Package ‘clusterlab’

September 5, 2019

Title Flexible Gaussian Cluster Simulator
Version 0.0.2.8
Date 2019-09-05
Author Christopher R John
Maintainer Christopher R John <chris.r.john86@gmail.com>
Depends R (>= 3.4.0)
Description Clustering is a central task in big data analyses and clusters are often Gaussian or near Gaussian. However, a flexible Gaussian cluster simulation tool with precise control over the size, variance, and spacing of the clusters in NXN dimensional space does not exist. This is why we created 'clusterlab'. The algorithm first creates X points equally spaced on the circumference of a circle in 2D space. These form the centers of each cluster to be simulated. Additional samples are added by adding Gaussian noise to each cluster center and concatenating the new sample co-ordinates. Then if the feature space is greater than 2D, the generated points are considered principal component scores and projected into N dimensional space using linear combinations using fixed eigenvectors. Through using vector rotations and scalar multiplication clusterlab can generate complex patterns of Gaussian clusters and outliers.
License AGPL-3
Encoding UTF-8
LazyData true
Imports ggplot2, reshape
Suggests knitr
VignetteBuilder knitr
RoxygenNote 6.0.1
NeedsCompilation no
Repository CRAN
Date/Publication 2019-09-05 08:20:02 UTC

R topics documented:

clusterlab ... 2
Description

This function runs clusterlab which is a simulator for Gaussian clusters. The default method positions cluster centers on the perimeter of a circle, before creating gaussian clusters around them and projecting the 2D co-ordinates into high dimensional feature space. This method allows control over the spacing, variance, and size of the clusters. Also included is a simple random cluster simulator where the spacing of the clusters cannot be controlled precisely, but the other parameters can.

Usage

```
clusterlab(centers = 1, r = 8, sdvec = NULL, alphas = NULL,
           centralcluster = FALSE, numbervec = NULL, features = 500,
           seed = NULL, rings = NULL, ringalphas = NULL, ringthetas = NULL,
           outliers = NULL, outlierdist = NULL, mode = c("circle", "random"),
           pcafontsize = 18, showplots = TRUE)
```

Arguments

- `centers` Numerical value: the number of clusters to simulate (N)
- `r` Numerical value: the number of units of the radius of the circle on which the clusters are generated
- `sdvec` Numerical vector: standard deviation of each cluster, N values are required
- `alphas` Numerical vector: how many units to push each cluster away from the initial placement, N values are required
- `centralcluster` Logical flag: whether to place a cluster in the middle of the rest
- `numbervec` Numerical vector: the number of samples in each cluster, N values are required
- `features` Numerical value: the number of features for the data
- `seed` Numerical value: fixes the seed if you want to repeat results, set the seed to 123 for example here
- `rings` Numerical value: the number of concentric rings to generate (previous settings apply to all ring clusters)
- `ringalphas` Numerical vector: a vector of numbers to push each ring out by, must equal number of rings
- `ringthetas` Numerical vector: a vector of angles to rotate each ring by, must equal number of rings
- `outliers` Numerical value: the number of outliers to create
- `outlierdist` Numerical value: a distance value to move the outliers by
- `mode` Character string: whether to use the standard method (circle), or simple random placement (random)
- `pcafontsize` Numerical value: the font size of the pca
- `showplots` Logical flag: whether to remove the plots
Value

A list, containing: 1) the synthetic data 2) cluster membership matrix

Examples

```r
synthetic <- clusterlab(centers=4, r=8, sdvec=c(2.5, 2.5, 2.5, 2.5),
                        alphas=c(1, 1, 1, 1), centralcluster=FALSE,
                        numbervec=c(50, 50, 50, 50)) # for a six cluster solution
```
Index

clusterlab, 2