Package ‘cofeatureR’

June 24, 2018

Title Generate Cofeature Matrices

Version 1.1.1

Description Generate cofeature (feature by sample) matrices. The package utilizes ggplot2::geom_tile() to generate the matrix allowing for easy additions from the base matrix.

Depends R (>= 3.1.0)

Imports ggplot2 (>= 1.0.0), dplyr (>= 0.4.3), lazyeval (>= 0.1.10), tibble

URL https://github.com/tinyheero/cofeatureR

BugReports https://github.com/tinyheero/cofeatureR/issues

License GPL-3

LazyData true

RoxygenNote 6.0.1

Suggests testthat

NeedsCompilation no

Author Fong Chun Chan [aut, cre]

Maintainer Fong Chun Chan <fongchunchan@gmail.com>

Repository CRAN

Date/Publication 2018-06-24 15:09:05 UTC

R topics documented:

- add_tiles .. 2
- cofeatureR .. 2
- plot_cofeature_mat 2

Index

1
add_tiles
Add tiles to the ggplot2

Description
Add tiles to the ggplot2

Usage
add_tiles(p1, in.df, tile.col, missing.fill.col, tile.border.size)

Arguments

p1 Existing ggplot2
in.df A 3 column (feature, sampleID, type) data.frame object
tile.col Border color of each cell. If not set, no border color is used.
missing.fill.col Color of the cell that has missing values

tile.border.size Integer to indicate the size of the tile borders.

cofeatureR
cofeatureR: Generate Cofeature Matrices

Description
Generate cofeature (feature by sample) matrices. The package utilizes ggplot2::geom_tile to generate the matrix allowing for easy customization of additions from the base matrix.

plot_cofeature_mat
Plot a Cofeature Matrix

Description
Generates a ggplot2::geom_tile plot of features by sample. It is able to deal with multiple types affecting the same sample.

Usage
plot_cofeature_mat(in.df, feature.order, sample.id.order, fill.colors, type.display.mode = c("multiple", "single"), type.order, tile.col = NA, rotate.x.labels, missing.fill.col, dot.flag = FALSE, dot.size, tile.flag = TRUE, drop.x = FALSE, tile.border.size = 1)
Arguments

- **in.df** A 3 column (feature, sampleID, type) data.frame object
- **feature.order** character vector indicating the order of the features in the final plot on the y-axis. If not set, then function will set it automatically
- **sample.id.order** character vector indicating the order of the samples in the final plot on the x-axis. If not set, then function will set it automatically
- **fill.colors** character vector indicating the colors of the different "types". The names should be the types with the value being the color
- **type.display.mode** Specify whether multiple or a single feature type can appear in the same feature/sample cell
- **type.order** Specify the "priority" of the feature types. This only has an effect when type.display.mode is set to single.
- **tile.col** Border color of each cell. If not set, no border color is used.
- **rotate.x.labels** Rotate the x-axes labels by a certain degree
- **missing.fill.col** Color of the cell that has missing values
- **dot.flag** Boolean to turn on/off dots (dot.flag)
- **dot.size** Column name indicating the size of the dots. Only takes effect if dot.flag is TRUE.
- **tile.flag** Boolean to turn on/off tiles (tile.flag)
- **drop.x** Boolean to drop levels (from a factor) in the x dimension.
- **tile.border.size** Integer to indicate the size of the tile borders.

Examples

```r
# Not run:
v1 <- c("RCOR1", "NCOR1", "LCOR", "RCOR1", "RCOR1", "RCOR1", "RCOR1")
v2 <- c("sampleA", "sampleC", "sampleB", "sampleC", "sampleA", "sampleC", "sampleB")
v3 <- c("Deletion", "Deletion", "SNV", "Rearrangement", "SNV", "Rearrangement", "SNV")
v4 <- c(0.05, 0.5, 0.25, 0.01, 0.03, 0.24, 0.09)
v5 <- c(1, 2, 1, 2, 2, 1)
feature.order <- c("RCOR1", "NCOR1", "LCOR")
sample.id.order <- c("sampleA", "sampleB", "sampleC")
in.df <- dplyr::data_frame(feature = v1, sampleID = v2, type = v3,
p_value = -log10(v4), dir_flag = v5)
fill.colors <- c("Deletion" = "Blue", "Rearrangement" = "Green", "SNV" = "Red")

plot_cofeature_mat(in.df)

# With black tile color
plot_cofeature_mat(in.df, tile.col = "black")
```
Fill in missing values with a lightgrey color
plot_cofeature_mat(in.df, tile.col = "black", missing.fill.col = "lightgrey")

Rotate x-axes labels by 90 degrees
plot_cofeature_mat(in.df, rotate.x.labels = 90)

Specify order of features, samples, and colors
plot_cofeature_mat(in.df, feature.order, sample.id.order,
fill.colors = fill.colors)

Specify each cell can only have one "feature type"
plot_cofeature_mat(in.df, feature.order, sample.id.order, fill.colors = fill.colors,
type.display.mode = "single")

Specify the specific priority of the "feature type" for cells with multiple features
plot_cofeature_mat(in.df, feature.order, sample.id.order, fill.colors = fill.colors,
type.display.mode = "single", type.order = c("Rearrangement", "SNV", "Deletion"))

Add dots to tiles for an additional layer of information
plot_cofeature_mat(in.df, dot.size = "p_value")

Only display dots
plot_cofeature_mat(in.df, dot.flag = TRUE, dot.size = "p_value",
tile.flag = FALSE)

Samples will not be dropped
sample.id.order.new <- c("sampleA", "sampleB", "sampleC", "sampleD")
plot_cofeature_mat(in.df, tile.col = "black",
sample.id.order = sample.id.order.new)

Samples can be dropped by setting drop.x = TRUE
plot_cofeature_mat(in.df, tile.col = "black",
sample.id.order = sample.id.order.new, drop.x = TRUE)

End(Not run)
Index

add_tiles, 2
cofeatureR, 2
cofeatureR-package (cofeatureR), 2
plot_cofeature_mat, 2