Package ‘coloc’

May 17, 2019

Type Package

Imports data.table, ggplot2, snpStats, BMA, reshape, methods

Suggests knitr, testthat, bindata, rmarkdown

Title Colocalisation Tests of Two Genetic Traits

Version 3.2-1

Date 2019-05-16

Maintainer Chris Wallace <cew54@cam.ac.uk>

Description Performs the colocalisation tests described in
Wallace et al (2013) <doi:10.1002/gepi.21765> and

License GPL

LazyLoad yes

VignetteBuilder knitr

RoxygenNote 6.1.1

URL https://github.com/chrswallace/coloc

BugReports https://github.com/chrswallace/coloc/issues

NeedsCompilation no

Author Chris Wallace [aut, cre],
Claudia Giambartolomei [aut],
Vincent Plagnol [ctb]

Repository CRAN

Date/Publication 2019-05-17 10:10:06 UTC

R topics documented:

coloc-package ... 2
approx.bf.estimates ... 3
approx.bf.p ... 4
Description

Performs the colocalisation tests described in Plagnol et al (2009) and Wallace et al (in preparation) and draws some plots.

Details

coloc.test() tests for colocalisation and returns an object of class coloc.

Author(s)

Chris Wallace <chris.wallace@cimr.cam.ac.uk>
approx.bf.estimates

References

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4158901/

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4022491/

approx.bf.estimates

Internal function, approx.bf.estimates

Description

Internal function, approx.bf.estimates

Usage

approx.bf.estimates(z, V, type, suffix = NULL, sdy = 1)

Arguments

- **z**: normal deviate associated with regression coefficient and its variance
- **V**: its variance
- **type**: "quant" or "cc"
- **suffix**: suffix to append to column names of returned data.frame
- **sdy**: standard deviation of the trait. If not supplied, will be estimated.

Details

Calculate approximate Bayes Factors using supplied variance of the regression coefficients

Value

data.frame containing lABF and intermediate calculations

Author(s)

Vincent Plagnol, Chris Wallace
approx.bf.p

Description

Internal function, approx.bf.p

Usage

approx.bf.p(p, f, type, N, s, suffix = NULL)

Arguments

- `p`
 p value
- `f`
 MAF
- `type`
 "quant" or "cc"
- `N`
 sample size
- `s`
 proportion of samples that are cases, ignored if type="quant"
- `suffix`
 suffix to append to column names of returned data.frame

Details

Calculate approximate Bayes Factors

Value

data.frame containing lABF and intermediate calculations

Author(s)

Claudia Giambartolomei, Chris Wallace

bf

Bayes factors to compare specific values of eta

Description

Summarise the evidence for/against specific values or ranges of eta using bayes factors

Usage

bf(object)

```r
## S4 method for signature 'colocBayes'
bf(object)
```
Arguments

object of class colocBayes

Details

Only available for colocBayes objects, and you need to specify the specific values of interest using the bayes.factor argument when doing the proportional coloc analysis.

Value

a matrix of Bayes factors

Author(s)

Chris Wallace

Description

Classes designed to hold objects returned by function coloc.test which performs a test of the null hypothesis that two genetic traits colocalise - that they share a common causal variant.

Objects from the Class

Objects can be created by calls to the function coloc.test(). Class colocBayes extends class coloc.

Author(s)

Chris Wallace.

References

See Also

coloc.test, coloc.test.summary, coloc.bma
Examples

```r
showClass("coloc")
showClass("colocBayes")
```

coloc.abf

Fully Bayesian colocalisation analysis using Bayes Factors

Description

Bayesian colocalisation analysis

Usage

`coloc.abf(dataset1, dataset2, MAF = NULL, p1 = 1e-04, p2 = 1e-04, p12 = 1e-05)`

Arguments

dataset1

- a list with the following elements
 - `pvalues` P-values for each SNP in dataset 1
 - `N` Number of samples in dataset 1
 - `MAF` minor allele frequency of the variants
 - `beta` regression coefficient for each SNP from dataset 1
 - `varbeta` variance of beta
 - `type` the type of data in dataset 1 - either "quant" or "cc" to denote quantitative or case-control
 - `s` for a case control dataset, the proportion of samples in dataset 1 that are cases
 - `sdY` for a quantitative trait, the population standard deviation of the trait. if not given, it can be estimated from the vectors of varbeta and MAF
 - `snp` a character vector of snp ids, optional. If present, it will be used to merge dataset1 and dataset2. Otherwise, the function assumes dataset1 and dataset2 contain results for the same SNPs in the same order.

Some of these items may be missing, but you must give
- always `type`
- if `type`="cc" a
- if `type`="quant" and `sdY` known `sdY`
- if `type`="quant" and `sdY` unknown `beta, varbeta, N, MAF` and then either
- `pvalues, MAF`
- `beta, varbeta`

`dataset2` as above, for dataset 2

- `MAF` Common minor allele frequency vector to be used for both dataset1 and dataset2, a shorthand for supplying the same vector as parts of both datasets
- `p1` prior probability a SNP is associated with trait 1, default 1e-4
- `p2` prior probability a SNP is associated with trait 2, default 1e-4
- `p12` prior probability a SNP is associated with both traits, default 1e-5
Details

This function calculates posterior probabilities of different causal variant configurations under the assumption of a single causal variant for each trait.

If regression coefficients and variances are available, it calculates Bayes factors for association at each SNP. If only p values are available, it uses an approximation that depends on the SNP’s MAF and ignores any uncertainty in imputation. Regression coefficients should be used if available.

Value

a list of two data.frames:

- summary is a vector giving the number of SNPs analysed, and the posterior probabilities of H0 (no causal variant), H1 (causal variant for trait 1 only), H2 (causal variant for trait 2 only), H3 (two distinct causal variants) and H4 (one common causal variant)
- results is an annotated version of the input data containing log Approximate Bayes Factors and intermediate calculations, and the posterior probability SNP.PP.H4 of the SNP being causal for the shared signal

Author(s)

Claudia Giambartolomei, Chris Wallace

coloc.abf.datasets

Bayesian colocalisation analysis using data.frames

Description

Bayesian colocalisation analysis using data.frames

Usage

coloc.abf.datasets(df1, df2, snps = intersect(setdiff(colnames(df1), response1), setdiff(colnames(df2), response2)), response1 = "γ", response2 = "γ", ...)

Arguments

df1 dataset 1
df2 dataset 2
snps col.names for snps
response1 col.name for response in dataset 1
response2 col.name for response in dataset 2
... parameters passed to coloc.abf.snpStats
Details

Converts genetic data to snpStats objects, generates p values via score tests, then runs `coloc.abf`

Value

output of `coloc.abf`

Author(s)

Chris Wallace

`coloc.abf.snpStats`
Bayesian colocalisation analysis using snpStats objects

Description

Bayesian colocalisation analysis using snpStats objects

Usage

```r
coloc.abf.snpStats(X1, X2, Y1, Y2, snps = intersect(colnames(X1), colnames(X2)), type1 = c("quant", "cc"), type2 = c("quant", "cc"), s1 = NA, s2 = NA, ...)```

Arguments

- `X1`: genetic data for dataset 1
- `X2`: genetic data for dataset 2
- `Y1`: response for dataset 1
- `Y2`: response for dataset 2
- `snps`: optional subset of snps to use
- `type1`: type of data in Y1, "quant" or "cc"
- `type2`: type of data in Y2, "quant" or "cc"
- `s1`: the proportion of samples in dataset 1 that are cases (only relevant for case control samples)
- `s2`: the proportion of samples in dataset 2 that are cases (only relevant for case control samples)
- `...`: parameters passed to `coloc.abf`

Details

Generates p values via score tests, then runs `coloc.abf`
coloc.bma

Value

output of coloc.abf

Author(s)

Chris Wallace

coloc.bma

Wrapper to use colocalization testing within a Bayesian model averaging structure.

Description


Usage

coloc.bma(df1, df2, snps = intersect(setdiff(colnames(df1), c(response1, stratum1)), setdiff(colnames(df2), c(response2, stratum2))), response1 = "Y", response2 = "Y", stratum1 = NULL, stratum2 = NULL, family1 = "binomial", family2 = "binomial", bayes = !is.null(bayes.factor), thr = 0.01, nsnps = 2, n.approx = 1001, bayes.factor = NULL, plot.coeff = FALSE, r2.trim = 0.95, quiet = FALSE, bma = FALSE, ...)

Arguments

df1, df2  Each is a dataframe, containing response and potential explanatory variables for two independent datasets.

snps  The SNPs to consider as potential explanatory variables

response1, response2  The names of the response variables in df1 and df2 respectively

stratum1  optional column name of df1 that gives stratum information

stratum2  optional column name of df2 that gives stratum information

family1, family2  the error family for use in glm

bayes  Logical, indicating whether to perform Bayesian inference for the coefficient of proportionality, eta. If bayes.factor is supplied, Bayes factors are additionally computed for the specified values. This can add a little time as it requires numerical integration, so can be set to FALSE to save time in simulations, for example.

thr  posterior probability threshold used to trim SNP list. Only SNPs with a marginal posterior probability of inclusion greater than this with one or other trait will be included in the full BMA analysis
nsnps  number of SNPs required to model both traits. The BMA analysis will average over all possible nsnp SNP models, subject to thr above.

n.approx  number of values at which to numerically approximate the posterior

bayes.factor  if true, compare specific models

plot.coef  deprecated

r2.trim  for pairs SNPs with \( r^2 > r2.trim \), only one SNP will be retained. This avoids numerical instability problems caused by including two highly correlated SNPs in the model.

quiet  suppress messages about how the model spaced is trimmed for BMA

bma  if true (default), average over models

...  other parameters passed to coloc.test

Details

This is a test for proportionality of regression coefficients from two independent regressions. Analysis can either be based on a profile likelihood approach, where the proportionality coefficient, \( \eta \), is replaced by its maximum likelihood value, and inference is based on a chisquare test (p.value), or taking a hybrid-Bayesian approach and integrating the p value over the posterior distribution of \( \eta \), which gives a posterior predictive p value. The Bayesian approach can also be used to give a credible interval for \( \eta \). See the references below for further details.

Value

a coloc or colocBayes object

Author(s)

Chris Wallace

References


Examples

```
simulate covariate matrix (X) and continuous response vector (Y)
for two populations/triats Y1 and Y2 depend equally on f1 and f2
within each population, although their distributions differ between
populations. They are compatible with a null hypothesis that they
share a common causal variant
set.seed(1)
X1 <- matrix(rbinom(2000,1,.4),ncol=4)
```
coloc.test

Function to do colocalisation tests of two traits

description

usage
coloc.test(X, Y, vars.drop = NULL, ...)

arguments
X
Either an lm or glm object for trait 1. The intersection of names(coefficients(X)) and names(coefficients(Y)) is used to identify SNPs in common which will be tested for colocalisation. Any Intercept term is dropped, but other covariates should have distinct names or be listed in vars.drop to avoid them being included in the colocalisation test.
Either an lm or glm object for trait 2.

vars.drop

Character vector naming additional variables in either regression which are not SNPs and should not be used in the colocalisation test. They should appear in

c(names(coefficients(X)), names(coefficients(Y)))

... other arguments passed to coloc.test.summary().

Details

This is a test for proportionality of regression coefficients from two independent regressions. Analysis can either be based on a profile likelihood approach, where the proportionality coefficient, eta, is replaced by its maximum likelihood value, and inference is based on a chisquare test (p.value), or taking a hybrid-Bayesian approach and integrating the p value over the posterior distribution of eta, which gives a posterior predictive p value. The Bayesian approach can also be used to give a credible interval for eta. See the references below for further details.

Value

a numeric vector with 3 named elements:

eta.hat

The estimated slope.

chisquare

The chisquared test statistic

n

The number of snps used in the test. If eta were known, this would be the degrees of freedom of the test. Because eta has been replaced by its ML estimate, Plagnol et al suggest we expect the degrees of freedom to be n-1, but this requires the likelihood to be well behaved which is not always the case. We prefer to consider the posterior predictive p value.

ppp

The posterior predictive p value

Note

Plagnol et al’s original test was available in his R package QTLMatch v0.8 which now appears unavailable. The numerically identical test, extended to allow for more than two SNPs, can be found in this package by looking at the chisquare statistic and the degrees of freedom given by chisquare() and df() respectively.

Author(s)

Chris Wallace

References


Examples

```r
simulate covariate matrix (x) and continuous response vector (y)
for two populations/trials y1 and y2 depend equally on f1 and f2
within each population, although their distributions differ between
populations. They are compatible with a null hypothesis that they
share a common causal variant
set.seed(1)
x1 <- matrix(rbinom(1000,1,0.4),ncol=2)
y1 <- rnorm(500,apply(x1,1,sum),2)
x2 <- matrix(rbinom(1000,1,0.6),ncol=2)
y2 <- rnorm(500,2*apply(x2,1,sum),5)

boxplot(list(y1,y2),names=c("Y1","Y2"))

fit and store linear model objects
colnames(x1) <- colnames(x2) <- c("f1","f2")
summary(lm1 <- lm(Y1~f1+f2,data=as.data.frame(x1)))
summary(lm2 <- lm(Y2~f1+f2,data=as.data.frame(x2)))

test whether the traits are compatible with colocalisation
ppp should be large (>0.05, for example), indicating that they are.
par(mfrow=c(1,2))
obj <- coloc.test(lm1,lm2,
 plots.extra=list(x=c("eta","theta"),
 y=c("lhood","lhood")))
plot(obj)
```

coloc.test.summary  Colocalisation testing using regression coefficients

Description

Colocalisation testing supplying only regression coefficients and their variance-covariants matrices

Usage

```r
coloc.test.summary(b1, b2, V1, V2, k = 1, plot.coef = FALSE,
 plots.extra = NULL, bayes = !is.null(bayes.factor),
 n.approx = 1001, level.ci = 0.95, bayes.factor = NULL,
 bma = FALSE)
```

Arguments

- `b1` regression coefficients for trait 1
- `b2` regression coefficients for trait 2
- `V1` variance-covariance matrix for trait 1
V2 variance-covariance matrix for trait 2

k Theta has a Cauchy(0,k) prior. The default, k=1, is equivalent to a uniform (uninformative) prior. We have found varying k to have little effect on the results.

plot.coeff DEPRECATED. Please plot() returned object instead. TRUE if you want to generate a plot showing the coefficients from the two regressions together with confidence regions.

plots.extra list with 2 named elements, x and y, equal length character vectors containing the names of the quantities to be plotted on the x and y axes.

x is generally a sequence of theta and eta, with y selected from post.theta, the posterior density of theta, chisq, the chi-square values of the test, and lhood, the likelihood function.

bayes Logical, indicating whether to perform Bayesian inference for the coefficient of proportionality, eta. If bayes.factor is supplied, Bayes factors are additionally computed for the specified values. This can add a little time as it requires numerical integration, so can be set to FALSE to save time in simulations, for example.

level.ci, n.approx level.ci denotes the required level of the credible interval for eta. This is calculated numerically by approximating the posterior distribution at n.approx distinct values.

bayes.factor Calculate Bayes Factors to compare specific values of eta. bayes.factor should either be a numeric vector, giving single value(s) of eta or a list of numeric vectors, each of length two and specifying ranges of eta which should be compared to each other. Thus, the vector or list needs to have length at least two.

bma parameter set to TRUE when coloc.test is called by coloc.bma. DO NOT SET THIS WHEN CALLING coloc.test DIRECTLY!

Details

Typically this should be called from coloc.test() or coloc.bma(), but is left as a public function, to use at your own risk, if you have some other way to define the SNPs under test.

Value

an object of class coloc, colocBayes or colocBMA

Author(s)

Chris Wallace
**colocABF-class**  
*Class* "colocABF" *holds objects returned by the coloc.abf function*

**Description**

Objects can be created by calls to the function `coloc.abf()`.

**Author(s)**

Chris Wallace.

**See Also**

`coloc.abf`

**Examples**

```r
showClass("colocABF")
```

---

**colocPCs-class**  
*Class* "colocPCs"

**Description**

designed to hold objects returned by function `pcs.prepare` which generates a principal component summary of two genotype matrices in a form suitable for use in the function `pcs.model`.

**Objects from the Class**

Objects can be created by calls to the function `pcs.prepare()`.

**Author(s)**

Chris Wallace.

Chris Wallace.
References


See Also

pcs.prepare, pcs.model

Examples

showClass("colocPCs")

showClass("colocPCs")

combine.abf

Description

Internal function, calculate posterior probabilities for configurations, given logABFs for each SNP and prior probs

Usage

combine.abf(l1, l2, p1, p2, p12)

Arguments

l1, l2, p1, p2, p12
Methods to extract information from a coloc or colocBayes object

**Value**

named numeric vector of posterior probabilities

**Author(s)**

Claudia Giambartolomei, Chris Wallace

**eta**

**Description**

Extract information from a coloc object.

**Usage**

`eta(object)`

**Arguments**

- `object` Object returned by `coloc.test()` or `coloc.bma()` functions.

**Details**

- `eta()` returns `eta.hat`, the maximum likelihood value of eta.
- `theta()` returns `theta.hat`, the maximum likelihood value of eta.
- `summary()` returns a summary, giving eta, chisquare statistic, number of SNPs/PCs, p value and, if a colocBayes object, the ppp.value
- `ci()` returns the credible interval, or NA if not calculated.

**Author(s)**

Chris Wallace.

**See Also**

`coloc.test`, `pcs.prepare`
fillin

Impute missing genotypes

Description

Impute missing genotypes in a snpMatrix object in each SNP in turn, conditional on all the others.

Usage

fillin(X, bp = 1:ncol(X), strata = NULL)

Arguments

X a snpMatrix object
bp optional vector giving basepair positions of the SNPs
strata optional vector giving stratification of the samples, one entry for each sample, and samples with the same value are assumed to come from a single strata

Value

a numeric matrix of imputed genotypes, 0,2 = homs, 1 = het

finemap.abf

Bayesian finemapping analysis

Description

Bayesian finemapping analysis

Usage

finemap.abf(dataset, p1 = 1e-04)

Arguments

dataset a list with the following elements
pvalues P-values for each SNP in dataset 1
N Number of samples in dataset 1
MAF minor allele frequency of the variants
beta regression coefficient for each SNP from dataset 1
varbeta variance of beta
type the type of data in dataset 1 - either "quant" or "cc" to denote quantitative or case-control
s for a case control dataset, the proportion of samples in dataset 1 that are cases
sdY for a quantitative trait, the population standard deviation of the trait. If not
given, it can be estimated from the vectors of varbeta and MAF
snp a character vector of snp ids, optional. If present, it will be used to merge
dataset1 and dataset2. Otherwise, the function assumes dataset1 and dataset2
contain results for the same SNPs in the same order.

Some of these items may be missing, but you must give
• always type
• if type=="cc" s
• if type=="quant" and sdY knownsdY
• if type=="quant" and sdY unknownbeta, varbeta, N, MAF and then either
• pvalues, MAF
• beta, varbeta

prior probability a SNP is associated with the trait 1, default 1e-4

Details
This function calculates posterior probabilities of different causal variant for a single trait.
If regression coefficients and variances are available, it calculates Bayes factors for association at
each SNP. If only p values are available, it uses an approximation that depends on the SNP’s MAF
and ignores any uncertainty in imputation. Regression coefficients should be used if available.

Value

a data.frame:
• an annotated version of the input data containing log Approximate Bayes Factors and inter-
mediate calculations, and the posterior probability of the SNP being causal

Author(s)
Chris Wallace

Description
Internal function, logdiff

Usage
logdiff(x, y)

Arguments
x numeric
y numeric
Details

This function calculates the log of the difference of the exponentiated logs taking out the max, i.e. insuring that the difference is not negative.

Value

\[ \text{max}(x) + \log(\exp(x - \text{max}(x,y)) - \exp(y - \text{max}(x,y))) \]

Author(s)

Chris Wallace

Description

Internal function, logsum

Usage

\text{logsum}(x)

Arguments

\(x\) numeric vector

Details

This function calculates the log of the sum of the exponentiated logs taking out the max, i.e. insuring that the sum is not Inf.

Value

\[ \text{max}(x) + \log(\text{sum}(\exp(x - \text{max}(x)))) \]

Author(s)

Claudia Giambartolomei
Description

Functions to prepare principle component models for colocalisation testing

Usage

```r
pcs.model(object, group, Y, stratum = NULL, threshold = 0.8,
family = if (all(Y %in% c(0, 1))) { "binomial" } else {
 "gaussian" })
```

Arguments

- **object**: A colocPCs object, result of `pcs.prepare()`.
- **group**: 1 or 2, indicating which group of samples to extract from principal components matrix.
- **Y**: Numeric phenotype vector, length equal to the number of samples from the requested group.
- **stratum**: optional vector that gives stratum information.
- **threshold**: The minimum number of principal components which captures at least threshold proportion of the variance will be selected. Simulations suggest threshold=0.8 is a good default value.
- **family**: Passed to `glm()` function. `pcs.model` attempts to guess, either "binomial" if Y contains only 0s and 1s, "gaussian" otherwise.

Details

Prepares models of response based on principal components of two datasets for colocalisation testing.

Value

- `pcs.prepare` returns a colocPCs object, `pcs.model` returns a glm object.

Author(s)

- Chris Wallace
References


Examples

```r
simulate covariate matrix (X) and continuous response vector (Y)
for two populations/triats Y1 and Y2 depend equally on f1 and f2
within each population, although their distributions differ between
populations. They are compatible with a null hypothesis that they
share a common causal variant, with the effect twice as strong for
Y2 as Y1
set.seed(1)
x1 <- matrix(rbinom(5000, 1, 0.4), ncol=10)
y1 <- rnorm(500, apply(x1[,1:2], 1, sum), 2)
x2 <- matrix(rbinom(5000, 1, 0.6), ncol=10)
y2 <- rnorm(500, 2*apply(x2[,1:2], 1, sum), 5)

generate principal components object
colnames(x1) <- colnames(x2) <- make.names(1:ncol(x1))
pcs <- pcs.prepare(x1,x2)

generate glm objects
m1 <- pcs.model(pcs, group=1, Y=y1)
m2 <- pcs.model(pcs, group=2, Y=y2)

Alternatively, if one (or both) datasets have a known stratification, here simulated as
s <- rbinom(500, 1, 0.5)
specify this in pcs.model as
m1 <- pcs.model(pcs, group=1, Y=y1, stratum=s)

test colocalisation using PCs
coloc.test(m1,m2,plot.coeff=FALSE,bayes=FALSE)
```

**pcs.prepare**  
Functions to prepare principle component models for colocalisation testing

**Description**  
Prepares principal components of two datasets for colocalisation testing.
Usage

```r
pcs.prepare(X1, X2, impute = TRUE)
```

Arguments

- `X1`: Either a SnpMatrix or numeric matrix of genetic data. Columns index SNPs, rows index samples.
- `X2`: as `X1`
- `impute`: if TRUE (default), impute missing genotypes

Details

If `X1` and `X2` are SnpMatrix objects, they are checked for missing data, and any missing values imputed by repeated use of `impute.snps` from the `snpStats` package.

Columns with common names are `rbind`ed together and principal components calculated using `prcomp`.

`pcs.model` can then be invoked to create `glm` objects.

Value

- a colocPCs object.

Author(s)

Chris Wallace

References


Examples

```R
simulate covariate matrix (X) and continuous response vector (Y)
for two populations/triats Y1 and Y2 depend equally on f1 and f2
within each population, although their distributions differ between
populations. They are compatible with a null hypothesis that they
share a common causal variant, with the effect twice as strong for
Y2 as Y1
set.seed(1)
X1 <- matrix(rbinom(5000,1,0.4),ncol=10)
Y1 <- rnorm(500,apply(X1[1:2],[1,sum],2)
X2 <- matrix(rbinom(5000,1,0.6),ncol=10)
Y2 <- rnorm(500,2*apply(X2[1:2],[1,sum],5)
```
## Generate principal components object

colnames(X1) <- colnames(X2) <- make.names(1:ncol(X1))
pcs <- pcs.prepare(X1, X2)

## Generate glm objects

m1 <- pcs.model(pcs, group=1, Y=Y1)
m2 <- pcs.model(pcs, group=2, Y=Y2)

## Test colocalisation using PCs

coloc.test(m1, m2, plot.coef=FALSE, bayes=FALSE)

---

### plot

**Plotting functions for the coloc package**

#### Description

You can plot objects of class coloc, colocBayes and colocABF

Plot results of a coloc.abf run

#### Usage

plot(x, y, ...)

## S4 method for signature 'colocTWAS,missing'
plot(x)

## S4 method for signature 'coloc,missing'
plot(x, y, ...)

## S4 method for signature 'colocABF,missing'
plot(x, y, ...)

## S4 method for signature 'coloc,missing'
plot(x, y, ...)

## S4 method for signature 'colocPCs,missing'
plot(x)

abf.plot(coloc.obj, Pos = 1:nrow(coloc.obj@results), chr = NULL,
  pos.start = min(Pos), pos.end = max(Pos), trait1 = "trait 1",
  trait2 = "trait 2")

#### Arguments

- **x** object to be plotted
- **y** ignored
process.dataset

... other arguments
coloc.obj object of class colocABF returned by coloc.abf()
Pos positions of all snps in ds1 or in ds2
chr Chromosome
pos.start lower bound of positions
pos.end upper bound of positions
trait1 name of trait 1
trait2 name of trait 2

Details
If coloc.obj is missing, it will be created as coloc.obj=coloc.abf(ds1,ds2). Both ds1 and ds2 should contain the same snps in the same order

Value
no return value
a ggplot object

Author(s)
Hui Guo, Chris Wallace

Description
Internal function, process each dataset list for coloc.abf

Usage
process.dataset(d, suffix)

Arguments
d list
suffix "df1" or "df2"

Value
data.frame with log(abf) or log(bf)

Author(s)
Chris Wallace
**sdyNest**

*Estimate trait variance, internal function*

**Description**

Estimate trait standard deviation given vectors of variance of coefficients, MAF and sample size

**Usage**

`sdyNest(vbeta, maf, n)`

**Arguments**

- `vbeta`: vector of variance of coefficients
- `maf`: vector of MAF (same length as `vbeta`)
- `n`: sample size

**Details**

Estimate is based on `var(\hat{beta}) = var(Y) / (n * var(X)) \ var(X) = 2*maf*(1-maf)` so we can estimate `var(Y)` by regressing `n*var(X)` against `1/var(beta)`

**Value**

estimated standard deviation of `Y`

**Author(s)**

Chris Wallace

**Var.data**

*variance of MLE of beta for quantitative trait, assuming var(y)=1*

**Description**

variance of MLE of beta for quantitative trait, assuming var(y)=1

**Usage**

`Var.data(f, N)`

**Arguments**

- `f`: minor allele freq
- `N`: sample number
Details
Internal function

Value
variance of MLE beta

Author(s)
Claudia Giambartolomei

Description
variance of MLE of beta for case-control

Usage
Var.data.cc(f, n, s)

Arguments
f minor allele freq
N sample number
s ???

Details
Internal function

Value
variance of MLE beta

Author(s)
Claudia Giambartolomei
Index

*Topic classes
  coloc-class, 5
  colocABF-class, 15
  colocPCs-class, 15
*Topic methods
  bf, 4
  eta, 17
*Topic package
  coloc-package, 2
abf.plot(plot), 24
approx.bf.estimates, 3
approx.bf.p, 4
bf, 4
bf,colocBayes-method(bf), 4
  ci (eta), 17
  ci,coloc-method(eta), 17
  ci,colocBayes-method(eta), 17
  coloc-class, 5
  coloc-package, 2
  coloc.abf, 6, 8, 9, 15
  coloc.abf.datasets, 7
  coloc.abf.snpStats, 7, 8
  coloc.bma, 5, 9, 14
  coloc.test, 5, 11, 14, 17
  coloc.test.summary, 5, 12, 13
  colocABF-class, 15
  colocBayes-class(coloc-class), 5
  colocBayesBMA(coloc-class), 5
  colocBMA(coloc-class), 5
  colocPCs-class, 15
  combine.abf, 16
  eta, 17
  eta,coloc-method(eta), 17
  eta,colocBayes-method(eta), 17
  fillin, 18
  finemap.abf, 18
logdiff, 19
logsum, 20
pcs.model, 15, 16, 21
pcs.prepare, 15–17, 22
plot, 24
plot,coloc,missing-method(plot), 24
plot,colocABF,missing-method(plot), 24
plot,colocPCs,missing-method(plot), 24
plot,colocTWAS,missing-method(plot), 24
process.dataset, 25
sdY.est, 26
summary(eta), 17
summary,coloc-method(eta), 17
summary,colocBayes-method(eta), 17
theta(eta), 17
theta,coloc-method(eta), 17
theta,colocBayes-method(eta), 17
Var.data, 26
Var.data.cc, 27