Package ‘clustcurv’

March 21, 2020

Type Package

Title Determining Groups in Multiples Curves

URL https://github.com/noramvillanueva/clustcurv

BugReports http://github.com/noramvillanueva/clustcurv/issues

Version 2.0.0

Date 2020-03-21

Maintainer Nora M. Villanueva <nmvillanueva@uvigo.es>

Description A method for determining groups in multiple curves with an automatic selection of their number based on k-means or k-medians algorithms. The selection of the optimal number is provided by bootstrap methods. The methodology can be applied both in regression and survival framework. Implemented methods are:

Depends R (>= 3.5.0)

License MIT + file LICENSE

Encoding UTF-8

LazyData true

Imports doParallel, foreach, ggplot2, ggfortify, doRNG, Gmedian, survival, wesanderson, npregfast, tidyr, RColorBrewer, KernSmooth, data.table

Suggests testthat, usethis, condSURV, covr

RoxygenNote 6.1.1

NeedsCompilation no

Author Nora M. Villanueva [aut, cre] (<https://orcid.org/0000-0001-8085-2745>), Marta Sestelo [aut]

Repository CRAN

Date/Publication 2020-03-21 16:00:02 UTC
R topics documented:

- autoclustcurv .. 2
- autoplot.clustcurv ... 4
- barnacle5 ... 6
- clustcurv ... 7
- kclustcurv .. 8

Index 10

autoclustcurv

Clustering multiple curves

Description

Function for grouping survival or regression curves based on the k-means or k-medians algorithm. It returns the number of groups and the assignement.

Usage

```r
autoclustcurv(y, x, z, weights = NULL, method = "survival",
              kvector = NULL, kbin = 50, h = -1, nboot = 100,
              algorithm = "kmeans", alpha = 0.05, cluster = FALSE,
              ncores = NULL, seed = NULL, multiple = FALSE,
              multiple.method = "holm")
```

Arguments

- `y` Survival time (method = 'survival') or response variable (method = 'regression').
- `x` Only for method = 'regression'. Dependent variable.
- `z` Categorical variable indicating the population to which the observations belongs.
- `weights` Only for method = 'survival'. Censoring indicator of the survival time of the process; 0 if the total time is censored and 1 otherwise.
- `method` A character string specifying which method is used, 'survival' or 'regression'.
- `kvector` A vector specifying the number of groups of curves to be checking.
- `kbin` Size of the grid over which the survival functions are to be estimated.
- `h` The kernel bandwidth smoothing parameter (for method = 'regression').
- `nboot` Number of bootstrap repeats.
- `algorithm` A character string specifying which clustering algorithm is used, i.e., k-means("kmeans") or k-medians ("kmedians").
- `alpha` Significance level of the testing procedure. Defaults to 0.05.
cluster
A logical value. If *TRUE* (default), the testing procedure is parallelized. Note that there are cases (e.g., a low number of bootstrap repetitions) that R will gain in performance through serial computation. R takes time to distribute tasks across the processors also it will need time for binding them all together later on. Therefore, if the time for distributing and gathering pieces together is greater than the time need for single-thread computing, it does not worth parallelize.

ncores
An integer value specifying the number of cores to be used in the parallelized procedure. If *NULL* (default), the number of cores to be used is equal to the number of cores of the machine - 1.

seed
Seed to be used in the procedure.

multiple
A logical value. If *TRUE* (not default), the resulted p-values are adjunted by using one of several methods for multiple comparisons.

multiple.method
Correction method. See Details.

Details
The adjustment methods include the Bonferroni correction ("bonferroni") in which the p-values are multiplied by the number of comparisons. Less conservative corrections are also included by Holm (1979) ("holm"), Hochberg (1988) ("hochberg"), Hommel (1988) ("hommel"), Benjamini & Hochberg (1995) ("BH" or its alias 'fdr'), and Benjamini & Yekutieli (2001) ("BY"), respectively. A pass-through option ('none') is also included.

Value
A list containing the following items:

table
A data frame containing the null hypothesis tested, the values of the test statistics and the obtained p-values.

levels
Original levels of the variable z.

cluster
A vector of integers (from 1:k) indicating the cluster to which each curve is allocated.

centers
An object containing the centroids (mean of the curves pertaining to the same group).

curves
An object containing the fitted curves for each population.

Author(s)
Nora M. Villanueva and Marta Sestelo.

Examples

```r
library(clustcurv)
library(survival)
library(condSURV)
data(veteran)
data(colonCS)
```
Survival framework
res <- autoclustcurv(y = veteran$time, z = veteran$celltype,
weights = veteran$status, method = 'survival', algorithm = 'kmeans')

Regression framework
res2 <- autoclustcurv(y = barnacle5$DW, x = barnacle5$RC, z = barnacle5$F,
method = 'regression', algorithm = 'kmeans', nboot = 20)

autoplot.clustcurv

Visualization of clustcurv objects with ggplot2 graphics

Description
Useful for drawing the estimated functions grouped by color and the centroids (mean curve of the curves pertaining to the same group).

Usage
S3 method for class 'clustcurv'
autoplot(object = object, groups_by_colour = TRUE,
centers = FALSE, conf.int = FALSE, censor = FALSE, xlab = "Time",
ylab = "Survival", ...)

Arguments

object Object of clustcurv class.
groups_by_colour A specification for the plotting groups by color.
centers Draw the centroids (mean of the curves pertaining to the same group) into the plot. By default it is FALSE.
conf.int Only for method = "survival". Logical flag indicating whether to plot confidence intervals.
censor Only for method = "survival". Logical flag indicating whether to plot censors.
xlab A title for the x axis.
ylab A title for the y axis.
... Other options.

Details
See help page of the function autoplot.survfit.

Value
A ggplot object, so you can use common features from ggplot2 package to manipulate the plot.
Author(s)

Nora M. Villanueva and Marta Sestelo.

Examples

```r
library(survival)
library(clustcurv)
library(condSURV)
library(ggplot2)
library(ggfortify)

# Survival
data(veteran)
data(colonCS)
cl2 <- kclustcurv(y = veteran$time, weights = veteran$status,
z = veteran$celltype, k = 2, method = "survival", algorithm = "kmeans")
autoplot(cl2)
autoplot(cl2, groups_by_colour = FALSE)
autoplot(cl2, centers = TRUE)

# Regression
r2 <- kclustcurv(y = barnacle5$DW, x = barnacle5$RC,
z = barnacle5$F, k = 2, method = "regression", algorithm = "kmeans")
autoplot(r2)
autoplot(r2, groups_by_colour = FALSE)
autoplot(r2, centers = TRUE)

colonCSm <- data.frame(time = colonCS$Stime, status = colonCS$event,
                       nodes = colonCS$nodes)
table(colonCSm$nodes)
colonCSm$nodes[colonCSm$nodes == 0] <- NA
colonCSm <- na.omit(colonCSm)
colonCSm$nodes[colonCSm$nodes >= 10] <- 10
table(colonCSm$nodes) # ten levels
res <- autoclustcurv(y = colonCSm$time, weights = colonCSm$status,
z = colonCSm$nodes, method = "survival", algorithm = "kmeans",
nboot = 20)
autoplot(res)
autoplot(res, groups_by_colour = FALSE)
autoplot(res, centers = TRUE)
```
Description

This barnacle data set gives the measurements of the variables dry weight (in g.) and rostro-carinal length (in mm) for 5000 barnacles collected along the intertidal zone from five sites of the Atlantic coast of Galicia (Spain).

Usage

barnacle5

Format

barnacle5 is a data frame with 5000 cases (rows) and 3 variables (columns).

Note that barnacle data set from the npregfast package gives the same three variables (columns) but for two sites, thus 2000 cases (rows).

DW Dry weight (in g.)
RC Rostro-carinal length (in mm).
F Factor indicating the sites of harvest: laxe, lens, barca, laxe, and len.

Author(s)

Marta Sestelo

References

Examples

data(barnacle5)
head(barnacle5)
Description

This package provides a method for determining groups in multiple curves with an automatic selection of their number based on k-means or k-medians algorithms. The selection of the optimal number is provided by bootstrap methods. The methodology can be applied both in regression and survival framework.

Details

Package: clustcurv
Type: Package
License: MIT + file LICENSE

clustcurv is designed along lines similar to those of other R packages. This software helps the user determine groups in multiple curves (survival and regression curves). In addition, it enables both numerical and graphical outputs to be displayed (by means of ggplot2). The package provides the kclustcurv() function that groups the curves given a number k and the autoclustcurv() function that selects the optimal number of groups automatically through a bootstrap-based test. The autoplot() function let the user draws the resulted estimated curves coloured by groups.

For a listing of all routines in the clustcurv package type: library(help="clustcurv").

Author(s)

Nora M. Villanueva and Marta Sestelo

References

See Also

Useful links:
- https://github.com/noramvillanueva/clustcurv
- Report bugs at http://github.com/noramvillanueva/clustcurv/issues
kclustcurv

k-groups of multiple curves

Description
Function for grouping survival or regression curves, given a number k, based on the k-means or k-medians algorithm.

Usage
kclustcurv(y, x, z, weights = NULL, k, method = "survival", kbin = 50, h = -1, algorithm = "kmeans", seed = NULL)

Arguments
- **y**: Survival time (method = "survival") or response variable (method = "regression").
- **x**: Only for method = "regression". Dependent variable.
- **z**: Categorical variable indicating the population to which the observations belong.
- **weights**: Only for method = "survival". Censoring indicator of the survival time of the process; 0 if the total time is censored and 1 otherwise.
- **k**: An integer specifying the number of groups of curves to be performed.
- **method**: A character string specifying which method is used, "survival" or "regression".
- **kbin**: Size of the grid over which the survival functions are to be estimated.
- **h**: The kernel bandwidth smoothing parameter (for method = "regression").
- **algorithm**: A character string specifying which clustering algorithm is used, i.e., k-means("kmeans") or k-medians("kmedians").
- **seed**: Seed to be used in the procedure.

Value
A list containing the following items:
- **measure**: A measure of...
- **levels**: Original levels of the variable fac.
- **cluster**: A vector of integers (from 1:k) indicating the cluster to which each curve is allocated.
- **centers**: An object of class survfit containing the centroids (mean of the curves pertaining to the same group).
- **curves**: An object of class survfit containing the survival curves for each population.

Author(s)
Nora M. Villanueva and Marta Sestelo.
Examples

```r
library(clustcurv)
library(survival)
data(veteran)

# Survival: 2 groups k-means
s2 <- kclustcurv(y = veteran$time, weights = veteran$status,
                  z = veteran$celltype, k = 2, method = "survival", algorithm = "kmeans")
data.frame(level = s2$level, cluster = s2$cluster)

# Survival: 2 groups k-medians
s22 <- kclustcurv(y = veteran$time, weights = veteran$status,
                   z = veteran$celltype, k = 2, method = "survival", algorithm = "kmedians")
data.frame(level = s22$level, cluster = s22$cluster)

# Regression: 2 groups k-means
r2 <- kclustcurv(y = barnacle5$DW, x = barnacle5$RC,
                 z = barnacle5$F, k = 2, method = "regression", algorithm = "kmeans")
data.frame(level = r2$level, cluster = r2$cluster)
```
Index

autoclustcurv, 2
autoplot.clustcurv, 4
autoplot.survfit, 4

barnacle5, 6

clustcurv, 7
clustcurv-package (clustcurv), 7

kclustcurv, 8