Package ‘clustrd’

May 3, 2018

Type Package

Title Methods for Joint Dimension Reduction and Clustering

Description A class of methods that combine dimension reduction and clustering of continuous or categorical data. For continuous data, the package contains implementations of factorial K-means (Vichi and Kiers 2001; <DOI:10.1016/S0167-9473(00)00064-5>) and reduced K-means (De Soete and Carroll 1994; <DOI:10.1007/978-3-642-51175-2_24>); both methods that combine principal component analysis with K-means clustering. For categorical data, the package provides MCA K-means (Hwang, Dillon and Takane 2006; <DOI:10.1007/s11336-004-1173-x>), iFCB (Iodice D’Enza and Palumbo 2013, <DOI:10.1007/s00180-012-0329-x>) and Cluster Correspondence Analysis (van de Velden, Iodice D’Enza and Palumbo 2017; <DOI:10.1007/s11336-016-9514-0>), which combine multiple correspondence analysis with K-means.

Version 1.2.2

Date 2018-05-02

Author Angelos Markos [aut, cre], Alfonso Iodice D’Enza [aut], Michel van de Velden [ctb]

Maintainer Angelos Markos <amarkos@gmail.com>

Depends ggplot2, dummies, grid

Imports corpcor, GGally, fpc, cluster, dplyr, plyr, ggrepel, ca, stats

License GPL (>= 2)

NeedsCompilation no

Repository CRAN

Date/Publication 2018-05-03 17:45:42 UTC

R topics documented:

clusmca ... 2
cluspca ... 4
cmc ... 7
hsq ... 8
macro ... 10
plot.clusmca .. 10
plot.cluspca ... 12
tuneclus ... 13
clusmca

Joint dimension reduction and clustering of categorical data.

Description

This function implements MCA K-means (Hwang, Dillon and Takane, 2006), i-FCB (Iodice D’ Enza and Palumbo, 2013) and Cluster Correspondence Analysis (van de Velden, Iodice D’ Enza and Palumbo, 2017). The methods combine variants of Correspondence Analysis for dimension reduction with K-means for clustering.

Usage

clusmca(data, nclus, ndim, method=c("clusCA", "iFCB", "MCAk"), alphak = .5, nstart = 100, smartStart = NULL, gamma = TRUE, seed = 1234)

S3 method for class 'clusmca'
print(x, ...)

S3 method for class 'clusmca'
summary(object, ...)

S3 method for class 'clusmca'
fitted(object, mth = c("centers", "classes"), ...)

Arguments

data
 Dataset with categorical variables
nclus
 Number of clusters (nclus = 1 returns the MCA solution; see Details)
ndim
 Dimensionality of the solution
method
 Specifies the method. Options are MCAk for MCA K-means, iFCB for Iterative Factorial Clustering of Binary variables and clusCA for Cluster Correspondence Analysis (default = "clusCA")
alphak
 Non-negative scalar to adjust for the relative importance of MCA (alphak = 1) and K-means (alphak = 0) in the solution (default = .5). Works only in combination with method = "MCAk"
nstart
 Number of random starts (default = 100)
smartStart
 If NULL then a random cluster membership vector is generated. Alternatively, a cluster membership vector can be provided as a starting solution
gamma
 Scaling parameter that leads to similar spread in the object and variable scores (default = TRUE)
seed
 An integer that is used as argument by set.seed() for offsetting the random number generator when smartStart = NULL. The default value is 1234
For the print method, a class of clusmca

object For the summary method, a class of clusmca

mth For the fitted method, a character string that specifies the type of fitted value to return: "centers" for the observations center vector, or "class" for the observations cluster membership value

... Not used

Details

For the K-means part, the algorithm of Hartigan-Wong is used by default.

The hidden print and summary methods print out some key components of an object of class clusmca.

The hidden fitted method returns cluster fitted values. If method is "classes", this is a vector of cluster membership (the cluster component of the "clusmca" object). If method is "centers", this is a matrix where each row is the cluster center for the observation. The rownames of the matrix are the cluster membership values.

When nclus = 1 the function returns the MCA solution with objects in principal and variables in standard coordinates (plot(object) shows the corresponding asymmetric biplot).

Value

<table>
<thead>
<tr>
<th>attr</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>obscoord</td>
<td>Object scores</td>
</tr>
<tr>
<td>attcoord</td>
<td>Variable scores</td>
</tr>
<tr>
<td>centroid</td>
<td>Cluster centroids</td>
</tr>
<tr>
<td>cluster</td>
<td>Cluster membership</td>
</tr>
<tr>
<td>criterion</td>
<td>Optimal value of the objective criterion</td>
</tr>
<tr>
<td>size</td>
<td>The number of objects in each cluster</td>
</tr>
<tr>
<td>nstart</td>
<td>A copy of nstart in the return object</td>
</tr>
<tr>
<td>odata</td>
<td>A copy of data in the return object</td>
</tr>
</tbody>
</table>

References

See Also

cluspca, tuneclus
Examples

data(cmc)
Preprocessing: values of wife's age and number of children were categorized
into three groups based on quartiles
cmc$W_AGE = ordered(cut(cmc$W_AGE, c(16,26,39,49), include.lowest = TRUE))
levels(cmc$W_AGE) = c("16-26","27-39","40-49")
cmc$NCHILD = ordered(cut(cmc$NCHILD, c(0,1,4,17), right = FALSE))
levels(cmc$NCHILD) = c("0","1-4","5 and above")

#Cluster Correspondence Analysis solution with 3 clusters in 2 dimensions
#after 10 random starts
outclusCA = clusmca(cmc, 3, 2, method = "clusCA", nstart = 10)
outclusCA
#Scatterplot (dimensions 1 and 2)
plot(outclusCA)

#MCA K-means solution with 3 clusters in 2 dimensions after 10 random starts
outMCak = clusmca(cmc, 3, 2, method = "MCak", nstart = 10)
outMCak
#Scatterplot (dimensions 1 and 2)
plot(outMCak)

#nclus = 1 just gives the MCA solution
#outMCA = clusmca(cmc, 1, 2)
#outMCA
#Scatterplot (dimensions 1 and 2)
#asymmetric biplot with scaling gamma = TRUE
#plot(outMCA)

cluspca | Joint dimension reduction and clustering of continuous data.

Description

This function implements Factorial K-means (Vichi and Kiers, 2001) and Reduced K-means (De Soete and Carroll, 1994), as well as a compromise version of these two methods. The methods combine Principal Component Analysis for dimension reduction with K-means for clustering.

Usage

cluspca(data, nclus, ndim, alpha = NULL, method = c("RKM","FKM"),
center = TRUE, scale = TRUE, rotation = "none", nstart = 100,
smartStart = NULL, seed = 1234)

S3 method for class 'cluspca'
print(x, ...)

S3 method for class 'cluspca'
summary(object, ...)
S3 method for class 'cluspca'

fitted(object, mth = c("centers", "classes"), ...)

Arguments

- **data**
 - Dataset with metric variables

- **nclus**
 - Number of clusters (nclus = 1 returns the PCA solution; see Details)

- **ndim**
 - Dimensionality of the solution

- **method**
 - Specifies the method. Options are RKM for reduced K-means and FKM for factorial K-means (default = "RKM")

- **alpha**
 - Adjusts for the relative importance of RKM and FKM in the objective function; alpha = 0.5 leads to reduced K-means, alpha = 0 to factorial K-means, and alpha = 1 reduces to the tandem approach

- **center**
 - A logical value indicating whether the variables should be shifted to be zero centered (default = TRUE)

- **scale**
 - A logical value indicating whether the variables should be scaled to have unit variance before the analysis takes place (default = TRUE)

- **rotation**
 - Specifies the method used to rotate the factors. Options are none for no rotation, varimax for varimax rotation with Kaiser normalization and promax for promax rotation (default = "none")

- **nstart**
 - Number of starts (default = 100)

- **smartStart**
 - If NULL then a random cluster membership vector is generated. Alternatively, a cluster membership vector can be provided as a starting solution

- **seed**
 - An integer that is used as argument by set.seed() for offsetting the random number generator when smartStart = NULL. The default value is 1234

- **x**
 - For the print method, a class of clusmca

- **object**
 - For the summary method, a class of clusmca

- **mth**
 - For the fitted method, a character string that specifies the type of fitted value to return: "centers" for the observations center vector, or "classes" for the observations cluster membership value

- **...**
 - Not used

Details

For the K-means part, the algorithm of Hartigan-Wong is used by default.

The hidden print and summary methods print out some key components of an object of class cluspca.

The hidden fitted method returns cluster fitted values. If method is "classes", this is a vector of cluster membership (the cluster component of the "cluspca" object). If method is "centers", this is a matrix where each row is the cluster center for the observation. The rownames of the matrix are the cluster membership values.
Value

- **obscoord**: Object scores
- **attcoord**: Variable scores
- **centroid**: Cluster centroids
- **cluster**: Cluster membership
- **criterion**: Optimal value of the objective function
- **size**: The number of objects in each cluster
- **scale**: A copy of scale in the return object
- **center**: A copy of center in the return object
- **nstart**: A copy of nstart in the return object
- **odata**: A copy of data in the return object

References

See Also

clusmca, tuneclus

Examples

```r
#Reduced K-means with 3 clusters in 2 dimensions after 10 random starts
data(macro)
outRKM = cluspca(macro, 3, 2, method = "RKM", rotation = "varimax", scale = FALSE, nstart = 10)
summary(outRKM)
#Scatterplot (dimensions 1 and 2) and cluster description plot
plot(outRKM, cludesc = TRUE)

#Factorial K-means with 3 clusters in 2 dimensions
#with a Reduced K-means starting solution
data(macro)
outFKM = cluspca(macro, 3, 2, method = "FKM", rotation = "varimax",
scale = FALSE, smartStart = outRKM$cluster)
outFKM
#Scatterplot (dimensions 1 and 2) and cluster description plot
plot(outFKM, cludesc = TRUE)

#To get the Tandem approach (PCA(SVD) + K-means)
outTandem = cluspca(macro, 3, 2, alpha = 1)
plot(outTandem)

#nclus = 1 just gives the PCA solution
```
Description

Data of married women in Indonesia who were not pregnant (or did not know they were pregnant) at the time of the survey. The dataset contains demographic and socio-economic characteristics of the women along with their preferred method of contraception (no use, long-term methods, short-term methods).

Usage

data(cmc)

Format

A data frame containing 1,437 observations on the following 10 variables.

- **W_AGE** wife’s age in years.
- **W_EDU** ordered factor indicating wife’s education, with levels "low", "2", "3" and "high".
- **H_EDU** ordered factor indicating wife’s education, with levels "low", "2", "3" and "high".
- **NCHILD** number of children.
- **W_REL** factor indicating wife’s religion, with levels "non-Islam" and "Islam".
- **W_WORK** factor indicating if the wife is working.
- **H_OCC** factor indicating husband’s occupation, with levels "1", "2", "3" and "4". The labels are not known.
- **SOL** ordered factor indicating the standard of living index with levels "low", "2", "3" and "high".
- **MEDEXP** factor indicating media exposure, with levels "good" and "not good".
- **CM** factor indicating the contraceptive method used, with levels "no-use", "long-term" and "short-term".

Source

This dataset is part of the 1987 National Indonesia Contraceptive Prevalence Survey and was created by Tjen-Sien Lim. It has been taken from the UCI Machine Learning Repository at http://archive.ics.uci.edu/ml/.

References

Examples
data(cmc)

hsq

Description
The dataset was collected with an interactive online version of the Humor Styles Questionnaire (HSQ) which assesses four independent ways in which people express and appreciate humor (Martin et al. 2003): affiliative, defined as the benign uses of humor to enhance one’s relationships with others; self-enhancing, indicating uses of humor to enhance the self; aggressive, the use of humor to enhance the self at the expense of others; self-defeating the use of humor to enhance relationships at the expense of oneself. The main part of the questionnaire consisted of 32 statements rated from 1 to 5 according to the respondents’ level of agreement. Three more questions were included (age, gender and self-reported accuracy of answer). The number of respondents is 993, after removing the cases with missing values in the 32 statements.

Usage
data("hsq")

Format
A data frame with 993 observations on 35 variables. The first 32 variables are Likert-type statements with 5 response categories, ranging from 1 (strong agreement) to 5 (strong disagreement).

AF1 I usually don’t laugh or joke around much with other people
AF2 If I am feeling depressed, I can usually cheer myself up with humor
AF3 If someone makes a mistake, I will often tease them about it
AF4 I let people laugh at me or make fun at my expense more than I should
AF5 I don’t have to work very hard at making other people laugh - I seem to be a naturally humorous person
AF6 Even when I’m by myself, I’m often amused by the absurdities of life
AF7 People are never offended or hurt by my sense of humor
AF8 I will often get carried away in putting myself down if it makes my family or friends laugh
SE1 I rarely make other people laugh by telling funny stories about myself
SE2 If I am feeling upset or unhappy I usually try to think of something funny about the situation to make myself feel better
SE3 When telling jokes or saying funny things, I am usually not very concerned about how other people are taking it
SE4 I often try to make people like or accept me more by saying something funny about my own weaknesses, blunders, or faults
SE5 I laugh and joke a lot with my closest friends
SE6 My humorous outlook on life keeps me from getting overly upset or depressed about things
SE7 I do not like it when people use humor as a way of criticizing or putting someone down
SE8 I don’t often say funny things to put myself down
AG1 I usually don’t like to tell jokes or amuse people
AG2 If I’m by myself and I’m feeling unhappy, I make an effort to think of something funny to cheer myself up
AG3 Sometimes I think of something that is so funny that I can’t stop myself from saying it, even if it is not appropriate for the situation
AG4 I often go overboard in putting myself down when I am making jokes or trying to be funny
AG5 I enjoy making people laugh
AG6 If I am feeling sad or upset, I usually lose my sense of humor
AG7 I never participate in laughing at others even if all my friends are doing it
AG8 When I am with friends or family, I often seem to be the one that other people make fun of or joke about
SD1 I don’t often joke around with my friends
SD2 It is my experience that thinking about some amusing aspect of a situation is often a very effective way of coping with problems
SD3 If I don’t like someone, I often use humor or teasing to put them down
SD4 If I am having problems or feeling unhappy, I often cover it up by joking around, so that even my closest friends don’t know how I really feel
SD5 I usually can’t think of witty things to say when I’m with other people
SD6 I don’t need to be with other people to feel amused - I can usually find things to laugh about even when I’m by myself
SD7 Even if something is really funny to me, I will not laugh or joke about it if someone will be offended
SD8 Letting others laugh at me is my way of keeping my friends and family in good spirits

References

Examples
data(hsq)
Economic Indicators of 20 OECD countries for 1999

Description

Data on the macroeconomic performance of national economies of 20 countries, members of the OECD (September 1999). The performance of the economies reflects the interaction of six main economic indicators (percentage change from the previous year): gross domestic product (GDP), leading indicator (LI), unemployment rate (UR), interest rate (IR), trade balance (TB), net national savings (NNS).

Usage

data(macro)

Format

A data frame with 20 observations on the following 6 variables.

GDP numeric
LI numeric
UR numeric
IR numeric
TB numeric
NNS numeric

References

plot.clusmca

Plotting function for clusmca() output.

Description

Plotting function that creates a scatterplot of the object scores and/or the attribute scores and the cluster centroids. Optionally, the function returns a series of barplots showing the standardized residuals per attribute for each cluster.

Usage

```r
# S3 method for class 'clusmca'
plot(x, dims = c(1,2), what = c(TRUE,TRUE),
     cludesc = FALSE, toplotres = 20, attlabs = NULL, binary = FALSE, subplot = FALSE, ...)
```
plot.clusmca

Arguments

- **x**: Object returned by `clusmca()`
- **dims**: Numerical vector of length 2 indicating the dimensions to plot on horizontal and vertical axes respectively; default is first dimension horizontal and second dimension vertical
- **what**: Vector of two logical values specifying the contents of the plots. First entry indicates whether a scatterplot of the objects is displayed in principal coordinates. Second entry indicates whether a scatterplot of the attribute categories is displayed in principal coordinates. Cluster centroids are always displayed. The default is `c(TRUE, TRUE)` and the resultant plot is a biplot of both objects and attribute categories with gamma-based scaling (see van de Velden et al., 2017)
- **cludesc**: A logical value indicating whether a series of barplots is produced showing the largest (in absolute value) standardized residuals per attribute for each cluster (default = FALSE)
- **topstdres**: Number of largest standardized residuals used to describe each cluster (default = 20). Works only in combination with `cludesc = TRUE`
- **attlabs**: Vector of custom attribute labels; if not provided, default labeling is applied
- **subplot**: A logical value indicating whether a subplot with the full distribution of the standardized residuals will appear at the bottom left corner of the corresponding plots. Works only in combination with `cludesc = TRUE`
- **binary**: A logical value indicating whether the visualization refers to a dataset of binary variables
- **...**: Further arguments to be transferred to `clusmca()`

Value

The function returns a ggplot2 scatterplot of the solution obtained via `clusmca()` that can be further customized using the ggplot2 package. When `cludesc = TRUE` the function also returns a series of ggplot2 barplots showing the largest (or all) standardized residuals per attribute for each cluster.

References

See Also

`plot.cluspca`
Examples

data("hsq")
Cluster Correspondence Analysis with 3 clusters in 2 dimensions after 10 random starts
outclusMCA = clusmca(hsq[,1:8], 3, 2, nstart = 10)
Save the ggplot2 scatterplot
map = plot(outclusMCA)$map
Customization (adding titles)
map + ggtitle(paste("Cluster CA plot of the hsq data: 3 clusters of sizes ",
paste(outclusMCA$size, collapse = ", ", sep = ",\n")) +
xlab("Dim. 1") + ylab("Dim. 2") +
theme(plot.title = element_text(size = 10, face = "bold", hjust = 0.5))

data("hsq")
i-FCB with 4 clusters in 3 dimensions after 10 random starts
outclusMCA = clusmca(hsq[,1:8], 4, 3, method = "iFCB", nstart= 10)
Scatterplot with the observations only (dimensions 1 and 3)
and cluster description plots showing the 20 largest std. residuals
(with the full distribution showing in subplots)
plot(outclusMCA, dim = c(1,3), what = c(TRUE, FALSE), cludesc = TRUE, subplot = TRUE)

plot.cluspca # Plotting function for cluspca() output.

Description

Plotting function that creates a scatterplot of the objects, a correlation circle of the variables or a
biplot of both objects and variables. Optionally, it returns a parallel coordinate plot showing cluster
means.

Usage

S3 method for class 'cluspca'
plot(x, dims = c(1, 2), cludesc = FALSE, what = c(TRUE, TRUE), attlabs, ...)

Arguments

x Object returned by cluspca()
dims Numerical vector of length 2 indicating the dimensions to plot on horizontal
 and vertical axes respectively; default is first dimension horizontal and second
dimension vertical
what Vector of two logical values specifying the contents of the plots. First entry
 indicates whether a scatterplot of the objects and cluster centroids is displayed
 and the second entry whether a correlation circle of the variables is displayed.
 The default is c(TRUE, TRUE) and the resultant plot is a biplot of both objects
 and variables
cludesc A logical value indicating if a parallel coordinate plot showing cluster means is
 produced (default = FALSE)
Vector of custom attribute labels; if not provided, default labeling is applied
Further arguments to be transferred to cluspca()

The function returns a ggplot2 scatterplot of the solution obtained via cluspca() that can be further customized using the ggplot2 package. When cludesc = TRUE the function also returns a ggplot2 parallel coordinate plot.

See Also
plot.clusmca

Examples

```
data("macro")
#Factorial K-means (3 clusters in 2 dimensions) after 100 random starts
outFKM = cluspca(macro, 3, 2, method = "FKM", rotation = "varimax")
#Scatterplot (dimensions 1 and 2) and cluster description plot
plot(outFKM, cludesc = TRUE)

data("iris", package = "datasets")
#Compromise solution between PCA and Reduced K-means
#on the iris dataset (3 clusters in 2 dimensions) after 100 random starts
outclusPCA = cluspca(iris[, -5], 3, 2, alpha = 0.3, rotation = "varimax")
table(outclusPCA$cluster, iris[, 5])
#Save the ggplot2 scatterplot
map = plot(outclusPCA)$map
#Customization (adding titles)
map + ggtitle(paste("A compromise solution between RKM and FKM on the iris: 
3 clusters of sizes ", paste(outclusPCA$size, collapse = ", ", sep = "")),
+ xlab("Dimension 1") + ylab("Dimension 2") +
+ theme(plot.title = element_text(size = 10, face = "bold", hjust = 0.5))
```
Usage

tuneclus(data, nclusrange = 3:4, ndimrange = 2:3,
method = c("RKM","FKM","clusCA","iFCB","MCAk"),
criterion = "asw", dst = "full", alpha = NULL, alphak = NULL,
center = TRUE, scale = TRUE, rotation = "none", nstart = 100,
smartStart = NULL, seed = 1234)

S3 method for class 'tuneclus'
print(x, ...)

S3 method for class 'tuneclus'
summary(object, ...)

S3 method for class 'tuneclus'
fitted(object, mth = c("centers", "classes"), ...)

Arguments

data
Continuous or Categorical dataset

nclusrange
An integer vector with the range of numbers of clusters which are to be compared by the cluster validity criteria. Note: the number of clusters should be greater than one

ndimrange
An integer vector with the range of dimensions which are to be compared by the cluster validity criteria

method
Specifies the method. Options are RKM for reduced K-means, FKM for factorial K-means, MCAk for MCA K-means, iFCB for Iterative Factorial Clustering of Binary variables and clusCA for Cluster Correspondence Analysis

criterion
One of asw, ch or crit. Determines whether average silhouette width, Calinski-Harabasz index or objective value of the selected method is used (default = "asw")

dst
Specifies the data used to compute the distances between objects. Options are full for the original data (after possible scaling) and low for the object scores in the low-dimensional space (default = "full")

alpha
Adjusts for the relative importance of RKM and FKM in the objective function; alpha = 1 reduces to PCA, alpha = 0.5 to reduced K-means, and alpha = 0 to factorial K-means

alphak
Non-negative scalar to adjust for the relative importance of MCA (alphak = 1) and K-means (alphak = 0) in the solution (default = .5). Works only in combination with method = "MCAk"

center
A logical value indicating whether the variables should be shifted to be zero centered (default = TRUE)

scale
A logical value indicating whether the variables should be scaled to have unit variance before the analysis takes place (default = TRUE)
rotation Specifies the method used to rotate the factors. Options are none for no rotation, varimax for varimax rotation with Kaiser normalization and promax for promax rotation (default = "none")
nstart Number of starts (default = 100)
smartStart If NULL then a random cluster membership vector is generated. Alternatively, a cluster membership vector can be provided as a starting solution
seed An integer that is used as argument by set.seed() for offsetting the random number generator when smartStart = NULL. The default value is 1234
x For the print method, a class of clusmca
object For the summary method, a class of clusmca
mth For the fitted method, a character string that specifies the type of fitted value to return: "centers" for the observations center vector, or "class" for the observations cluster membership value
... Not used

Details

For the K-means part, the algorithm of Hartigan-Wong is used by default.
The hidden print and summary methods print out some key components of an object of class tuneclus.
The hidden fitted method returns cluster fitted values. If method is "classes", this is a vector of cluster membership (the cluster component of the "tuneclus" object). If method is "centers", this is a matrix where each row is the cluster center for the observation. The rownames of the matrix are the cluster membership values.

Value

clusobjbest The output of the optimal run of cluspca() or clusmca()
nclusbest The optimal number of clusters
ndimbest The optimal number of dimensions
critbest The optimal criterion value for nclusbest clusters and ndimbest dimensions
critgrid Matrix of size nclusrange x ndimrange with the criterion values for the specified ranges of clusters and dimensions (values are calculated only when the number of clusters is greater than the number of dimensions; otherwise values in the grid are left blank)

References

See Also

cluspca, clusmca
Examples

Reduced K-means for a range of clusters and dimensions
data(macro)

Cluster quality assessment based on the average silhouette width # in the low dimensional space
bestRKM = tuneclus(macro, 3:4, 2:3, method = "RKM", criterion = "asw", dst = "low", nstart = 10)
bestRKM
plot(bestRKM)

Cluster Correspondence Analysis for a range of clusters and dimensions
data(hsq)

Cluster quality assessment based on the average silhouette width # in the full dimensional space
bestclusCA = tuneclus(hsq[,1:4], 3:4, 2:3, method = "clusCA", criterion = "asw", nstart = 10)
bestclusCA
plot(bestclusCA)
Index

*Topic datasets
 cmc, 7
 hsq, 8
 macro, 10

clusmca, 2, 6, 15
cluspca, 3, 4, 15
cmc, 7

fitted.clusmca (clusmca), 2
fitted.cluspca (cluspca), 4
fitted.tuneclus (tuneclus), 13

hsq, 8

macro, 10

plot.clusmca, 10, 13
plot.cluspca, 11, 12
print.clusmca (clusmca), 2
print.cluspca (cluspca), 4
print.tuneclus (tuneclus), 13

summary.clusmca (clusmca), 2
summary.cluspca (cluspca), 4
summary.tuneclus (tuneclus), 13

tuneclus, 3, 6, 13