Package ‘cmvnorm’

October 12, 2022

Type Package
Title The Complex Multivariate Gaussian Distribution
Version 1.0-7
Depends emulator (>= 1.2-21)
Suggests knitr
Imports elliptic
Maintainer Robin K. S. Hankin <hankin.robin@gmail.com>
Description Various utilities for the complex multivariate Gaussian distribution and complex Gaussian processes.
VignetteBuilder knitr
License GPL-2
URL https://github.com/RobinHankin/cmvnorm
BugReports https://github.com/RobinHankin/cmvnorm/issues
NeedsCompilation no
Author Robin K. S. Hankin [aut, cre] (<https://orcid.org/0000-0001-5982-0415>)
Repository CRAN
Date/Publication 2022-01-31 00:00:02 UTC

R topics documented:
cmvnorm-package .. 2
corr_complex .. 3
isHermitian .. 5
Mvcnorm ... 6
setreal .. 7
var .. 8
wishart .. 9

Index 11
cmvnorm-package
The Complex Multivariate Gaussian Distribution

Description

Various utilities for the complex multivariate Gaussian distribution and complex Gaussian processes.

Details

The DESCRIPTION file:

```
Package: cmvnorm
Type: Package
Title: The Complex Multivariate Gaussian Distribution
Version: 1.0-7
Authors@R: person(given=c("Robin", "K. S."), family="Hankin", role = c("aut","cre"), email="hankin.robin@gmail.com", comment=c(ORCID = "0000-0001-5982-0415"))
Depends: emulator (>= 1.2-21)
Suggests: knitr
Imports: elliptic
Maintainer: Robin K. S. Hankin <hankin.robin@gmail.com>
Description: Various utilities for the complex multivariate Gaussian distribution and complex Gaussian processes.
VignetteBuilder: knitr
License: GPL-2
URL: https://github.com/RobinHankin/cmvnorm
BugReports: https://github.com/RobinHankin/cmvnorm/issues
Author: Robin K. S. Hankin [aut, cre] (<https://orcid.org/0000-0001-5982-0415>)
```

Index of help topics:

- `Im<-` Manipulate real or imaginary components of an object
- `Mvnorm` Multivariate complex Gaussian density and random deviates
- `cmvnorm-package` The Complex Multivariate Gaussian Distribution
- `corr_complex` Complex Gaussian processes
- `isHermitian` Is a Matrix Hermitian?
- `var` Variance and standard deviation of complex vectors
- `wishart` The complex Wishart distribution

Generalizing the real multivariate Gaussian distribution to the complex case is not straightforward but one common approach is to replace the real symmetric variance matrix with a Hermitian positive-definite matrix. The **cmvnorm** package provides some functionality for the resulting density function.
corr_complex

Author(s)

NA

Maintainer: Robin K. S. Hankin <hankin.robin@gmail.com>

References

Examples

S1 <- 4+diag(5)
S2 <- S1
S2[1,5] <- 4+1i
S2[5,1] <- 4-1i # Hermitian

rcmvnorm(10,sigma=S1)
rcmvnorm(10,mean=rep(1,5),sigma=S2)
dcmvnorm(rep(1,5),sigma=S2)

corr_complex Complex Gaussian processes

Description

Various utilities for investigating complex Gaussian processes

Usage

corr_complex(z1, z2 = NULL, distance.function = complex_CF, means =
NULL, scales = NULL, pos.def.matrix = NULL)
complex_CF(z1,z2, means, pos.def.matrix)
scales.likelihood.complex(pos.def.matrix, scales, means, zold, z,
give_log = TRUE, func = regressor.basis)
interpolant.quick.complex(x, d, zold, Ain, scales = NULL, pos.def.matrix = NULL,
means=NULL, func = regressor.basis, give.Z = FALSE,
distance.function = corr_complex, ...)
Arguments

\(z, z_1, z_2 \) Points in \(C^n \)

distance.function

Function giving the (complex) covariance between two points in \(C^n \)

means, pos.def.matrix, scales

In function complex_CF(), the mean and covariance matrix of the distribution whose characteristic function is used to give the covariance matrix; scales is used to specify the diagonal of pos.def.matrix if the off-diagonal elements are zero

zold, d, give_log, func, x, Ainv, give.Z,...

Direct analogues of the arguments in interpolant() and scales.likelihood() in the emulator package

Details

• Function complex_CF() returns a (slightly reparameterized) characteristic function of a complex Gaussian distribution. The covariance is given by

\[
c(t) = \exp(i \text{Re}(t^* \mu) - t^* B t)
\]

where \(t = x - x' \) is interpreted as the distance between two observations, \(\mu \) is the mean of the distribution (which is in general a complex vector), and \(B \) a positive-definite matrix.

• Function corr_complex() is the complex analogue of corr.matrix(). It returns a matrix with entry \((i,j) \) equal to the covariance of the process at observation \(i \) and observation \(j \), or \(\text{cov}(\eta(x_i), \eta(x_j)) \). The elements are calculated by complex_CF().

This function includes only a single method, that of nested calls to apply(). I could not figure out how to generalize method 1 of corr.matrix() to the complex case.

• Function scales.likelihood.complex() is a complex version of scales.likelihood() which takes a positive definite matrix and a mean. The formula used is

\[
(\sigma^2)^{-(n-q)} |A|^{-1} |H^* A^{-1} H|^{-1}
\]

. Here and elsewhere, \(A^* \) means the complex conjugate of the transpose.

• Function interpolant.quick.complex() is a complex version of interpolant.quick().

\[
h(x)^* \hat{\beta} + t(x)^* A^{-1} (y - H \hat{\beta})
\]

This is the complex version of Oakley’s equation 2.30 or Hankin’s equation 5.

More details are given in the package vignette.

Author(s)

Robin K. S. Hankin

References

Examples

```r
complex_CF(c(1,1i),c(1,-1i),means=c(1i,1i),pos.def.matrix=diag(2))
V <- latin.hypercube(7,2,complex=TRUE)

cm <- c(1,1+1i) # "complex mean"
cs <- matrix(c(2,1i,-1i,1,2),2,2) # "complex scales"
tb <- c(1,1i,1-1i) # "true beta"

A <- corr_complex(V,means=cm,pos.def.matrix=cs)
Ainv <- solve(A)
z <- drop(rcmvnorm(n=1,mean=regressor.multi(V) %*% tb, sigma=A))

betahat.fun(V,Ainv,z) # should be close to 'tb'
#scales.likelihood.complex(cs,cm,V,z) # log-likelihood evaluated true parameters

interpolant.quick.complex(x=0.1i+V[1:3,],d=z,zold=V,Ainv=Ainv,pos.def.matrix=cs,means=cm)
```

isHermitian

Is a Matrix Hermitian?

Description

Returns TRUE if a matrix is Hermitian or Hermitian positive-definite.

Usage

```r
isHermitian(x, tol = 100 * .Machine$double.eps)
ishpd(x, tol = 100 * .Machine$double.eps)
zapim(x, tol = 100 * .Machine$double.eps)
```

Arguments

- `x` A square matrix
- `tol` Tolerance for numerical scruff

Details

Functions `isHermitian()` and `ishpd()` return a Boolean, indicating whether the argument is Hermitian or Hermitian positive definite respectively. Function `zapim()` zaps small imaginary parts of a vector, returning real if all elements are so zapped.
Mvnorm

Multivariate complex Gaussian density and random deviates

Author(s)
Robin K. S. Hankin

Examples

```r
v <- 2^(1:30)
zapim(v + 1i * exp(-v))
```

```r
ishpd(matrix(c(1,0.1i,-0.1i,1),2,2)) # should be TRUE
isHermitian(matrix(c(1,3i,-3i,1),2,2)) # should be TRUE
ishpd(rcwis(6,2)) # should be TRUE
```

Description

Density function and a random number generator for the multivariate complex Gaussian distribution.

Usage

```r
rcnorm(n)
dcmvnorm(z, mean, sigma, log = FALSE)
rcmvnorm(n, mean = rep(0, nrow(sigma)), sigma = diag(length(mean)),
        method = c("svd", "eigen", "chol"),
        tol = 100 * .Machine$double.eps)
```

Arguments

- `z`: Complex vector or matrix of quantiles. If a matrix, each row is taken to be a quantile
- `n`: Number of observations
- `mean`: Mean vector
- `sigma`: Covariance matrix, Hermitian positive-definite
- `tol`: Numerical tolerance term for verifying positive definiteness
- `log`: In `dcmvnorm()`, Boolean with default `FALSE` meaning to return the Gaussian density function, and `TRUE` meaning to return the logarithm
- `method`: Specifies the decomposition used to determine the positive-definite matrix square root of `sigma`. Possible methods are eigenvalue decomposition ("eigen", default), and singular value decomposition ("svd")
Details

Function `dcmvnorm()` is the density function of the complex multivariate normal (Gaussian) distribution:

\[p(z) = \exp \left(-z^\ast \Gamma z \right) / |\pi \Gamma| \]

Function `rcnrm()` is a low-level function designed to generate observations drawn from a standard complex Gaussian. Function `rcmvnorm()` is a user-friendly wrapper for this.

Author(s)

Robin K. S. Hankin

References

Examples

```r
S <- emulator::cprod(rcmvnorm(3,mean=c(1,1i),sigma=diag(2)))
rcmvnorm(10,sigma=S)
rcmvnorm(10,mean=c(0,1+10i),sigma=S)

# Now try and estimate the mean (viz 1,1i) and variance (S) from a
# random sample:

n <- 101
z <- rcmvnorm(n,mean=c(0,1+10i),sigma=S)
xbar <- colMeans(z)
Sbar <- cprod(sweep(z,2,xbar))/n
```

setreal

Manipulate real or imaginary components of an object

Description

Manipulate real or imaginary components of an object
Usage

\begin{verbatim}
Im(x) <- value
Re(x) <- value
\end{verbatim}

Arguments

- **x**: Complex-valued object
- **value**: Real-valued object

Author(s)

Robin K. S. Hankin

Examples

\begin{verbatim}
A <- matrix(c(1,0.1i,-0.1i,1),2,2)
Im(A) <- Im(A)*3
Re(A) <- matrix(c(5,2,2,5),2,2)
\end{verbatim}

| var | Variance and standard deviation of complex vectors |

Description

Complex generalizations of `stats::sd()` and `stats::var()`

Usage

\begin{verbatim}
var(x, y=NULL, na.rm=FALSE, use)
sd(x, na.rm=FALSE)
\end{verbatim}

Arguments

- **x, y**: Complex vector or matrix
- **na.rm**: Boolean with default FALSE meaning to leave NA values present and TRUE meaning to remove them
- **use**: Ignored
Details

Intended to be broadly compatible with `stats::sd()` and `stats::var()`.

If given real values, `var()` and `sd()` return the variance and standard deviation as per ordinary real analysis. If given complex values, returns the complex generalization in which Hermitian transposes are used.

If \(z \) is a complex matrix, `var(z)` returns the variance of the rows.

These functions use \(n - 1 \) on the denominator purely for consistency with `stats::var()` (for the record, I disagree with the rationale for \(n - 1 \)).

Author(s)

Robin K. S. Hankin

Examples

```r
sd(rcnorm(10)) # imaginary component suppressed by zapim()

var(rcmvnorm(1e5,mean=c(0,0)))
```

Description

Returns an observation drawn from the complex Wishart distribution. To sample from the inverse complex Wishart distribution (or indeed the complex inverse Wishart distribution), use `solve(rcwis(...))`.

Usage

```r
rcwis(n, S)
```

Arguments

- `n` Integer; degrees of freedom
- `S` Variance matrix. If an integer, use `diag(nrow=S)`

Value

Returns a (semi-) positive definite Hermitian matrix the same size as argument `S`

Note

The first argument of `rcwis()` is `n`, by universal statistics convention. But in the R world, functions returning random observations (such as `runif()`) generally reserve argument `n` for the number of observations to return. Although `rchisq()` uses `df` for the number of degrees of freedom.
Author(s)
Robin K. S. Hankin

Examples

rcwis(10,2)
eigen(rcwis(7,3),TRUE,TRUE) # all positive
eigen(rcwis(3,7),TRUE,TRUE) # 4 positive, 3 zero

crwis(10,crwis(10,3))
Index

* complex
 isHermitian, 5
 Mvn, 6
 setreal, 7
* distribution
 Mvn, 6
* math
 setreal, 7
* multivariate
 Mvn, 6
* package
 cmvnorm-package, 2
 cmvnorm (cmvnorm-package), 2
 cmvnorm-package, 2
 complex_CF (corr_complex), 3
 corr_complex, 3
 dcmvnorm (Mvn), 6
 Im<-(setreal), 7
 interpolant.quick.complex
 (corr_complex), 3
 isHermitian, 5
 ishp (isHermitian), 5
 Mvn, 6
 rcmvnorm (Mvn), 6
 rcnorm (Mvn), 6
 rcwis (wishart), 9
 Re<-(setreal), 7
 rwis (wishart), 9
 scales.likelihood.complex
 (corr_complex), 3
 sd (var), 8
 setreal, 7
 var, 8
 wishart, 9
 zapim (isHermitian), 5