Package ‘colocr’

May 8, 2020

Type Package
Title Conduct Co-Localization Analysis of Fluorescence Microscopy Images
Version 0.1.1
License GPL-3

URL https://docs.ropensci.org/colocr,
https://github.com/ropensci/colocr

BugReports [https://github.com/ropensci/colocr/issues](https://github.com/ropensci/colocr)

Description Automate the co-localization analysis of fluorescence microscopy images. Selecting regions of interest, extract pixel intensities from the image channels and calculate different co-localization statistics. The methods implemented in this package are based on Dunn et al. (2011) [doi:10.1152/ajpcell.00462.2010].

Encoding UTF-8
LazyData true
Suggests testthat, shinytest, covr, knitr, rmarkdown, devtools, purrr, shinyBS

RoxygenNote 7.1.0
Imports imager, magick, shiny, scales, magrittr

VignetteBuilder knitr

NeedsCompilation no

Author Mahmoud Ahmed [aut, cre] (<https://orcid.org/0000-0002-4377-6541>)

Maintainer Mahmoud Ahmed <mahmoud.s.fahmy@students.kasralainy.edu.eg>

Repository CRAN

Date/Publication 2020-05-08 13:20:06 UTC
\textbf{R topics documented:}

- \texttt{intensity_get} .. 2
- \texttt{labels_add} .. 3
- \texttt{manders} ... 3
- \texttt{pearson} ... 4
- \texttt{colocr} .. 5
- \texttt{colocr_app} .. 5
- \texttt{image_load} .. 5
- \texttt{roi_check} ... 6
- \texttt{roi_select} ... 7
- \texttt{roi_show} .. 8
- \texttt{roi_test} ... 9

\textbf{Index} 10

\begin{center}
\begin{tabular}{ll}
\textbf{.intensity_get} & \textit{Get pixel intensities} \\
\end{tabular}
\end{center}

\textbf{Description}

Get the pixel intensities of certain image channels

\textbf{Usage}

\texttt{.intensity_get(img, ind = c(1, 2))}

\textbf{Arguments}

- \texttt{img} \hspace{1cm} An object of class \texttt{cimg}
- \texttt{ind} \hspace{1cm} A numeric of length two for channel indexes

\textbf{Value}

A list of three items. The first two items are the values of the pixel intensities of the channels indicated by \texttt{ind}. The third is the labels of the individual regions of interest.

\textbf{Examples}

\begin{verbatim}
load image
fl <- system.file('extdata', 'Image0001_.jpg', package = 'colocr')
img <- image_load(fl)

choose parameters
int <- roi_select(img, threshold = 90) %>%
 .intensity_get()
\end{verbatim}
.labels_add

Label regions of interest

Description

Add labels to regions of interest in an image

Usage

```
.labels_add(px, tolerance, n)
```

Arguments

- `px`
 An object of class `pixset`

- `tolerance`
 A numeric to be passed to `label`

- `n`
 A numeric, the number of desired regions of interest

Value

An object of class `cimg`. The labels are coded the values in the object starting from 1. The rest of the image is labeled 0.

.manders

Calculate Marnders Overlap Coefficient

Description

Calculates the manders overlap coefficient between two numeric vectors

Usage

```
.manders(r, g)
```

Arguments

- `r`
 A numeric vector

- `g`
 A numeric vector

Value

A numeric of length one.
Examples

```
set.seed(123)
r <- rnorm(10)

set.seed(1234)
g <- rnorm(10)

.pearson(r, g)
```

`.pearson` *Calculate Pearson’s Correlation Coefficient*

Description

Calculates the Pearson’s correlation coefficient between two numeric vectors.

Usage

```
.pearson(r, g)
```

Arguments

- `r`: A numeric vector
- `g`: A numeric vector

Value

A numeric of length one.

Examples

```
set.seed(123)
r <- rnorm(10)

set.seed(1234)
g <- rnorm(10)

.pearson(r, g)
```
colocr

Description
Automate the co-localization analysis of fluorescence microscopy images. Selecting regions of interest, extract pixel intensities from the image channels and calculate different co-localization statistics.

colocr functions
`roi_select` `roi_show` `roi_check` `roi_test`

colocr_app
Run the shiny App

Description
Run the shiny App

Usage
colocr_app()

image_load
Load images from files

Description
A wrap around `image_read` and `magick2cimg` to load one or more images from files.

Usage
image_load(image_file)

Arguments
image_file
A character vector of one or more paths to image files

Value
A cimg object or a list of cimg objects when multiple files are passed to image_file.
Examples

load image
fl <- system.file('extdata', 'Image0001_.jpg', package = 'colocr')
img <- image_load(fl)

roi_check(img, ind = c(1, 2))

Description

Show the pixel intensities of certain image channels

Usage

roi_check(img, ind = c(1, 2))

Arguments

img
A cimg object or a list of multiple images such as the one returned from
roi_select

ind
A numeric object of length two. For the channel indexes. or a list of similar
vectors for each of img items.

Details

Calling this function returns two plots. The first is a scatter plot of the pixel intensities from two
channels. The second is the density distribution of the intensities from the two channels.

Examples

load images
fl <- system.file('extdata', 'Image0001_.jpg', package = 'colocr')
img <- image_load(fl)

choose ROI and show the pixel intensities
oldpar <- par()
par(mfrow = c(1, 2))

roi_select(img, threshold = 90) %>%
 roi_check()

par(oldpar)
roi_select

Select regions of interest

Description
Select regions of interest in an image using different morphological operations

Usage
roi_select(
 img,
 threshold,
 shrink = 5,
 grow = 5,
 fill = 5,
 clean = 5,
 tolerance = 0.1,
 n = 1
)

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>img</td>
<td>An object of class cimg or a list of multiple cimg items</td>
</tr>
<tr>
<td>threshold</td>
<td>A numeric to be passed to threshold or a vector of values for each image in img</td>
</tr>
<tr>
<td>shrink</td>
<td>A numeric to be passed to shrink or a vector of values for each image in img</td>
</tr>
<tr>
<td>grow</td>
<td>A numeric to be passed to grow or a vector of values for each image in img</td>
</tr>
<tr>
<td>fill</td>
<td>A numeric to be passed to fill or a vector of values for each image in img</td>
</tr>
<tr>
<td>clean</td>
<td>A numeric to be passed to clean or a vector of values for each image in img</td>
</tr>
<tr>
<td>tolerance</td>
<td>A numeric to be passed to label or a vector of values for each image in img</td>
</tr>
<tr>
<td>n</td>
<td>A numeric of the number of regions of interest or a vector of values for each image in img</td>
</tr>
</tbody>
</table>

Details
The function applies several imager morphological manipulations to select the regions of interest. These include threshold which sets all values below certain cut to 0; shrink/grow for pixel set dilation and erosion; fill/clean for removing isolated regions and holes. When n is provided, the individual regions (connected components) are selected where tolerance is used to determine if two pixels belong to the same region.

Value
A cimg. The original input img with an additional attribute label. label is a vector of integers. The labels for the selected regions of interests starts from 1 and 0 is ignored. When img is a list, a list is returned.
Examples

load images
fl <- system.file('extdata', 'Image0001.jpg', package = 'colocr')
img <- image_load(fl)

choose ROI
newimg <- roi_select(img, threshold = 90)

check the ROI labels
unique(attr(newimg, 'label'))

roi_show

Show the selected regions of interest

Description

Show/highlight the selected regions of interest on different image channels

Usage

roi_show(img, ind = c(1, 2))

Arguments

img A cimg object or a list of multiple images such as the one returned from
 roi_select
ind A numeric object of length two. For the channel indexes, or a list of similar
 vectors for each of img items.

Details

calling this function with img object which is returned from roi_select returns four different plots.
The original image, a low resolution representation of the selected regions of interest and the two
channels indicated through ind highlighted.

Examples

load images
fl <- system.file('extdata', 'Image0001.jpg', package = 'colocr')
img <- image_load(fl)

choose and show ROI
oldpar <- par()
par(mfrow=c(2,2))

roi_select(img, threshold = 90) %>%
 roi_show()

par(oldpar)

roi_test

Test Co-localization

Description

Perform co-localization test statistics.

Usage

```r
roi_test(img, ind = c(1, 2), type = "pcc")
```

Arguments

- `img`: A `cimg` object or a list of multiple images such as the one returned from `roi_select`.
- `ind`: A numeric object of length two. For the channel indexes, or a list of similar vectors for each of `img` items.
- `type`: A character vector of the desired co-localization statistics. Default is 'pcc', other inputs are 'moc' or 'both'.

Details

The co-localization stats requested in `type` is returned as a column for each. When different labels are provided, the stats are calculated for each label individually. When `img` is a `list` a `list` of such data.frames is returned.

Value

A data.frame or a list of data.frames.

Examples

```r
# load images
fl <- system.file('extdata', 'Image0001.jpg', package = 'colocr')
img <- image_load(fl)

# choose roi and test colocalization
roi_select(img, threshold = 90) %>%
  roi_test()
```
Index

.intensity_get, 2
.labels_add, 3
.manders, 3
.pearson, 4

cimg, 2, 3, 6–9
clean, 7
colocr, 5
colocr_app, 5

fill, 7

grow, 7

image_load, 5
image_read, 5
imager, 7

label, 3, 7

magick2cimg, 5

pixset, 3

roi_check, 5, 6
roi_select, 5, 6, 7, 8, 9
roi_show, 5, 8
roi_test, 5, 9

shrink, 7

threshold, 7