Package ‘coloc’

June 14, 2021

Type Package

Imports data.table, ggplot2, methods, viridis, stats, grDevices,
 susieR (>= 0.11.33), utils

Suggests knitr, testthat, snpStats, mvtnorm, magrittr, rmarkdown

Title Colocalisation Tests of Two Genetic Traits

Version 5.1.0

Date 2021-06-08

Maintainer Chris Wallace <cew54@cam.ac.uk>

Description Performs the colocalisation tests described in
 Giambartolomei et al (2013) <doi:10.1371/journal.pgen.1004383>,
 Wallace (2020) <doi:10.1371/journal.pgen.1008720>,

License GPL

LazyLoad yes

VignetteBuilder knitr

RoxygenNote 7.1.1

Encoding UTF-8

URL https://github.com/chr1swallace/coloc

BugReports https://github.com/chr1swallace/coloc/issues

Collate 'check.R' 'claudia.R' 'coloc-package.R' 'plot.R' 'private.R'
 'sensitivity.R' 'split.R' 'susie.R' 'testdata.R' 'zzz.R'

Depends R (>= 2.10)

NeedsCompilation no

Author Chris Wallace [aut, cre],
 Claudia Giambartolomei [aut],
 Vincent Plagnol [ctb]

Repository CRAN

Date/Publication 2021-06-14 15:10:01 UTC
R topics documented:

- coloc-package .. 2
- alpha_to_logbf .. 3
- approx.bf.estiimates .. 3
- approx.bf.p ... 4
- bin2lin .. 5
- check_alignment ... 5
- check_dataset .. 6
- coloc.abf .. 8
- coloc.bf bf .. 9
- coloc.detail .. 10
- coloc.process ... 11
- coloc.signals ... 12
- coloc.susie ... 13
- coloc.susie bf ... 14
- coloc_test_data .. 15
- combine.abf ... 16
- estgeno.1.ctl ... 16
- est_cond .. 17
- find.best.signal .. 18
- finemap.abf .. 18
- finemap.signals .. 19
- logbf_to_pp .. 20
- logdiff .. 21
- logsum .. 21
- map_cond ... 22
- map_mask .. 23
- plot.coloc_abf .. 23
- plot_dataset .. 24
- print.coloc_abf ... 25
- process.dataset .. 25
- runsusie .. 26
- sdY.est .. 27
- sensitivity ... 28
- Var.data .. 29
- Var.data.cc ... 30

Index

<table>
<thead>
<tr>
<th>coloc-package</th>
<th>Colocalisation tests of two genetic traits</th>
</tr>
</thead>
</table>

Description

Performs the colocalisation tests described in Plagnol et al (2009) and Wallace et al (2020) and draws some plots.
alpha_to_logbf

Author(s)
Chris Wallace cew54@cam.ac.uk

Description
convert alpha matrix to log BF matrix

Usage
alpha_to_logbf(alpha, pi)

Arguments
- `alpha`: an L by p+1 matrix of posterior inclusion probabilities
- `pi`: per SNP prior probability of causality

Value
L by p+1 matrix of log BF

Author(s)
Chris Wallace

approx.bf.estimates

Internal function, approx.bf.estimates

Description
Internal function, approx.bf.estimates

Usage
approx.bf.estimates(z, V, type, suffix = NULL, sdY = 1)

Arguments
- `z`: normal deviate associated with regression coefficient and its variance
- `V`: its variance
- `type`: "quant" or "cc"
- `suffix`: suffix to append to column names of returned data.frame
- `sdY`: standard deviation of the trait. If not supplied, will be estimated.
Details

Calculate approximate Bayes Factors using supplied variance of the regression coefficients

Value

data.frame containing lABF and intermediate calculations

Author(s)

Vincent Plagnol, Chris Wallace

approx.bf.p

Description

Internal function, approx.bf.p

Usage

approx.bf.p(p, f, type, N, s, suffix = NULL)

Arguments

p p value
f MAF
type "quant" or "cc"
N sample size
s proportion of samples that are cases, ignored if type="quant"
suffix suffix to append to column names of returned data.frame

Details

Calculate approximate Bayes Factors

Value

data.frame containing lABF and intermediate calculations

Author(s)

Claudia Giambartolomei, Chris Wallace
bin2lin

binomial to linear regression conversion

Description
Convert binomial to linear regression

Usage
bin2lin(D, doplot = FALSE)

Arguments
D standard format coloc dataset
doplot plot results if TRUE - useful for debugging

Details
Estimate beta and varbeta if a linear regression had been run on a binary outcome, given log OR and their variance + MAF in controls
sets beta = cov(x,y)/var(x) varbeta = (var(y)/var(x) - cov(x,y)^2/var(x)^2)/N

Value
D, with original beta and varbeta in beta.bin, varbeta.bin, and beta and varbeta updated to linear estimates

Author(s)
Chris Wallace

check_alignment

check alignment

Description
check alignment between beta and LD

Usage
check_alignment(D, thr = 0.2, do_plot = TRUE)
check.alignment(...)
check_dataset

Arguments

- **D**: a coloc dataset
- **thr**: plot SNP pairs in absolute LD > thr
- **do_plot**: if TRUE (default) plot the diagnostic
- **...**: arguments passed to check_alignment()

Value

proportion of pairs that are positive

Author(s)

Chris Wallace

Description

Check coloc dataset inputs for errors

Usage

```
check_dataset(d, suffix = "", req = c("snp"), warn.minp = 1e-06)
```

```
check.dataset(...)  
```

Arguments

- **d**: dataset to check
- **suffix**: string to identify which dataset (1 or 2)
- **req**: names of elements that must be present
- **warn.minp**: print warning if no p value < warn.minp
- **...**: arguments passed to check_dataset()

Details

Coloc is flexible, requiring perhaps only p values, or z scores, or effect estimates and standard errors, but with this flexibility, also comes difficulties describing exactly the combinations of items required.

pvalues P-values for each SNP in dataset 1

N Number of samples in dataset 1

MAF minor allele frequency of the variants

beta regression coefficient for each SNP from dataset 1
check_dataset

varbeta variance of beta

type the type of data in dataset 1 - either "quant" or "cc" to denote quantitative or case-control

s for a case control dataset, the proportion of samples in dataset 1 that are cases

sdY for a quantitative trait, the population standard deviation of the trait. if not given, it can be estimated from the vectors of varbeta and MAF

snp a character vector of snp ids, optional. If present, it will be used to merge dataset1 and dataset2. Otherwise, the function assumes dataset1 and dataset2 contain results for the same SNPs in the same order.

Some of these items may be missing, but you must always give type.

Then scalars describing the samples used:

```
N
if type=="cc"  s
if type=="quant" and sdY known  sdY
```

If sdY is unknown, it will be approximated, and this will require

```
beta, varbeta, N, MAF
```

Then, if not already covered above, the summary statistics describing the results

preferably beta, varbeta

alternatively pvalues, MAF

check_dataset call stop() unless a series of expectations on dataset input format are met

This is a helper function for use by other coloc functions, but you can use it directly to check the format of a dataset to be supplied to coloc.abf(), coloc.signals(), finemap.abf(), or finemap.signals().

Value

NULL if no errors found

Author(s)

Chris Wallace
Fully Bayesian colocalisation analysis using Bayes Factors

Description

Bayesian colocalisation analysis

Usage

coloc.abf(dataset1, dataset2, MAF = NULL, p1 = 1e-04, p2 = 1e-04, p12 = 1e-05)

Arguments

dataset1: a list with specifically named elements defining the dataset to be analysed. See check_dataset for details.
dataset2: as above, for dataset 2
MAF: Common minor allele frequency vector to be used for both dataset1 and dataset2, a shorthand for supplying the same vector as parts of both datasets
p1: prior probability a SNP is associated with trait 1, default 1e-4
p2: prior probability a SNP is associated with trait 2, default 1e-4
p12: prior probability a SNP is associated with both traits, default 1e-5

Details

This function calculates posterior probabilities of different causal variant configurations under the assumption of a single causal variant for each trait.

If regression coefficients and variances are available, it calculates Bayes factors for association at each SNP. If only p values are available, it uses an approximation that depends on the SNP’s MAF and ignores any uncertainty in imputation. Regression coefficients should be used if available.

Value

a list of two data.frames:

• summary is a vector giving the number of SNPs analysed, and the posterior probabilities of H0 (no causal variant), H1 (causal variant for trait 1 only), H2 (causal variant for trait 2 only), H3 (two distinct causal variants) and H4 (one common causal variant)
• results is an annotated version of the input data containing log Approximate Bayes Factors and intermediate calculations, and the posterior probability SNP.PP.H4 of the SNP being causal for the shared signal if H4 is true. This is only relevant if the posterior support for H4 in summary is convincing.

Author(s)

Claudia Giambartolomei, Chris Wallace
coloc.bf_bf

Coloc data through Bayes factors

Description

Colocalise two datasets represented by Bayes factors

Usage

```r
coloc.bf_bf(
  bf1,
  bf2,
  p1 = 1e-04,
  p2 = 1e-04,
  p12 = 5e-06,
  overlap.min = 0.5,
  trim_by_posterior = TRUE
)
```

Arguments

- `bf1`: named vector of BF, or matrix of BF with colnames (cols=snps, rows=signals)
- `bf2`: named vector of BF, or matrix of BF with colnames (cols=snps, rows=signals)
- `p1`: prior probability a SNP is associated with trait 1, default 1e-4
- `p2`: prior probability a SNP is associated with trait 2, default 1e-4
- `p12`: prior probability a SNP is associated with both traits, default 1e-5
- `overlap.min`: see `trim_by_posterior`
- `trim_by_posterior`: it is important that the signals to be colocalised are covered by adequate numbers of snps in both datasets. If TRUE, signals for which snps in common do not capture least overlap.min proportion of their posteriors support are dropped and colocalisation not attempted.

Details

This is the workhorse behind many coloc functions

Value

coloc.signals style result

Author(s)

Chris Wallace
Bayesian colocalisation analysis with detailed output

Description

Bayesian colocalisation analysis, detailed output

Usage

coloc.detail(
 dataset1,
 dataset2,
 MAF = NULL,
 p1 = 1e-04,
 p2 = 1e-04,
 p12 = 1e-05
)

Arguments

dataset1 a list with specifically named elements defining the dataset to be analysed. See check_dataset for details.
dataset2 as above, for dataset 2
MAF Common minor allele frequency vector to be used for both dataset1 and dataset2, a shorthand for supplying the same vector as parts of both datasets
p1 prior probability a SNP is associated with trait 1, default 1e-4
p2 prior probability a SNP is associated with trait 2, default 1e-4
p12 prior probability a SNP is associated with both traits, default 1e-5

Details

This function replicates coloc.abf, but outputs more detail for further processing using coloc.process

Intended to be called internally by coloc.signals

Value

a list of three data.tables:

- summary is a vector giving the number of SNPs analysed, and the posterior probabilities of H0 (no causal variant), H1 (causal variant for trait 1 only), H2 (causal variant for trait 2 only), H3 (two distinct causal variants) and H4 (one common causal variant)
- df is an annotated version of the input data containing log Approximate Bayes Factors and intermediate calculations, and the posterior probability SNP.PP.H4 of the SNP being causal for the shared signal
- df3 is the same for all 2 SNP H3 models
coloc.process

Author(s)

Chris Wallace

See Also

coloc.process, coloc.abf

Description

Internal helper function

Usage

coloc.process(
 obj,
 hits1 = NULL,
 hits2 = NULL,
 LD = NULL,
 r2thr = 0.01,
 p1 = 1e-04,
 p2 = 1e-04,
 p12 = 1e-06,
 LD1 = LD,
 LD2 = LD,
 mode = c("iterative", "allbutone")
)

Arguments

obj object returned by coloc.detail()

hits1 lead snps for trait 1. If length > 1, will use masking

hits2 lead snps for trait 2. If length > 1, will use masking

LD named LD matrix (for masking)

r2thr r2 threshold at which to mask

p1 prior probability a SNP is associated with trait 1, default 1e-4

p2 prior probability a SNP is associated with trait 2, default 1e-4

p12 prior probability a SNP is associated with both traits, default 1e-5

LD1 named LD matrix (for masking) for trait 1 only

LD2 named LD matrix (for masking) for trait 2 only

mode either "iterative" (default) - successively condition on signals or "allbutone" - find all putative signals and condition on all but one of them in each analysis
Value
data.table of coloc results

Author(s)
Chris Wallace

coloc.signals Coloc with multiple signals per trait

Description
New coloc function, builds on coloc.abf() by allowing for multiple independent causal variants per trait through conditioning or masking.

Usage
coloc.signals(
 dataset1,
 dataset2,
 MAF = NULL,
 LD = NULL,
 method = c("single", "cond", "mask"),
 mode = c("iterative", "allbutone"),
 p1 = 1e-04,
 p2 = 1e-04,
 p12 = NULL,
 maxhits = 3,
 r2thr = 0.01,
 pthr = 1e-06
)

Arguments
dataset1 a list with specifically named elements defining the dataset to be analysed. See check_dataset for details.
dataset2 as above, for dataset 2
MAF Common minor allele frequency vector to be used for both dataset1 and dataset2, a shorthand for supplying the same vector as parts of both datasets
LD required if method="cond". matrix of genotype correlation (ie r, not r^2) between SNPs. If dataset1 and dataset2 may have different LD, you can instead add LD=LD1 to the list of dataset1 and a different LD matrix for dataset2
method default "" means do no conditioning. should return similar to coloc.abf. if method="cond", then use conditioning to coloc multiple signals. if method="mask", use masking to coloc multiple signals. if different datasets need different methods (eg LD is only available for one of them) you can set method on a per-dataset basis by adding method="..." to the list for that dataset.
mode

"iterative" or "allbutone". Easiest understood with an example. Suppose there are 3 signal SNPs detected for trait 1, A, B, C and only one for trait 2, D.

Under "iterative" mode, 3 coloc will be performed:
* trait 1 - trait 2
* trait 1 conditioned on A - trait 2
* trait 1 conditioned on A+B - trait 2

Under "allbutone" mode, they would be
* trait 1 conditioned on B+C - trait 2
* trait 1 conditioned on A+C - trait 2
* trait 1 conditioned on A+B - trait 2

Only iterative mode is supported for method="mask".

The allbutone mode is optimal if the signals are known with certainty (which they never are), because it allows each signal to be tested without influence of the others. When there is uncertainty, it may make sense to use iterative mode, because the strongest signals aren't affected by conditioning incorrectly on weaker secondary and less certain signals.

p1
prior probability a SNP is associated with trait 1, default 1e-4

p2
prior probability a SNP is associated with trait 2, default 1e-4

p12
prior probability a SNP is associated with both traits, default 1e-5

maxhits
maximum number of levels to condition/mask

r2thr
if masking, the threshold on r^2 should be used to call two signals independent. Our experience is that this needs to be set low to avoid double calling the same strong signal.

pthr
if masking or conditioning, what p value threshold to call a secondary hit "significant"

Value
data.table of coloc results, one row per pair of lead snps detected in each dataset

Author(s)
Chris Wallace

Description
colocalisation with multiple causal variants via SuSiE
Usage

coloc.susie(
 dataset1,
 dataset2,
 back_calculate_lbf = FALSE,
 susie.args = list(),
 ...
)

Arguments

dataset1
 either a coloc-style input dataset (see check_dataset), or the result of running runsusie on such a dataset

dataset2
 either a coloc-style input dataset (see check_dataset), or the result of running runsusie on such a dataset

back_calculate_lbf
 by default, use the log Bayes factors returned by susie_rss. It is also possible to back-calculate these from the posterior probabilities. It is not advised to set this to TRUE, the option exists really for testing purposes only.

susie.args
 a named list of additional arguments to be passed to runsusie

...
 other arguments passed to coloc.bf_bf, in particular prior values for causal association with one trait (p1, p2) or both (p12)

Value

 a list, containing elements
 * summary a data.table of posterior probabilities of each global hypothesis, one row per pairwise comparison of signals from the two traits
 * results a data.table of detailed results giving the posterior probability for each SNP to be jointly causal for both traits assuming \textit{H4 is true}. Please ignore this column if the corresponding posterior support for H4 is not high.
 * priors a vector of the priors used for the analysis

Author(s)

 Chris Wallace

\texttt{coloc.susie_bf} \quad \textit{run coloc using susie to detect separate signals}

Description

 coloc for susie output + a separate BF matrix

Usage

 coloc.susie_bf(dataset1, bf2, p1 = 1e\textasciitilde04, p2 = 1e\textasciitilde04, p12 = 5e\textasciitilde06, ...)
Arguments

- **dataset1**: a list with specifically named elements defining the dataset to be analysed. See `check_dataset` for details.
- **bf2**: named vector of BF, names are snp ids and will be matched to column names of susie object’s alpha
- **p1**: prior probability a SNP is associated with trait 1, default 1e-4
- **p2**: prior probability a SNP is associated with trait 2, default 1e-4
- **p12**: prior probability a SNP is associated with both traits, default 1e-5
- **...**: other arguments passed to `coloc.bf_bf`, in particular prior values for causal association with one trait (p1, p2) or both (p12)

Value

`coloc.signals` style result

Author(s)

Chris Wallace

Description

Simulated data to use in testing and vignettes in the coloc package

Usage

```r
data(coloc_test_data)
```

Format

A four of two coloc-style datasets. Elements D1 and D2 have a single shared causal variant, and 50 SNPs. Elements D3 and D4 have 100 SNPs, one shared causal variant, and one variant unique to D3. Use these as examples of what a coloc-style dataset for a quantitative trait should look like.

Examples

```r
data(coloc_test_data)
names(coloc_test_data)
str(coloc_test_data$D1)
check_dataset(coloc_test_data$D1)  # should return NULL if data structure is ok
```
combine.abf

Description
Internal function, calculate posterior probabilities for configurations, given logABFs for each SNP and prior probs

Usage
```
combine.abf(l1, l2, p1, p2, p12)
```

Arguments
- `l1`: merged.df$lABF.df1
- `l2`: merged.df$lABF.df2
- `p1`: prior probability a SNP is associated with trait 1, default 1e-4
- `p2`: prior probability a SNP is associated with trait 2, default 1e-4
- `p12`: prior probability a SNP is associated with both traits, default 1e-5

Value
named numeric vector of posterior probabilities

Author(s)
Claudia Giambartolomei, Chris Wallace

estgeno.1.ctl

Description
Estimate single snp frequency distributions

Usage
```
estgeno.1.ctl(f)
estgeno.1.cse(G0, b)
```

Arguments
- `f`: MAF
- `G0`: single snp frequency in controls (vector of length 3) - obtained from estgeno.1.ctl
- `b`: log odds ratio
`est_cond`

Value
relative frequency of genotypes 0, 1, 2

Author(s)
Chris Wallace

See Also
estgeno2

Description
Internal helper function for `est_all_cond`

Usage

```r  
est_cond(x, LD, YY, sigsnps, xtx = NULL)  
```

Arguments
- `x`
coloc dataset
- `LD`
named matrix of r
- `YY`
sum((Y-Ybar)^2)
- `sigsnps`
names of snps to jointly condition on
- `xtx`
optional, matrix X'X where X is the genotype matrix. If not available, will be estimated from LD, MAF, beta and sample size (the last three should be part of the coloc dataset)

Value
data.table giving snp, beta and varbeta on remaining snps after conditioning

Author(s)
Chris Wallace
find.best.signal
Pick out snp with most extreme Z score

Description

Internal helper function

Usage

```r
find.best.signal(D)
```

Arguments

- `D`
 standard format coloc dataset

Value

- `z` at most significant snp, named by that snp id

Author(s)

Chris Wallace

finemap.abf
Bayesian finemapping analysis

Description

Bayesian finemapping analysis

Usage

```r
finemap.abf(dataset, p1 = 1e-04)
```

Arguments

- `dataset`
 a list with specifically named elements defining the dataset to be analysed. See `check_dataset` for details.
- `p1`
 prior probability a SNP is associated with the trait 1, default 1e-4

Details

This function calculates posterior probabilities of different causal variant for a single trait. If regression coefficients and variances are available, it calculates Bayes factors for association at each SNP. If only p values are available, it uses an approximation that depends on the SNP’s MAF and ignores any uncertainty in imputation. Regression coefficients should be used if available.
Value

da data.frame:

• an annotated version of the input data containing log Approximate Bayes Factors and inter-
mediate calculations, and the posterior probability of the SNP being causal

Author(s)

Chris Wallace

Description

This is an analogue to finemap.abf, adapted to find multiple signals where they exist, via condition-
ing or masking - ie a stepwise procedure

Usage

finemap.signals(
 D,
 LD = D$LD,
 method = c("single", "mask", "cond"),
 r2thr = 0.01,
 sigsnps = NULL,
 pthr = 1e-06,
 maxhits = 3
)

Arguments

D list of summary stats for a single disease, see check_dataset
LD matrix of signed r values (not rsq!) giving correlation between SNPs
method if method="cond", then use conditioning to coloc multiple signals. The default is mask - this is less powerful, but safer because it does not assume that the LD matrix is properly allelically aligned to estimated effect
r2thr if mask==TRUE, all snps will be masked with r2 > r2thr with any sigsnps. Otherwise ignored
sigsnps SNPs already deemed significant, to condition on or mask, expressed as a numeric vector, whose names are the snp names
pthr when p > pthr, stop successive searching
maxhits maximum depth of conditioning. procedure will stop if p > pthr OR abs(z)<zthr OR maxhits hits have been found.
mask use masking if TRUE, otherwise conditioning. defaults to TRUE
Value

list of successively significant fine mapped SNPs, named by the SNPs

Author(s)

Chris Wallace

Description

convert logbf matrix to PP matrix

Usage

logbf_to_pp(bf, pi, last_is_null)

Arguments

bf an L by p or p+1 matrix of log Bayes factors
pi either a scalar representing the prior probability for any snp to be causal, or a full vector of per snp / null prior probabilities
last_is_null TRUE if last value of the bf vector or last column of a bf matrix relates to the null hypothesis of no association. This is standard for SuSiE results, but may not be for BF constructed in other ways.

Value

matrix of posterior probabilities, same dimensions as bf

Author(s)

Chris Wallace
logdiff

Description

Internal function, logdiff

Usage

logdiff(x, y)

Arguments

- x numeric
- y numeric

Details

This function calculates the log of the difference of the exponentiated logs taking out the max, i.e. insuring that the difference is not negative

Value

max(x) + log(exp(x - max(x,y)) - exp(y-max(x,y)))

Author(s)

Chris Wallace

logsum

Description

Internal function, logsum

Usage

logsum(x)

Arguments

- x numeric vector
Details

This function calculates the log of the sum of the exponentiated logs taking out the max, i.e. insuring that the sum is not Inf

Value

\[
\text{max}(x) + \log(\text{sum}(\exp(x - \text{max}(x))))
\]

Author(s)

Claudia Giambartolomei

map_cond

find the next most significant SNP, conditioning on a list of sigsnps

Description

Internal helper function for finemap.signals

Usage

```
map_cond(D, LD, YY, sigsnps = NULL)
```

Arguments

- **D**: dataset in standard coloc format
- **LD**: named matrix of r
- **YY**: sum(y^2)
- **signps**: names of snps to mask

Value

named numeric - Z score named by snp

Author(s)

Chris Wallace
map_mask

find the next most significant SNP, masking a list of sigsnps

Description

Internal helper function for finemap.signals

Usage

map_mask(D, LD, r2thr = 0.01, sigsnps = NULL)

Arguments

D dataset in standard coloc format
LD named matrix of r
r2thr mask all snps with r2 > r2thr with any in sigsnps
sigsns names of snps to mask

Value

named numeric - Z score named by snp

Author(s)

Chris Wallace

plot.coloc_abf

plot a coloc_abf object

Description

plot a coloc_abf object

Usage

S3 method for class 'coloc_abf'
plot(x, ...)

Arguments

x coloc_abf object to be plotted
... other arguments

Value

ggplot object
plot_dataset

Description

Plot a coloc structured dataset

Usage

```
plot_dataset(
  d,
  susie_obj = NULL,
  alty = NULL,
  ylab = "-log10(p)",
  show_legend = TRUE,
  color = c("dodgerblue2", "green4", "#6A3D9A", "#FF7F00", "gold1", "skyblue2",
         "#F8E749", "palegreen2", "#CAB2D6", "#FDBF6F", "gray70", "khaki2", "maroon",
         "orchid1", "deep pink1", "blue1", "steelblue4", "dark turquoise", "green1", "yellow4",
         "yellow3", "dark orange4", "brown"),
  ...)
```

Arguments

- **d**: a coloc dataset
- **susie_obj**: optional, the output of a call to runsusie()
- **alty**: default is to plot a standard manhattan. If you wish to plot a different y value, pass it here. You may also want to change ylab to describe what you are plotting.
- **ylab**: label for y axis, default is -log10(p) and assumes you are plotting a manhattan
- **show_legend**: optional, show the legend or not. default is TRUE
- **color**: optional, specify the colours to use for each credible set when susie_obj is supplied. Default is shamelessly copied from susieR::susie_plot() so that colours will match
- **...**: other arguments passed to the base graphics plot() function

Author(s)

Chris Wallace
print.coloc_abf

Description
Print summary of a coloc.abf run

Usage
S3 method for class 'coloc_abf'
print(x, ...)

Arguments
x object of class coloc_abf returned by coloc.abf() or coloc.signals()
... optional arguments: "trait1" name of trait 1, "trait2" name of trait 2

Value
x, invisibly

Author(s)
Chris Wallace

process.dataset

Description
Internal function, process each dataset list for coloc.abf

Usage
process.dataset(d, suffix)

Arguments
d list
suffix "df1" or "df2"

Value
data.frame with log(abf) or log(bf)

Author(s)
Chris Wallace
Run susie on a single coloc-structured dataset

Description

run susie_rss storing some additional information for coloc

Usage

```r
runsusie(
  d,  # coloc dataset, must include LD (signed correlation matrix)
  suffix = 1,  # suffix label that will be printed with any error messages
  p = NULL,  # prior probability a snp is causal (equivalent to p1 or p2 in coloc.abf). By default, this is set to NULL, upon which we will set a small null_weight to pass to susie_rss() (see vignette a06 for details why). You can override this by setting p as you would p1 or p2 in a coloc function, but note that you may miss some true signals that way. Also note that neither of these options correspond to the susie_rss() defaults, because our goal here is not fine mapping alone.
  trimz = NULL,  # used to trim datasets for development purposes
  r2.prune = NULL,  # sometimes SuSiE can return multiple signals in high LD. if you set r2.prune to a value between 0 and 1, sets with index SNPs with LD greater than r2.prune
  maxit = 100,  # maximum number of iterations for the first run of susie_rss(). If susie_rss() does not report convergence, runs will be extended assuming repeat_until_convergence=TRUE. Most users will not need to change this default.
  repeat_until_convergence = TRUE,  # keep running until susie_rss() indicates convergence. Default TRUE. If FALSE, susie_rss() will run with maxit iterations, and if not converged, runsusie() will error. Most users will not need to change this default.
  s_init = NULL,  # used internally to extend runs that haven’t converged. don’t use.
  ...  # arguments passed to susie_rss. In particular, if you want to match some coloc defaults, set
)
```

Arguments

- `d` : coloc dataset, must include LD (signed correlation matrix)
- `suffix` : suffix label that will be printed with any error messages
- `p` : prior probability a snp is causal (equivalent to p1 or p2 in coloc.abf). By default, this is set to NULL, upon which we will set a small null_weight to pass to susie_rss() (see vignette a06 for details why). You can override this by setting p as you would p1 or p2 in a coloc function, but note that you may miss some true signals that way. Also note that neither of these options correspond to the susie_rss() defaults, because our goal here is not fine mapping alone.
- `trimz` : used to trim datasets for development purposes
- `r2.prune` : sometimes SuSiE can return multiple signals in high LD. if you set r2.prune to a value between 0 and 1, sets with index SNPs with LD greater than r2.prune
- `maxit` : maximum number of iterations for the first run of susie_rss(). If susie_rss() does not report convergence, runs will be extended assuming repeat_until_convergence=TRUE. Most users will not need to change this default.
- `repeat_until_convergence` : keep running until susie_rss() indicates convergence. Default TRUE. If FALSE, susie_rss() will run with maxit iterations, and if not converged, runsusie() will error. Most users will not need to change this default.
- `s_init` : used internally to extend runs that haven’t converged. don’t use.
- `...` : arguments passed to susie_rss. In particular, if you want to match some coloc defaults, set
• prior_variance=0.2^2 (if a case-control trait) or (0.15/sd(Y))^2 if a quantitative trait
• estimate_prior_variance=FALSE
otherwise susie_rss will estimate the prior variance itself

Value
results of a susie_rss run, with some added dimnames

Author(s)
Chris Wallace

Examples
library(coloc)
data(coloc_test_data)
result=runsusie(coloc_test_data$D1)
summary(result)

sdY.est

Description
Estimate trait standard deviation given vectors of variance of coefficients, MAF and sample size

Usage
sdY.est(vbeta, maf, n)

Arguments
 vbeta vector of variance of coefficients
 maf vector of MAF (same length as vbeta)
 n sample size

Details
Estimate is based on var(beta-hat) = var(Y) / (n * var(X)) var(X) = 2maf(1-maf) so we can estimate var(Y) by regressing n*var(X) against 1/var(beta)

Value
 estimated standard deviation of Y

Author(s)
Chris Wallace
sensitivity

Prior sensitivity for coloc

Description

Shows how prior and posterior per-hypothesis probabilities change as a function of p12

Usage

sensitivity(
 obj,
 rule = "",
 dataset1 = NULL,
 dataset2 = NULL,
 npoints = 100,
 doplot = TRUE,
 plot.manhattans = TRUE,
 preserve.par = FALSE,
 row = 1
)

Arguments

<table>
<thead>
<tr>
<th>obj</th>
<th>output of coloc.detail or coloc.process</th>
</tr>
</thead>
<tbody>
<tr>
<td>rule</td>
<td>a decision rule. This states what values of posterior probabilities "pass" some threshold. This is a string which will be parsed and evaluated, better explained by examples. "H4 > 0.5" says post prob of H4 > 0.5 is a pass. "H4 > 0.9 & H4/H3 > 3" says post prob of H4 must be > 0.9 AND it must be at least 3 times the post prob of H3."</td>
</tr>
<tr>
<td>dataset1</td>
<td>optional the dataset1 used to run SuSiE. This will be used to make a Manhattan plot if plot.manhattans=TRUE.</td>
</tr>
<tr>
<td>dataset2</td>
<td>optional the dataset2 used to run SuSiE. This will be used to make a Manhattan plot if plot.manhattans=TRUE.</td>
</tr>
<tr>
<td>npoints</td>
<td>the number of points over which to evaluate the prior values for p12, equally spaced on a log scale between p1*p2 and min(p1,p2) - these are logical limits on p12, but not scientifically sensible values.</td>
</tr>
<tr>
<td>doplot</td>
<td>draw the plot. set to FALSE if you want to just evaluate the prior and posterior matrices and work with them yourself</td>
</tr>
<tr>
<td>plot.manhattans</td>
<td>if TRUE, show Manhattans of input data</td>
</tr>
<tr>
<td>preserve.par</td>
<td>if TRUE, do not change par() of current graphics device - this is to allow sensitivity plots to be incorporated into a larger set of plots, or to be plot one per page on a pdf, for example</td>
</tr>
<tr>
<td>row</td>
<td>when coloc.signals() has been used and multiple rows are returned in the coloc summary, which row to plot</td>
</tr>
</tbody>
</table>
Details

Function is called mainly for plotting side effect. It draws two plots, showing how prior and posterior probabilities of each coloc hypothesis change with changing p12. A decision rule sets the values of the posterior probabilities considered acceptable, and is used to shade in green the region of the plot for which the p12 prior would give an acceptable result. The user is encouraged to consider carefully whether some prior values shown within the green shaded region are sensible before accepting the hypothesis. If no shading is shown, then no priors give rise to an accepted result.

Value

list of 3: prior matrix, posterior matrix, and a pass/fail indicator (returned invisibly)

Author(s)

Chris Wallace

Description

variance of MLE of beta for quantitative trait, assuming var(y)=1

Usage

`Var.data(f, N)`

Arguments

- `f` : minor allele freq
- `N` : sample number

Details

Internal function

Value

variance of MLE beta

Author(s)

Claudia Giambartolomei
Description

variance of MLE of beta for case-control

Usage

Var.data.cc(f, N, s)

Arguments

f
minor allele freq
N
sample number
s
???

Details

Internal function

Value

variance of MLE beta

Author(s)

Claudia Giambartolomei
Index

* datasets
 coloc_test_data, 15

* package
 coloc-package, 2

alpha_to_logbf, 3
approx.bf.estimates, 3
approx.bf.p, 4

bin2lin, 5

check.alignment (check_alignment), 5
check.dataset (check_dataset), 6
check_alignment, 5
check_dataset, 6, 8, 10, 12, 14, 15, 18, 19
coloc-package, 2
coloc.abf, 8, 11
coloc.bf_bf, 9, 14, 15
coloc.detail, 10
coloc.process, 11, 11
coloc.signals, 12
coloc.susie, 13
coloc.susie_bf, 14
coloc_test_data, 15
combine.abf, 16

est_cond, 17
estgeno.1.cse (estgeno.1.ctl), 16
estgeno.1.ctl, 16

find.best.signal, 18
finemap.abf, 18
finemap.signals, 19

logbf_to_pp, 20
logdiff, 21
logsum, 21

map_cond, 22
map_mask, 23