Package ‘clttools’

February 19, 2016

Type Package
Title Central Limit Theorem Experiments (Theoretical and Simulation)
Version 1.3
Date 2016-02-18
Author Simiao Ye, Jingning Mei
Maintainer Simiao Ye <simiao.ye@gmail.com>
Description Central limit theorem experiments presented by data frames or plots. Functions include generating theoretical sample space, corresponding probability, and simulated results as well.
License GPL-2
LazyData true
NeedsCompilation no
Repository CRAN
Date/Publication 2016-02-19 08:49:57

R topics documented:

beta.simu.plot ... 2
binom.simu.plot ... 3
chisq.simu.plot ... 3
coin ... 4
coin.plot .. 5
coin.simu ... 5
coin.simu.plot ... 6
dice ... 7
dice.plot .. 8
dice.simu ... 8
dice.simu.plot ... 9
distr.simu.plot ... 10
expo.simu.plot ... 11
expt ... 11
expt.mse .. 12
beta.simu.plot

Histogram and Q-Q plot of simulated Beta distribution

Description

Histogram and Q-Q plot of simulated Beta distribution

Usage

```r
beta.simu.plot(n, shape1, shape2, times, ylim = NULL, qqplot = FALSE)
```

Arguments

- `n`: number of trials in one simulation
- `shape1`: non-negative parameters of the Beta distribution
- `shape2`: non-negative parameters of the Beta distribution
- `times`: number of simulations
- `ylim`: range of y-axis
- `qqplot`: an argument to output Q-Q plot or not, can be TRUE or FALSE

Value

Histogram and Q-Q plot of simulated Beta distribution, red curve represents theoretical density

Examples

```r
beta.simu.plot(n = 5, shape1 = 3, shape2 = 1, times = 100)
```
binom.simu.plot

Description

Histogram and Q-Q plot of simulated Binomial distribution

Usage

`binom.simu.plot(n, size, prob, times, ylim = NULL, qqplot = FALSE)`

Arguments

- `n`: number of observations
- `size`: number of trials (zero or more)
- `prob`: probability of success on each trial
- `times`: number of simulations
- `ylim`: range of y-axis
- `qqplot`: an argument to output Q-Q plot or not, can be TRUE or FALSE

Value

Histogram and Q-Q plot of simulated Binomial distribution, red curve represents theoretical density

Examples

`binom.simu.plot(n = 10, size = 5, prob = 0.2, times = 100)`

chisq.simu.plot

Description

Histogram and Q-Q plot of simulated Chi-Squared distribution

Usage

`chisq.simu.plot(n, df, times, ylim = NULL, qqplot = FALSE)`

Arguments

- `n`: number of trials in one simulation
- `df`: degrees of freedom (non-negative, but can be non-integer)
- `times`: number of simulations
- `ylim`: range of y-axis
- `qqplot`: an argument to output Q-Q plot or not, can be TRUE or FALSE
Value

Histogram and Q-Q plot of simulated Chi-Squared distribution, red curve represents theoretical density

Examples

chisq.simu.plot(n = 5, df = 4, times = 100)

coin

Theoretical Probability Distribution of Flipping Coins

Description

Mean and probability of flipping fair or loaded coin

Usage

coin(n, prob = NULL)

Arguments

n number of trials
prob probability assigned to each possible outcome

Details

The default probability equals to 1/n. All the assigned probabilities must between 0 and 1.

Value

Mean value and corresponding probabilities for all possible outcomes.

Examples

coin(n = 4)
coin(6, c(0.1, 0.9))
coin.plot

Theoretical Probability Distribution Plot of Flipping Coins

Description

Probability plot of flipping fair or loaded coin

Usage

```r
coin.plot(n, prob = NULL, col = "black", type = NULL,
main = NULL, sub = NULL)
```

Arguments

- `n`: number of trials
- `prob`: probability assigned to each possible outcome
- `col`: color of the plot
- `type`: type of plot
- `main`: an overall title for the plot
- `sub`: a sub title for the plot

Details

The default probability equals to 1/n. All the assigned probabilities must between 0 and 1.

Value

Plot of mean value and corresponding probabilities for all possible outcomes.

Examples

```r
coin.plot(n = 4, col = 'red', type = 'p')
coin.plot(3, prob = c(0.3, 0.7))
```

coin.simu

Probability Distribution of Simulated Coins Flipping

Description

Mean and probability plot of flipping fair or loaded coin

Usage

```r
coin.simu(n, times, prob = NULL)
```
Arguments

n number of trials in one simulation
times number of simulations
prob probability assigned to each possible outcome

Details

The default probability equals to 1/n. All the assigned probabilities must be between 0 and 1.

Value

Mean value and corresponding probabilities for all simulated outcomes.

Examples

coin.simu(n = 4, times = 1000)
coin.simu(4, 1000, prob = c(0.3, 0.7))

Description

Probability plot of simulated experiments on flipping coins

Usage

coin.simu.plot(n, times, prob = NULL, qqplot = FALSE, col = "black", type = NULL,
main = NULL, sub = NULL)

Arguments

n number of trials in one simulation
times number of simulations
prob probability assigned to each possible outcome
qqplot an argument to output Q-Q plot or not, can be TRUE or FALSE
col color of the plot
type type of plot
main an overall title for the plot
sub a sub title for the plot

Details

The default probability equals to 1/n. All the assigned probabilities must be between 0 and 1.
Value

Plot of mean value and corresponding probabilities for all simulated outcomes.

Examples

coin.simu.plot(n = 4L, times = 1000L, col = 'red')
coin.simu.plot(4L, 1000L, prob = c(0.3L, 0.7L), type = 'p')

dice

Theoretical Probability Distribution of Rolling Dice

Description

Mean and probability of rolling fair or loaded dice

Usage

dice(n, prob = NULL)

Arguments

n number of trials

prob probability assigned to each possible outcome

Details

The default probability equals to 1/n. All the assigned probabilities must between 0 and 1.

Value

Mean value and corresponding probabilities for all possible outcomes.

Examples

dice(n = 4)
dice(2L, c(0.1L, 0.2L, 0.2L, 0.1L, 0.3L, 0.1L))
dice.plot

Theoretical Probability Distribution Plot of Rolling Dice

Description

Probability plot of rolling fair or loaded dice

Usage

dice.plot(n, prob = NULL, col = "black", type = NULL, main = NULL, sub = NULL)

Arguments

- `n`: number of trials
- `prob`: probability assigned to each possible outcome
- `col`: color of the plot
- `type`: type of plot
- `main`: an overall title for the plot
- `sub`: a sub title for the plot

Details

The default probability equals to 1/n. All the assigned probabilities must between 0 and 1.

Value

Plot of mean value and corresponding probabilities for all possible outcomes.

Examples

dice.plot(n = 4, col = 'red', type = 'p')
dice.plot(3, prob = c(0.3, 0.1, 0.2, 0.1, 0.1, 0.2))

dice.simu

Probability Distribution of Simulated Dice Rolling

Description

Mean and probability of flipping fair or loaded dice

Usage

dice.simu(n, times, prob = NULL)
Arguments

- **n**: number of trials in one simulation
- **times**: number of simulations
- **prob**: probability assigned to each possible outcome

Details

The default probability equals to 1/n. All the assigned probabilities must be between 0 and 1.

Value

Mean value and corresponding probabilities for all simulated outcomes.

Examples

```r
dice.simu(n = 4, times = 1000)
dice.simu(4, 1000, prob = c(0.3, 0.1, 0.1, 0.1, 0.3, 0.1))
```

dice.simu.plot
Probability Distribution Plot of Simulated Dice Rolling

Description

Probability plot of dice simulated experiments

Usage

```r
dice.simu.plot(n, times, prob = NULL, qqplot = FALSE, col = "black", type = NULL, main = NULL, sub = NULL)
```

Arguments

- **n**: number of trials in one simulation
- **times**: number of simulations
- **prob**: probability assigned to each possible outcome
- **qqplot**: an argument to output Q-Q plot or not, can be TRUE or FALSE
- **col**: color of the plot
- **type**: type of plot
- **main**: an overall title for the plot
- **sub**: a sub title for the plot

Details

The default probability equals to 1/n. All the assigned probabilities must be between 0 and 1.
Value
Plot of mean value and corresponding probabilities for all simulated outcomes.

Examples

dice.simu.plot(n = 4, times = 1000, col = 'red')
dice.simu.plot(4, 1000, prob = c(0.3, 0.1, 0.1, 0.1, 0.1, 0.3), type = 'p')

distr.simu.plot Histogram and Q-Q plot of any given continuous distribution

Description
Histogram and Q-Q plot of any given continuous distribution

Usage
distr.simu.plot(distr, n, times, prob = NULL, qqplot = FALSE, col = "black", type = NULL, main = NULL, sub = NULL)

Arguments
- distr: vector, all possible outcomes, population distribution
- n: number of trials in one simulation
- times: number of simulations
- prob: probability assigned to each possible outcome
- qqplot: an argument to output Q-Q plot or not, can be TRUE or FALSE
- col: color of the plot
- type: type of plot
- main: an overall title for the plot
- sub: a sub title for the plot

Details
The default probability equals to 1/n. All the assigned probabilities must between 0 and 1.

Value
Plot of mean value and corresponding probabilities for all simulated outcomes.

Examples

distr.simu.plot(distr = c(1,0.2,3.4,5,6.6,1.1,5,4.7,2.33,3), n = 4, times = 1000, col = 'red')
expo.simu.plot

Histogram and Q-Q plot of simulated Exponential distribution

Description

Histogram and Q-Q plot of simulated Exponential distribution

Usage

```r
expo.simu.plot(n, rate = 1, times, ylim = NULL, qqplot = FALSE)
```

Arguments

- `n`: number of trials in one simulation
- `rate`: vector of rates
- `times`: number of simulations
- `ylim`: range of y-axis
- `qqplot`: an argument to output Q-Q plot or not, can be TRUE or FALSE

Value

Histogram and Q-Q plot of simulated Exponential distribution, red curve represents theoretical density

Examples

```r
expo.simu.plot(n = 5, rate = 2, times = 100)
```

expt

Theoretical Probability Distribution of General Experiment

Description

General experiment with basic probability

Usage

```r
expt(x, n, prob = NULL)
```

Arguments

- `x`: vector, possible outcomes in one trial of experiment
- `n`: number of trials
- `prob`: probability assigned to each possible outcome
Details

The default probability equals to \(1/n\). All the assigned probabilities must between 0 and 1.

Value

Mean value and corresponding probabilities for all possible outcomes.

Examples

```r
expt(x = c(1:3), n = 4)
expt(c(2:4), 3, prob = c(0.3, 0.5, 0.2))
```

expt.mse

Mean square error of simulated experiments

Description

Mean square error of simulated experiments

Usage

```r
expt.mse(x, n, times, prob = NULL)
```

Arguments

- `x` vector, possible outcomes in one trial of experiment
- `n` number of trials
- `times` number of simulations
- `prob` probability assigned to each possible outcome

Details

The default probability equals to \(1/n\). All the assigned probabilities must between 0 and 1.

Value

Mean square error of simulated experiments

Examples

```r
expt.mse(x = c(1:3), n = 4, times = 100)
expt.mse(c(0.1, 4, 2), 3, times = 50, prob = c(0.3, 0.5, 0.2))
```
Description

General experiment plot with basic probability

Usage

expt.plot(x, n, prob = NULL, col = "black", type = NULL, main = NULL, sub = NULL)

Arguments

x vector, possible outcomes in one trial of experiment
n number of trials
prob probability assigned to each possible outcome
col color of the plot
type type of plot
main an overall title for the plot
sub a sub title for the plot

Details

The default probability equals to 1/n. All the assigned probabilities must between 0 and 1.

Value

Plot of mean value and corresponding probabilities for all possible outcomes.

Examples

expt.plot(x = c(1:3), n = 4, col = 'red', type = 'p')
expt.plot(c(2:4), 3, prob = c(0.3, 0.5, 0.2))
expt.simu

Probability Distribution of Simulated General Experiments

Description

Mean and probability of general simulated experiments

Usage

```r
expt.simu(x, n, times, prob = NULL)
```

Arguments

- `x`: vector, possible outcomes in one trial of experiment
- `n`: number of trials in one simulation
- `times`: number of simulations
- `prob`: probability assigned to each possible outcome

Details

The default probability equals to 1/n. All the assigned probabilities must be between 0 and 1.

Value

Mean value and corresponding probabilities for all simulated outcomes.

Examples

```r
expt.simu(x = c(1:3), n = 4, times = 1000)
expt.simu(c(1:3), 4, 1000, prob = c(0.3, 0.1, 0.6))
```

expt.simu.plot

Probability Distribution Plot of Simulated General Experiments

Description

Probability plot of general simulated experiments

Usage

```r
expt.simu.plot(x, n, times, prob = NULL, qqplot = FALSE, col = "black", type = NULL,
main = NULL, sub = NULL)
```
Arguments

- `x`: vector, possible outcomes in one trial of experiment
- `n`: number of trials in one simulation
- `times`: number of simulations
- `prob`: probability assigned to each possible outcome
- `qqplot`: an argument to output Q-Q plot or not, can be TRUE or FALSE
- `col`: color of the plot
- `type`: type of plot
- `main`: an overall title for the plot
- `sub`: a sub title for the plot

Details

The default probability equals to 1/n. All the assigned probabilities must be between 0 and 1.

Value

Plot of mean value and corresponding probabilities for all simulated outcomes.

Examples

```r
expt.simu.plot(x = c(1:3), n = 4, times = 1000, col = 'red')
expt.simu.plot(c(1:3), 4, 1000, prob = c(0.3, 0.1, 0.6), type = 'p')
```

Description

Histogram and Q-Q plot of simulated Gamma distribution

Usage

```r
gamm.simu.plot(n, shape, rate = 1, scale = 1/rate, times, ylim = NULL, qqplot = FALSE)
```

Arguments

- `n`: number of trials in one simulation
- `shape`: shape parameter
- `rate`: vector of rates
- `scale`: scale parameter
- `times`: number of simulations
- `ylim`: range of y-axis
- `qqplot`: an argument to output Q-Q plot or not, can be TRUE or FALSE
Value

Histogram and Q-Q plot of simulated Gamma distribution, red curve represents theoretical density

Examples

gamm.simu.plot(n = 5, shape = 3, rate = 1, times = 100)

geom.simu.plot Histogram and Q-Q plot of simulated Geometric distribution

Description

Histogram and Q-Q plot of simulated Geometric distribution

Usage

geom.simu.plot(n, prob, times, ylim = NULL, qqplot = FALSE)

Arguments

n number of observations
prob probability of success on each trial
times number of simulations
ylim range of y-axis
qqplot an argument to output Q-Q plot or not, can be TRUE or FALSE

Value

Histogram and Q-Q plot of simulated Geometric distribution, red curve represents theoretical density

Examples

gem.simu.plot(n = 10, prob = 0.2, times = 100)
hyper.simu.plot

Histogram and Q-Q plot of simulated Hypergeometric distribution

Description

Histogram and Q-Q plot of simulated Hypergeometric distribution

Usage

`hyper.simu.plot(n, a, b, k, times, ylim = NULL, qqplot = FALSE)`

Arguments

- `n`: number of observations
- `a`: the number of white balls in the urn
- `b`: the number of black balls in the urn
- `k`: the number of balls drawn from the urn
- `times`: number of simulations
- `ylim`: range of y-axis
- `qqplot`: an argument to output Q-Q plot or not, can be TRUE or FALSE

Value

Histogram and Q-Q plot of simulated Hypergeometric distribution, red curve represents theoretical density

Examples

`hyper.simu.plot(n = 10, a = 10, b = 10, k = 5, times = 100)`

nbinom.simu.plot

Histogram and Q-Q plot of simulated Negative Binomial distribution

Description

Histogram and Q-Q plot of simulated Negative Binomial distribution

Usage

`nbinom.simu.plot(n, size, prob, times, ylim = NULL, qqplot = FALSE)`

Value

Histogram and Q-Q plot of simulated Negative Binomial distribution, red curve represents theoretical density

Examples

`nbinom.simu.plot(n, size, prob, times, ylim = NULL, qqplot = FALSE)`
Arguments

- `n` number of observations
- `size` number of trials (zero or more)
- `prob` probability of success on each trial
- `times` number of simulations
- `ylim` range of y-axis
- `qqplot` an argument to output Q-Q plot or not, can be TRUE or FALSE

Value

Histogram and Q-Q plot of simulated Negative Binomial distribution, red curve represents theoretical density

Examples

```
nbinom.simu.plot(n = 10L, size = UL, prob = 0.2L, times = 100)
```

```
normal.simu.plot(n = UL, mean = SL, sd =2L, times = 100)
```

Description

Histogram and Q-Q plot of simulated Normal distribution

Usage

```
normal.simu.plot(n, mean=0L, sd=1L, times, ylim = NULL, qqplot = FALSE)
```

Arguments

- `n` number of trials in one simulation
- `mean` vector of means
- `sd` vector of standard deviations
- `times` number of simulations
- `ylim` range of y-axis
- `qqplot` an argument to output Q-Q plot or not, can be TRUE or FALSE

Value

Histogram and Q-Q plot of simulated Normal distribution, red curve represents theoretical density

Examples

```
normal.simu.plot(n = 5, mean = 3, sd =2, times = 100)
```
pois.simu.plot

Histogram and Q-Q plot of simulated Poisson distribution

Description

Histogram and Q-Q plot of simulated Poisson distribution

Usage

`pois.simu.plot(n, lambda, times, ylim = NULL, qqplot = FALSE)`

Arguments

- `n`: number of trials in one simulation
- `lambda`: parameter of Poisson distribution
- `times`: number of simulations
- `ylim`: range of y-axis
- `qqplot`: an argument to output Q-Q plot or not, can be TRUE or FALSE

Value

Histogram and Q-Q plot of simulated Poisson distribution, red curve represents theoretical density

Examples

`pois.simu.plot(n = 5, lambda = 3, times = 100)`

unif.simu.plot

Histogram and Q-Q plot of simulated Uniform distribution

Description

Histogram and Q-Q plot of simulated Uniform distribution

Usage

`unif.simu.plot(n, min = 0, max = 1, times, ylim = NULL, qqplot = FALSE)`

Arguments

- `n`: number of trials in one simulation
- `min`: possible minimum value of Uniform distribution. Must be finite
- `max`: possible maximum value of Uniform distribution. Must be finite
- `times`: number of simulations
- `ylim`: range of y-axis
- `qqplot`: an argument to output Q-Q plot or not, can be TRUE or FALSE
Value

Histogram and Q-Q plot of simulated Uniform distribution, red curve represents theoretical density

Examples

unif.simu.plot(n = 5, min = 3, max = 5, times = 100)
Index

beta.simu.plot, 2
binom.simu.plot, 3

chisq.simu.plot, 3
coin, 4
coin.plot, 5
coin.simu, 5
coin.simu.plot, 6
dice, 7
dice.plot, 8
dice.simu, 8
dice.simu.plot, 9
distr.simu.plot, 10

expo.simu.plot, 11
expt, 11
expt.mse, 12
expt.plot, 13
expt.simu, 14
expt.simu.plot, 14

gamm.simu.plot, 15
geom.simu.plot, 16

hyper.simu.plot, 17

nbinom.simu.plot, 17
normal.simu.plot, 18

pois.simu.plot, 19
unif.simu.plot, 19