Package ‘coda.base’

April 16, 2020

Type Package

Title A Basic Set of Functions for Compositional Data Analysis

Version 0.2.2

Date 2020-04-10

Description A minimum set of functions to perform compositional data analysis using the log-ratio approach introduced by John Aitchison (1982) <http://www.jstor.org/stable/2345821>. Main functions have been implemented in c++ for better performance.

URL https://mcomas.github.io/coda.base,
https://github.com/mcomas/coda.base

Depends R (>= 3.0.4)

Imports Rcpp (>= 0.12.12), stats

LinkingTo Rcpp, RcppArmadillo

License GPL

(Encoding UTF-8

LazyData true

NeedsCompilation yes

RoxygenNote 6.1.1.9000

Suggests knitr, rmarkdown, testthat (>= 2.1.0)

VignetteBuilder knitr

Author Marc Comas-Cufí [aut, cre] (<https://orcid.org/0000-0001-9759-0622>)

Maintainer Marc Comas-Cufí <mcomas@imae.udg.edu>

Repository CRAN

Date/Publication 2020-04-16 09:00:07 UTC
alr_basis . 2
basis . 3
cbalance_approx . 3
cce . 4
cdp . 4
cdp_partition . 5
clr_basis . 5
coda.base . 6
composition . 6
coordinates . 7
dist . 8
ilr_basis . 9
parliament2017 . 10
pb . 10
pe . 12
print.coda . 12
sbp_basis . 13
variation_array . 14
Index 15

alr_basis
Additive log-ratio basis

Description
Compute the transformation matrix to express a composition using the oblique additive log-ratio coordinates.

Usage
alr_basis(dim, denominator = dim, numerator = which(denominator != 1:dim))

Arguments

Arguments

Arguments
dim number of parts
denominator part used as denominator (default behaviour is to use last part)
umerator parts to be used as numerator. By default all except the denominator parts are chosen following original order.

Value
matrix
References

Examples

```r
alr_basis(5)
# Third part is used as denominator
alr_basis(5, 3)
# Third part is used as denominator, and
# other parts are rearranged
alr_basis(5, 3, c(1,5,2,4))
```

<table>
<thead>
<tr>
<th>basis</th>
<th>Coordinates basis</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Description

Obtain coordinates basis

Usage

```r
basis(H)
```

Arguments

- `H` coordinates for which basis should be shown

Value

basis used to create coordinates `H`

<table>
<thead>
<tr>
<th>cbalance_approx</th>
<th>Balance generated from the first canonical correlation component</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Description

Balance generated from the first canonical correlation component

Usage

```r
cbalance_approx(Y, X)
```

Arguments

- `Y` compositional dataset
- `X` explanatory dataset
cc_basis

Isometric log-ratio basis based on canonical correlations

Description
Isometric log-ratio basis based on canonical correlations

Usage
cc_basis(Y, X)

Arguments
- Y: compositional dataset
- X: explanatory dataset

Value
matrix

cdp_basis

Isometric log-ratio basis based on Balances.

Description
The function return default balances used in CoDaPack software.

Usage
cdp_basis(dim)

Arguments
- dim: dimension to build the ILR basis based on balanced balances

Value
matrix
\textit{cdp_partition} \\

\textit{CoDaPack's default binary partition}

\textbf{Description}

Compute the default binary partition used in CoDaPack's software.

\textbf{Usage}

\texttt{cdp_partition(ncomp)}

\textbf{Arguments}

\begin{itemize}
 \item \texttt{ncomp} \hspace{1cm} number of parts
\end{itemize}

\textbf{Value}

matrix

\textbf{Examples}

\begin{itemize}
 \item \texttt{cdp_partition(4)}
\end{itemize}

\textit{clr_basis} \\

\textit{Centered log-ratio basis}

\textbf{Description}

Compute the transformation matrix to express a composition using the linearly dependant centered log-ratio coordinates.

\textbf{Usage}

\texttt{clr_basis(dim)}

\textbf{Arguments}

\begin{itemize}
 \item \texttt{dim} \hspace{1cm} number of parts
\end{itemize}

\textbf{Value}

matrix

\textbf{References}

Examples

```r
(B <- clr_basis(5))
# CLR coordinates are linearly dependant coordinates.
(clr_coordinates <- coordinates(c(1,2,3,4,5), B))
# The sum of all coordinates equal to zero
sum(clr_coordinates) < 1e-15
```

Description

A minimum set of functions to perform compositional data analysis using the log-ratio approach introduced by John Aitchison (1982) <http://www.jstor.org/stable/2345821>. Main functions have been implemented in c++ for better performance.

Author(s)

Marc Comas-Cufí

composition

Get composition from coordinates w.r.t. an specific basis

Description

Calculate a composition from coordinates with respect a given basis

Usage

```r
composition(H, basis = NULL, label = "x", sparse_basis = FALSE)
```

Arguments

- `H`: coordinates of a composition. Either a matrix, a data.frame or a vector
- `basis`: basis used to calculate the coordinates
- `label`: name given to the coordinates
- `sparse_basis`: Is the given matrix basis sparse? If TRUE calculation are carried taking into an account sparsity (default ‘FALSE’)

Value

coordinates with respect the given basis

See Also

See functions `ilr_basis`, `alr_basis`, `clr_basis`, `sbp_basis` to define different compositional basis. See function `coordinates` to obtain details on how to calculate coordinates of a given composition.
coordinates

Get coordinates from compositions w.r.t. an specific basis

Description

Calculate the coordinates of a composition with respect a given basis

Usage

coordinates(X, basis = "ilr", label = ifelse(is.character(basis),
 basis, "h"), basis_return = TRUE)

Arguments

- **X**: compositional dataset. Either a matrix, a data.frame or a vector
- **basis**: basis used to calculate the coordinates. Basis can be either a string or a matrix. Accepted values for strings are: 'ilr' (default), 'clr', 'alr', 'pc', 'pb' and 'cdp'. If basis is a matrix, it is expected to have log-ratio basis given in columns.
- **label**: name given to the coordinates
- **basis_return**: Should the basis be returned as attribute? (default: TRUE)

Details

coordinates function calculates the coordinates of a composition w.r.t. a given basis. ‘basis’ parameter is used to set the basis, it can be either a matrix defining the log-contrasts in columns or a string defining some well-known log-contrast: 'alr' 'clr', 'ilr', 'pc', 'pb' and 'cdp'. For the additive log-ratio, centered log-ratio, isometric log-ratio, clr principal components, clr principal balances or default’s CoDaPack balances respectively.

Value

Coordinates of composition X with respect the given basis.

See Also

See functions ilr_basis, alr_basis, clr_basis, sbp_basis to define different compositional basis. See function composition to obtain details on how to calculate a compositions from given coordinates.

Examples

coordinates(c(1,2,3,4,5))
basis is shown if 'coda.base.basis' option is set to TRUE
options('coda.base.basis' = TRUE)
coordinates(c(1,2,3,4,5))
Default transformation improves performance.
N = 100
K = 1000
X = matrix(exp(rnorm(N*K)), nrow=N, ncol=K)
system.time(coordinates(X, alr_basis(K))
system.time(coordinates(X, 'alr'))

dist

Distance Matrix Computation (including Aitchison distance)

Description

This function overwrites dist function to contain Aitchison distance between compositions.

Usage

dist(x, method = "euclidean", ...)

Arguments

x compositions method
method the distance measure to be used. This must be one of "aitchison", "euclidean", "maximum", "manhattan", "canberra", "binary" or "minkowski". Any unambiguous substring can be given.
...
arguments passed to dist function

Value

dist returns an object of class "dist".

See Also

See functions dist.

Examples

X = exp(matrix(rnorm(10*50), ncol=50, nrow=10))
(d <- dist(X, method = 'aitchison'))
plot(hclust(d))

In contrast to Euclidean distance
dist(rbind(c(1,1,1), c(100, 100, 100)), method = 'euc') # method = 'euclidean'
using Aitchison distance, only relative information is of importance
dist(rbind(c(1,1,1), c(100, 100, 100)), method = 'ait') # method = 'aitchison'
ilr_basis

Default Isometric log-ratio basis

Description

Build an isometric log-ratio basis for a composition with k+1 parts

\[h_i = \sqrt{\frac{i}{i+1}} \log \sqrt{\prod_{j=1}^{i} x_j / x_{i+1}} \]

for \(i \in 1, \ldots, k \).

Usage

```
ilr_basis(dim, type = "default")
```

Arguments

- `dim` number of components
- `type` if different than 'pivot' (pivot balances) or 'cdp' (codapack balances) default balances are returned, which computes a triangular Helmert matrix as defined by Egozcue et al., 2013.

Details

Modifying parameter type (pivot or cdp) other ilr basis can be generated

Value

matrix

References

Examples

```
ilr_basis(5)
```
parliament2017
Results of catalan parliament elections in 2017 by regions.

Description

Results of catalan parliament elections in 2017 by regions.

Usage

parliament2017

Format

A data frame with 42 rows and 9 variables:

- **com** Region
- **cs** Votes to Ciutadans party
- **jxcat** Votes to Junts per Catalunya party
- **erc** Votes to Esquerra republicana de Catalunya party
- **psc** Votes to Partit socialista de Catalunya party
- **catsp** Votes to Catalunya si que es pot party
- **cup** Votes to Candidatura d’unitat popular party
- **pp** Votes to Partit popular party
- **other** Votes to other parties

Source

http://www.idescat.cat/tema/elecc

pb_basis
Isometric log-ratio basis based on Principal Balances.

Description

Exact method to calculate the principal balances of a compositional dataset. Different methods to approximate the principal balances of a compositional dataset are also included.

Usage

pb_basis(X, method, rep = 0, ordering = TRUE, ...)
Arguments

X compositional dataset
method method to be used with Principal Balances. Methods available are: 'exact', 'lsearch' or method to be passed to hclust function (for example 'ward.D' or 'ward.D2' to use Ward method).
rep Number of restartings to be used with the local search algorithm. If zero is supplied (default), one local search is performed using an starting point close to the principal component solution.
ordering should the principal balances found be returned ordered? (first column, first principal balance and so on)
... parameters passed to hclust function

Value

matrix

References

Examples

```r
set.seed(1)
X = matrix(exp(rnorm(5*100)), nrow=100, ncol=5)
# Optimal variance obtained with Principal components
(v1 <- apply(coordinates(X, 'pc'), 2, var))
# Optimal variance obtained with Principal balances
(v2 <- apply(coordinates(X, pb_basis(X, method='exact')), 2, var))
# Solution obtained using a hill climbing algorithm from pc approximation
apply(coordinates(X, pb_basis(X, method='lsearch')), 2, var)
# Solution obtained using a hill climbing algorithm using 10 restartings
apply(coordinates(X, pb_basis(X, method='lsearch', rep=10)), 2, var)
# Solution obtained using Ward method
(v3 <- apply(coordinates(X, pb_basis(X, method='ward.D2')), 2, var))
# Solution obtained using Old Ward function (in R versions <= 3.0.3)
apply(coordinates(X, pb_basis(X, method='ward.D')), 2, var)
# Plotting the variances
barplot(rbind(v1,v2,v3), beside = TRUE,
        legend = c('Principal Components','PB (Exact method)','PB (Ward approximation)'),
        names = paste0('Comp.', 1:4), args.legend = list(cex = 0.8), ylab = 'Variance')
```
pc_basis

Isometric log-ratio basis based on Principal Components.

Description

Different approximations to approximate the principal balances of a compositional dataset.

Usage

pc_basis(X)

Arguments

X

compositional dataset

Value

matrix

print.coda

Printing coordinates

Description

The function hides the basis attribute. An option is included to show such basis.

Usage

S3 method for class 'coda'
print(x, ..., basis = getOption("coda.base.basis"))

Arguments

x

coordinates

...

parameters passed to print function

basis

boolean to show or not the basis with the output
sbp_basis

Isometric log-ratio basis based on Balances Build an ilr_basis using a sequential binary partition or a generic coordinate system based on balances.

Description

Isometric log-ratio basis based on Balances Build an ilr_basis using a sequential binary partition or a generic coordinate system based on balances.

Usage

```
sbp_basis(..., data = NULL, silent = F)
```

Arguments

- `...` balances to consider
- `data` composition from where name parts are extracted
- `silent` inform about orthgonality

Value

matrix

Examples

```
X = data.frame(a=1:2, b=2:3, c=4:5, d=5:6, e=10:11, f=100:101, g=1:2)
sbp_basis(b1 = a~b+c+d+e+f+g,
          b2 = b~c+d+e+f+g,
          b3 = c~d+e+f+g,
          b4 = d~e+f+g,
          b5 = e~f+g,
          b6 = f~g, data = X)
sbp_basis(b1 = a~b,
          b2 = b~c,
          b3 = b~d,
          b4 = b~e,
          b5 = b~f,
          b6 = b~g, data = X)
# A non-orthogonal basis can also be calculated.

sbp_basis(b1 = a+b+c-e+f+g,
          b2 = d-a+b+c,
          b3 = d-e+g,
          b4 = a-e+b,
          b5 = b-f,
          b6 = c-g, data = X)
```
variation_array

Variation array is returned.

Description

Variation array is returned.

Usage

variation_array(X, only_variation = FALSE)

Arguments

X Compositional dataset

only_variation if TRUE only the variation matrix is calculated

Value

variation array matrix

Examples

set.seed(1)
X = matrix(exp(rnorm(5*100)), nrow=100, ncol=5)
variation_array(X)
variation_array(X, only_variation = TRUE)
Index

*Topic datasets
 parliament2017, 10

alr_basis, 2, 6, 7
basis, 3

cbalance_approx, 3
cd_balance, 4
cdp_basis, 4
cdp_partition, 5
clr_basis, 5, 6, 7
coda.base, 6
coda.base-package (coda.base), 6
composition, 6, 7
coordinates, 6, 7

dist, 8, 8

ilr_basis, 6, 7, 9, 13

parliament2017, 10
pb_basis, 10
pc_basis, 12
print.coda, 12

sbp_basis, 6, 7, 13

variation_array, 14