Package ‘coefficentalpha’

May 31, 2015

Type Package
Title Robust Coefficient Alpha and Omega with Missing and Non-Normal Data
Version 0.5
Date 2015-05-14
Depends rsem, lavaan
Author Zhiyong Zhang and Ke-Hai Yuan
Maintainer Zhiyong Zhang <johnnyzhz@gmail.com>
Description Cronbach's alpha and McDonald's omega are widely used reliability or internal consistency measures in social, behavioral and education sciences. Alpha is reported in nearly every study that involves measuring a construct through multiple test items. The package 'coefficentalpha' calculates coefficient alpha and coefficient omega with missing data and non-normal data. Robust standard errors and confidence intervals are also provided. A test is also available to test the tau-equivalent and homogeneous assumptions. Version 0.5 added the bootstrap confidence intervals.
License GPL
LazyLoad yes
NeedsCompilation no
Repository CRAN
Date/Publication 2015-05-31 12:53:35

R topics documented:

coefficentalpha-package .. 2
alpha ... 2
bootstrap .. 3
eexample .. 4
plot.alpha .. 5
summary.alpha .. 6
tau.test .. 7

Index 8
Description

An R package to calculate coefficient alpha and omega with missing data and non-normal data. Robust standard errors and confidence intervals are also provided.

Details

<table>
<thead>
<tr>
<th>Package:</th>
<th>coefficientalpha</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type:</td>
<td>Package</td>
</tr>
<tr>
<td>Version:</td>
<td>0.3</td>
</tr>
<tr>
<td>Date:</td>
<td>2013-01-22</td>
</tr>
<tr>
<td>License:</td>
<td>GPL</td>
</tr>
</tbody>
</table>

Author(s)

Zhiyong Zhang and Ke-Hai Yuan

Maintainer: Zhiyong Zhang <zzhang4@nd.edu>

References

Usage

```r
alpha(y, varphi = 0.1, se = FALSE, test = TRUE,
     complete = FALSE, auxiliary = NULL, drop, silent = TRUE)
omega(y, varphi = 0.1, se = FALSE, test = TRUE,
      complete = FALSE, auxiliary = NULL, drop, silent = TRUE)
```
Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>y</td>
<td>Data</td>
</tr>
<tr>
<td>varphi</td>
<td>Downweight rate</td>
</tr>
<tr>
<td>se</td>
<td>Whether to estimate standard error. It might take significant more time if se is requested with many items.</td>
</tr>
<tr>
<td>test</td>
<td>Whether to test the assumption of alpha (tau equivalent test) or omega (homo- geneous test).</td>
</tr>
<tr>
<td>complete</td>
<td>Calculate alpha/omega only based on complete data (listwise deletion)</td>
</tr>
<tr>
<td>auxiliary</td>
<td>Provide a matrix or data frame of auxiliary variables for missing data analysis.</td>
</tr>
<tr>
<td>drop</td>
<td>The row number of cases to be dropped from the analysis.</td>
</tr>
<tr>
<td>silent</td>
<td>Whether to print information of the analysis.</td>
</tr>
</tbody>
</table>

Author(s)

Zhiyong Zhang and Ke-Hai Yuan

References

Examples

```r
data(example)

alpha(example, varphi=.01)
omega(example, varphi=.01)
```

Description

Bootstrap se and CI for alpha and omega.

Usage

```r
bootstrap(y, type="omega", alpha=.95, nboot=1000, ci="bc", plot=FALSE, varphi=0, complete=FALSE, auxiliary=NULL, silent=FALSE)
```
Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>y</td>
<td>Data</td>
</tr>
<tr>
<td>type</td>
<td>omega: coefficient omega. Otherwise, coefficient alpha.</td>
</tr>
<tr>
<td>alpha</td>
<td>Confidence level.</td>
</tr>
<tr>
<td>nboot</td>
<td>Number of bootstrap samples to use</td>
</tr>
<tr>
<td>ci</td>
<td>bc: Bias-corrected CI. Otherwise, the percentile CI is used.</td>
</tr>
<tr>
<td>plot</td>
<td>Whether to plot the bootstrap density.</td>
</tr>
<tr>
<td>varphi</td>
<td>Downweight rate</td>
</tr>
<tr>
<td>complete</td>
<td>Calculate alpha/omega only based on complete data (listwise deletion)</td>
</tr>
<tr>
<td>auxiliary</td>
<td>Provide a matrix or data frame of auxiliary variables for missing data analysis.</td>
</tr>
<tr>
<td>silent</td>
<td>Whether to print information of the analysis.</td>
</tr>
</tbody>
</table>

Author(s)

Zhiyong Zhang and Ke-Hai Yuan

References

Examples

data(example)

boot.test<-bootstrap(example, type='alpha', nboot=10, plot=TRUE)

example | An example data set

Description

An example data set with 10 variables.

Usage

data(example)
plot.alpha

Description
Generate plot related to alpha or omega. Three plots can be generated. (1) The weight plot will plot the weight associated with alpha calculation. (2) Profile plot will plot the cases with smallest weights and the average value. (3) The diagnostic plot plots the alpha according to different values of the tuning parameter.

Usage
S3 method for class 'alpha'
plot(x, type="weight", profile=5, interval=0.01, center=TRUE, scale=FALSE, w1=FALSE, numbered=FALSE, pos="topright", ...)
S3 method for class 'omega'
plot(x, type="weight", profile=5, interval=0.01, center=TRUE, scale=FALSE, w1=FALSE, numbered=FALSE, pos="topright", ...)

Arguments
- x: Results from the function alpha or omega.
- type: Three types of plots can be generated. type="weight" generates the plot of weight of each case. type="profile" generates a profile plot for the smallest weight. type="weight" generates the diagnostic plot for varphi with an interval of 0.01.
- profile: Number of cases used on the profile plot. At most 10.
- interval: The interval used in the diagnostic plot. The default is 0.01.
- center: Whether to center the data in the profile plot.
- scale: Whether to scale the data using variance parameters in the profile plot.
- w1: Whether to plot the weight for means
- numbered: Whether to number the profile plot
- pos: Position of legend. If pos=NULL, no legend is plotted.
- ...: Options can be passed to the plot function.

Author(s)
Zhiyong Zhang and Ke-Hai Yuan

References
Examples

```r
data(example)
res<-alpha(example, varphi=.01)
## diagnostic plot
plot(res, type='d')

## alpha with varphi=.01 & standard error
res<-alpha(example, varphi=.01, se=TRUE)
## confidence interval
summary(res)

## weight plot
plot(res)
# or
plot(res, type='w')

## profile plot
plot(res, type='p')
```

summary.alpha

Print alpha/omega and its confidence interval.

Description

Print alpha/omega and its confidence interval.

Usage

```r
## S3 method for class 'alpha'
summary(object, type = "raw", prob = 0.95,...)
## S3 method for class 'omega'
summary(object, type = "raw", prob = 0.95,...)
```

Arguments

- `object` Results from the function `alpha` or `omega`.
- `type` If not `raw`, the CI based on transformation will be provided. The transformed CI will be always in the range of [0,1].
- `prob` Alpha level for confidence interval. By default, the 95
- `...` Option can be passed to the summary function.

Author(s)

Zhiyong Zhang and Ke-Hai Yuan
References

Examples

data(example)

res<-alpha(example, varphi=0.01)
diagnostic plot
plot(res, type='d')

alpha with varphi=0.01 & standard error
res<-alpha(example, varphi=0.01, se=TRUE)
confidence interval
summary(res)

tau.test

Test the tau-equivalence and the homogeneity of items

Description

Calculate alpha or omega for a given data set.

Usage

tau.test(y, varphi = 0.1, complete = FALSE, drop)

Arguments

y Data
varphi Downweight rate
complete Calculate alpha/omega only based on complete data (listwise deletion)
drop The row number of cases to be dropped from the analysis.

Author(s)

Zhiyong Zhang and Ke-Hai Yuan

References

Examples

data(example)
tau.test(example)
Index

*Topic Cronbach
 coefficientalpha-package, 2
*Topic alpha
 coefficientalpha-package, 2
*Topic robust
 coefficientalpha-package, 2

alpha, 2, 5, 6
bootstrap, 3
coefficientalpha
 (coefficientalpha-package), 2
 coefficientalpha-package, 2
example, 4

omega, 5, 6
omega (alpha), 2

plot, 5
plot (plot.alpha), 5
plot.alpha, 5

summary (summary.alpha), 6
summary.alpha, 6

tau.test, 7