Package ‘codingMatrices’

February 1, 2023

Type Package
Title Alternative Factor Coding Matrices for Linear Model Formulae
Version 0.4.0
Author Bill Venables
Maintainer Bill Venables <Bill.Venables@gmail.com>
Description A collection of coding functions as alternatives to the standard
functions in the stats package, which have names starting with 'contr'. Their
main advantage is that they provide a consistent method for defining marginal
effects in factorial models. In a simple one-way ANOVA model the
intercept term is always the simple average of the class means.
Depends R (>= 3.5.0), stats
Imports Matrix, methods, fractional, utils
Suggests knitr, MASS, dplyr, car, ggplot2, xtable
License GPL (>= 2)
Encoding UTF-8
RoxygenNote 7.2.3
VignetteBuilder knitr
NeedsCompilation no
Repository CRAN
Date/Publication 2023-02-01 08:40:02 UTC

R topics documented:

 Codings .. 2
 mean_contrasts .. 4

Index 6
Description

These functions provide an alternative to the coding functions supplied in the stats package, namely `contr.treatment`, `contr.sum`, `contr.helmert` and `contr.poly`.

Usage

code_control(
 n,
 contrasts = TRUE,
 sparse = FALSE,
 abbreviate = substring(tolower(Sys.getenv("R_CODING_ABBREVIATE", "yes")[[1]]), 0, 1) == "y"
)

code_control_last(
 n,
 contrasts = TRUE,
 sparse = FALSE,
 abbreviate = substring(tolower(Sys.getenv("R_CODING_ABBREVIATE", "yes")[[1]]), 0, 1) == "y"
)

code_diff(
 n,
 contrasts = TRUE,
 sparse = FALSE,
 abbreviate = substring(tolower(Sys.getenv("R_CODING_ABBREVIATE", "yes")[[1]]), 0, 1) == "y"
)

code_diff_forward(
 n,
 contrasts = TRUE,
 sparse = FALSE,
 abbreviate = substring(tolower(Sys.getenv("R_CODING_ABBREVIATE", "yes")[[1]]), 0, 1) == "y"
)

code_helmert(n, contrasts = TRUE, sparse = FALSE)

code_helmert_forward(n, contrasts = TRUE, sparse = FALSE)

code_deviation(n, contrasts = TRUE, sparse = FALSE)
code_deviation_first(n, contrasts = TRUE, sparse = FALSE)

code_poly(n, contrasts = TRUE, sparse = FALSE)

contr.diff(
 n,
 contrasts = TRUE,
 sparse = FALSE,
 abbreviate = substring(tolower(Sys.getenv("R_CODING_ABBREVIATE", "yes")[[1]]), 0, 1) == "y"
)

Arguments

- **n**: Either a positive integer giving the number of levels or the levels attribute of a factor, supplying both the number of levels via its length and labels potentially to be used in the dimnames of the result.
- **contrasts**: Logical: Do you want the $n \times (n-1)$ coding matrix (TRUE) or an $n \times n$ full-rank matrix, (as is sometimes needed by the fitting functions) (FALSE)?
- **sparse**: Logical: Do you want the result to be a sparse matrix object, as generated the the Matrix package?
- **abbreviate**: Logical: should level names be abbreviated in the generated contrast labels? Default: TRUE. May be set globally by setting the environment variable R_CODING_ABBREVIATE to either "yes" or "no", with obvious meaning.

Details

All functions with names of the form code_xxxx return coding matrices which, in a simple model, make the intercept term the simple ("unweighted") average of the class means. This can be important in some non-standard ANOVA tables. The function contr.diff is an exception, and is offered as a natural companion to stats::contr.treatment, with which it is closely aligned.

- **code_control**: Similar to contr.treatment, with contrasts comparing the class means (the "treatments") with the first class mean (the "control").
- **code_control_last**: Similar to code_control, but using the final class mean as the "control". Cf. contr.SAS
- **code_diff**: The contrasts are the successive differences of the treatment means, $\mu_{i+1} - \mu_i$. This coding function has no counterpart in the stats package. It is suggested as an alternative to the default coding, contr.poly, for ordered factors. It offers a visual check of monotonicity of the class means with the ordered levels of the factor. Unlike stats::contr.poly there is no assumption that the factor levels are in some sense "equally spaced".
- **code_diff_forward**: Very similar to code_diff, but using forward differences: $\mu_i - \mu_{i+1}$
- **code_helmert**: Similar to contr.helmert, but with a small scaling change to make the regression coefficients (i.e. the contrasts) more easily interpretable. The contrasts now compare each class mean, starting from the second, with the average of all class means coming prior to it in the factor levels order.
mean_contrasts

code_helmert_forward Similar to `code_helmert`, but comparing each class mean, up to the second last, with the average of all class means coming after it in the factor levels order.

code_deviation Similar to `contr.sum`, which is described as having the "effects" summing to zero. A more precise description might be to say that the contrasts are the deviations of each class mean from the average of them, i.e. $\mu_i - \bar{\mu}$. To avoid redundancy, the last deviation is omitted.

code_deviation_first Very similar to `code_deviation`, but omitting the first deviation to avoid redundancy rather than the last.

code_poly Similar in effect to `contr.poly` but for levels fewer than 15 using an unnormalized basis for the orthogonal polynomials with integer entries. (Orthogonal polynomials were originally given in this form as tables.) The only advantage over `stats::contr.poly` is one of display. Use `stats::contr.poly` in preference other than for teaching purposes.

contr.diff Very similar in effect to `code_diff`, yielding the same differences as the contrasts, but like `stats::contr.treatment` using the first class mean as the intercept coefficient rather than the simple average of the class means, as with `code_diff`. Some would regard this as making it unsuitable for use in some non-standard ANOVA tables.

Value

A coding matrix, as requested by fitting functions using linear model formulae with factor predictors.

See Also

The MASS function `contr.sdif` which is an early version of `code_deviation` (by the same author).

Examples

```r
(M <- code_control(5))
mean_contrasts(M)
(M <- stats::contr.treatment(5))
mean_contrasts(M) ## same contrasts; different averaging vector.
mean_contrasts(stats::contr.helmert(6)) ## Interpretation obscure
mean_contrasts(code_helmert(6)) ## each mean with the average preceding
mean_contrasts(code_helmert_forward(6)) ## each mean with the average succeeding

```

Description

A function to display the averaging vector and class mean contrasts implied by a given coding matrix.

Usage

```r
mean_contrasts(M)
```
Arguments

M Any $n \times (n - 1)$ coding matrix.

Value

The full contrast matrix, `solve(cbind(1, M))`, suitably annotated and presented in vulgar fractional form, for clarity.

Examples

```r
mean_contrasts(code_helmert_forward(5))
mean_contrasts(code_diff_forward(letters[1:7]))
```
Index

code_control (Codings), 2
code_control_last (Codings), 2
code_deviation (Codings), 2
code_deviation_first (Codings), 2
code_diff (Codings), 2
code_diff_forward (Codings), 2
code_helmert (Codings), 2
code_helmert_forward (Codings), 2
code_poly (Codings), 2
Codings, 2
contr.diff (Codings), 2
contr.helmert, 3
contr.poly, 3, 4
contr.SAS, 3
contr.sdif, 4
contr.sum, 4
contr.treatment, 3

mean_contrasts, 4