: spatial correlation for exponential covariance.
 - **burn.in**: burn-in length (i.e. declaring the initial sample).
 - **output**: logical flag indicates whether printing out result (default: TRUE).

Details

Given vector of observed responses, the design matrix, spatial location for sites and parameter
value, raw surrogate residuals are simulated using an efficient Gibbs sampling, which can be used
for model diagnostics. When the fitted model is correct, the raw surrogate residuals among subjects
should follow multivariate normal with mean 0 and covariance Sigma. If the model is correct,
residual plot should be close to a null plot or random scatter. For example, it can be used to check
the potential missing in covariate, non-linearity of covariate and outliers. In particular for the example
below, the residual plot shows that linearity of X_i is adequate for the model.
surrogate.residual

Value

surrogate.residual returns a (no. spatial site * no. subject) matrix contains raw surrogate residuals with element corresponds to the response matrix.

Examples

```r
set.seed(1228)
n.subject <- 50
n.lat <- n.lon <- 10
n.site <- n.lat*n.lon

beta <- c(1,2,-1) # First 1 here is the intercept
midalpha <- c(1.15, 2.18) ; phi <- 0.6 ; sigma2 <- 0.7
true <- c(midalpha,beta,phi,sigma2)

Xi <- rnorm(n.subject,0,1) ; Xj <- rbinom(n.site,1,0.6)

VV <- matrix(NA, nrow = n.subject*n.site, ncol = 3)
for(i in 1:n.subject){ for(j in 1:n.site){
  VV[(i-1)*n.site+j,] <- c(1,Xi[i],Xj[j])
}
}

location <- cbind(rep(seq(1,n.lat,length=n.lat),n.lat),rep(1:n.lon, each=n.lon))
response <- sim.rord(n.subject, n.site, n.rep = 1, midalpha, beta, phi, sigma2, covar=VV, location)[[1]]

# Example for linearity of covariate
sur.resid <- surrogate.residual(response, covar=VV, location, seed =1, midalpha, beta, sigma2, phi, burn.in=20, output = TRUE)

scatter.smooth(rep(Xi,each=n.site),c(sur.resid),
main="Surrogate residual against Xi", xlab="Xi", ylab="Surrogate residual",
lpars = list(col = "red", lwd = 3, lty = 2))

abline(h=0, col="blue")
```
Index

cl, 2
cl.rord, 3
c1_l, 7
cle.rord, 4
clic, 6
merge.list, 8
sim.rord, 8
surrogate.residual, 10