Package ‘colorpatch’

June 10, 2017

Type Package
Title Optimized Rendering of Fold Changes and Confidence Values
Description Shows color patches for encoding fold changes (e.g. log ratios) together with confidence values within a single diagram. This is especially useful for rendering gene expression data as well as other types of differential experiments. In addition to different rendering methods (ggplot extensions) functionality for perceptually optimizing color palettes are provided. Furthermore the package provides extension methods of the colorspace color-class in order to simplify the work with palettes (a.o. length, as.list, and append are supported).

Version 0.1.2
Date 2017-06-08
License Artistic-2.0
Depends R (>= 3.0.0)
Imports ggplot2, colorspace, methods, grid, gridExtra, stats, TSP, utils
Suggests plotly, knitr, rmarkdown, testthat
RoxygenNote 6.0.1
LazyData FALSE
VignetteBuilder knitr

URL http://sysbio.uni-ulm.de/?Software:colorpatch

NeedsCompilation no
Author Andre Mueller [aut, cre], Hans Kestler [aut]
Maintainer Andre Mueller <andre@kiwisound.de>
Repository CRAN
Date/Publication 2017-06-10 06:22:56 UTC
R topics documented:

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>colorpatch-package</td>
<td>3</td>
</tr>
<tr>
<td>append,color-method</td>
<td>4</td>
</tr>
<tr>
<td>apply.color</td>
<td>4</td>
</tr>
<tr>
<td>as</td>
<td>5</td>
</tr>
<tr>
<td>as.list</td>
<td>5</td>
</tr>
<tr>
<td>ColorDistance</td>
<td>6</td>
</tr>
<tr>
<td>ColorPatchColorFun</td>
<td>6</td>
</tr>
<tr>
<td>ColorPatchSizeFun</td>
<td>7</td>
</tr>
<tr>
<td>ColorRgbFun</td>
<td>7</td>
</tr>
<tr>
<td>ComputeSymmetry</td>
<td>8</td>
</tr>
<tr>
<td>CreateClusteredData</td>
<td>8</td>
</tr>
<tr>
<td>CreateExampleData</td>
<td>9</td>
</tr>
<tr>
<td>DistColor</td>
<td>9</td>
</tr>
<tr>
<td>DistColorFun</td>
<td>10</td>
</tr>
<tr>
<td>FindUniformSequence</td>
<td>11</td>
</tr>
<tr>
<td>GeneratePalettes</td>
<td>11</td>
</tr>
<tr>
<td>GreenRedRGB</td>
<td>12</td>
</tr>
<tr>
<td>HsvColorFun</td>
<td>12</td>
</tr>
<tr>
<td>HsvSizeFun</td>
<td>13</td>
</tr>
<tr>
<td>InterpolateColorFun</td>
<td>13</td>
</tr>
<tr>
<td>length,color-method</td>
<td>14</td>
</tr>
<tr>
<td>LinColorSpace</td>
<td>14</td>
</tr>
<tr>
<td>OptimBlueYellowLAB</td>
<td>15</td>
</tr>
<tr>
<td>OptimGreenRedLAB</td>
<td>15</td>
</tr>
<tr>
<td>OptimizeBiColor</td>
<td>15</td>
</tr>
<tr>
<td>OrderData</td>
<td>16</td>
</tr>
<tr>
<td>OrderDataHclust</td>
<td>17</td>
</tr>
<tr>
<td>OrderDataTSP</td>
<td>17</td>
</tr>
<tr>
<td>OrderWithTSP</td>
<td>18</td>
</tr>
<tr>
<td>PlotSymmetry</td>
<td>18</td>
</tr>
<tr>
<td>PlotUniformity</td>
<td>19</td>
</tr>
<tr>
<td>ReadArraySRGB</td>
<td>19</td>
</tr>
<tr>
<td>StatColorPatch</td>
<td>20</td>
</tr>
<tr>
<td>stat_bicolor</td>
<td>20</td>
</tr>
<tr>
<td>stat_colorpatch</td>
<td>21</td>
</tr>
<tr>
<td>theme_colorpatch</td>
<td>22</td>
</tr>
<tr>
<td>ToDataFrame</td>
<td>23</td>
</tr>
</tbody>
</table>

Index

24
A small introduction to the colorpatch package.

Description

The colorpatch package provides functions for plotting color patch grids rendering the two channels fold change and confidence value within a single diagram. This is especially useful for analyzing gene expression data as well as other types of "change" data such as gains/losses in stock exchange or analyzing the agricultural output.

Details

The packages consists of:

- ggplot extensions for visualizing color patch grids `colorpatch::stat_colorpatch()` and `colorpatch::stat_bicolor()`
- Functionality for rearranging data for a better readable map `colorpatch::OrderData()`
- Perceptual optimization functions for sub-sampling non-uniform bicolored palettes `colorpatch::OptimizeBiColor()`

For more details see the vignette

Author(s)

Maintainer: Andre Mueller <andre@kiwisound.de>

Authors:

- Hans Kestler <hans.kestler@uni-ulm.de>

See Also

Useful links:

- http://sysbio.uni-ulm.de/?Software:colorpatch

Examples

vignette("introduction", package = "colorpatch")
append.color-method

Appends two palettes to form a single palette.

Description

Applies to the `colors::color` class.

Usage

```r
## S4 method for signature 'color'
append(x, values, after = length(x))
```

Arguments

- `x`: the color palette to be modified.
- `values`: another color palette to be appended after.
- `after`: currently unimplemented.

`apply.color`

Applies a function to each entry of a `colors::color` palette.

Description

Applies a function to each entry of a `colors::color` palette.

Usage

```r
apply.color(X, FUN, ...)
```

Arguments

- `X`: the color palette
- `FUN`: the function to be applied
- `...`: extra arguments to `FUN`

Value

A list of each result of `FUN` applied to each entry in `X`
as (Transforms palette to list of single colors.)

Description

Applies to the `color` class.

Examples

```r
data("OptimGreenRedLAB")
as(OptimGreenRedLAB, "list")
```

as.list (Creates a list with single colors from a palette.)

Description

Applies to the `color` class.

Usage

```r
as.list(x, ...)
```

```
## S4 method for signature 'color'
as.list(x, ...)
```

Arguments

- `x`
 color object to be coerced to a list
- `...`
 ignored for this class

Examples

```r
data("OptimGreenRedLAB")
as.list(OptimGreenRedLAB)
```
ColorDistance
Computes the perceptual distance between two neighboring colors

Description

Computes the perceptual distance between two neighboring colors

Usage

```
ColorDistance(pal, color.space = "LAB")
```

Arguments

- `pal`: the color palette
- `color.space`: color space in which the distance shall be computed (default "LAB")

Value

a vector of distances

Examples

```
data("OptimGreenRedLAB")
dd <- ColorDistance(OptimGreenRedLAB)
```

ColorPatchColorFun
Creates a color function mapping (ratio, conf) tuples to a single color

Description

Creates a color function mapping (ratio, conf) tuples to a single color

Usage

```
ColorPatchColorFun(palette = "OptimGreenRedLAB")
```

Arguments

- `palette`: name of the palette (see `data()`) - defaults to "OptimGreenRedLAB"

Value

A function mapping (ratio, conf) to a color.

Examples

```
fn <- ColorPatchColorFun("OptimBlueYelloLAB")
```
ColorPatchSizeFun

Creates a size function mapping (ratio, conf) to a single color

Description

Creates a size function mapping (ratio, conf) to a single color

Usage

ColorPatchSizeFun(type = "linear")

Arguments

type defaults to "linear"

Value

A function mapping (ratio, conf) to a size.

ColorRgbFun

Creates a color mapping function

Description

Creates a color mapping function

Usage

ColorRgbFun(pal, xmin = -1, xmax = 1, coerce.fun = colorspace::hex)

Arguments

pal the color palette
xmin minimum value to be mapped to the first entry of the palette
xmax maximum value to be mapped to the last entry of the palette
coerce.fun the color coercing function (e.g. for ggplot2 colorspace::hex() is recommended)

Value

A function mapping a value to a color

Examples

data("OptimGreenRedLAB")
fn <- ColorRgbFun(OptimGreenRedLAB)
CreateSymmetry Computes the symmetry of a given bi-variate color palette

Description
Computes the symmetry of a given bi-variate color palette

Usage
ComputeSymmetry(pal, color.space = "LAB")

Arguments
pal A two-sided input palette colorspace::color
color.space Color space where the distances shall be computed (default "LAB")

Value
a data frame with index, side (pos/neg) and distance

Examples
data("OptimGreenRedLAB")
df <- ComputeSymmetry(OptimGreenRedLAB)
print(df)

CreateClusteredData Creates clustered random data

Description
Creates clustered random data

Usage
CreateClusteredData(nrow = 30, ncol = 12, nrow.clusters = 2, ncol.clusters = 2, alpha = 4)

Arguments
nrow Number of rows (default: 30)
col Number of columns (default: 12)
nrow.clusters Number of row cluster
ncol.clusters Number of column clusters (default: 2)
alpha Scaling facor (default: 4)
CreateExampleData

Value
A data set with $ratio and $conf values

Description
Creates demonstration data of the colorpatch package

Usage
CreateExampleData(nrow = 30, ncol = 12)

Arguments
nrow number of rows (default 30)
ncol number of columns (default 12)

Value
the data set

Examples
library(ggplot2)
library(colorpatch)
dat <- CreateExampleData()
df <- ToDataFrame(dat)
p <- ggplot(df, aes(x = x, y = y, ratio = ratio, conf = conf))
p <- p + theme_colorpatch() + coord_fixed(ratio = 1) + stat_colorpatch() plot(p)

DistColor

Description
Computes the distance of to colors within a certain colorspace

Usage
DistColor(x, y, color.space = "LAB")
Arguments

- **x**: First color to be compared
- **y**: Second color to be compared
- **color.space**: Defaults to "LAB" (can be anything within the colorspace package) see `colorspace::color`

Value

L2 distance of the two colors within the given coordinate space

See Also

`colorspace::color`, `DistColorFun()`

Examples

```r
library(colorspace)
library(colorpatch)
DistColor(sRGB(0.1,0.5,0), sRGB(0.2,0.7,1.0), "LUV")
```

Description

Creates a color distance function

Usage

```r
DistColorFun(color.space = "LAB")
```

Arguments

- **color.space**: Color space to be used (see `colorspace::color`)

Value

A function mapping two color values of a color class `colorspace::color` to a numeric value.

Examples

```r
library(colorspace)
library(colorpatch)
fn <- DistColorFun("LUV")
a <- sRGB(1,0,0)
b <- sRGB(0.8,0.1,0)
my.distance <- fn(a,b)
```
FindUniformSequence

Finds a uniform color sequence within a non-uniform palette by subsampling that palette

Description

Finds a uniform color sequence within a non-uniform palette by subsampling that palette

Usage

\[
\text{FindUniformSequence}(P, n\text{.out}, \text{reverse = FALSE, } \delta = \text{NULL, }}\\
\text{col.dist.fun = DistColorFun("LAB")}
\]

Arguments

- \(P \): input color palette (must be a class derived from \text{colorspace::color})
- \(n\text{.out} \): number of output colors (must be less than length(\(P \))
- \(\text{reverse} \): shall the searching be performed from the end of the palette to the beginning
- \(\delta \): the perceptual difference to be achieved between two adjacent colors
- \(\text{col.dist.fun} \): function mapping two colors to a numeric distance

Value

a optimized palette (sub-set of \(P \))

GeneratePalettes

Creates color palettes and saves them as files

Description

Creates color palettes and saves them as files

Usage

\[
\text{GeneratePalettes(\text{col.dist.fun = DistColorFun("LAB"), ...)}}
\]

Arguments

- \(\text{col.dist.fun} \): Color distance function.
- \(\text{...} \): Additional arguments forwarded to \text{colorpatch::OptimizeBiColor()}.

Value

Nothing - this function is used for its side effects (creating files in data).
GreenRedRGB

Standard RGB Green/Red two-sided color scale.

Description

A two-sided color scale left side: green, center: black, right side: red.

Usage

GreenRedRGB

Format

An object of class `colorspace::color`.

HsvColorFun

Creates a color function mapping ratio/conf values to a HSV colorspace

Description

Creates a color function mapping ratio/conf values to a HSV colorspace

Usage

HsvColorFun(coerce.fn = `colorspace::hex()`, hue.offset = 60, hue.scale = -60, saturation = 1)

Arguments

- **coerce.fn**: coerces each HSV color with this function (defaults `colorspace::hex()`)
- **hue.offset**: hue offset (defaults to 60)
- **hue.scale**: hue scale (defaults to 60)
- **saturation**: HSV saturation (defaults to 1)

Value

A color mapping function (ratio,conf) -> color
HsvSizeFun

Creates a size function mapping ratio/conf to a patch size for bicolorings

Description

Creates a size function mapping ratio/conf to a patch size for bicolorings

Usage

HsvSizeFun()

Value

a size mapping function (ratio,conf) -> size

InterpolateColorFun

Linear interpolation within a colorspace::color palette

Description

This function can be used together with ggplot2 for mapping values onto colorspace::color palettes. The color is then coerced with coerce. fun.

Usage

InterpolateColorFun(pal, xmin = -1L, xmax = +1L, coerce. fun = colorspace::hex)

Arguments

- pal: The input palette (must be of class colorspace::color)
- xmin: minimum of the numeric range to be mapped onto pal
- xmax: maximum of the numeric range to be mapped onto pal
- coerce. fun: each color will be coerced by this function (defaults to colorspace::hex())

Value

A function mapping a numeric value value onto a color value.

Examples

```r
library(colorspace)
library(colorpatch)
data("OptimGreenRedLAB")
fn <- InterpolateColorFun(OptimGreenRedLAB)
cols <- fn(seq(-1, 1, by = 0.1))
specplot(cols)
```
length, color-method

Returns the length of a palette (the number of entries).

Description

Applies to the `colorspace::color` class.

Usage

```r
## S4 method for signature 'color'
length(x)
```

Arguments

- `x`: an color object

LinColorSpace

Creates a linear color space between two colors

Description

 Creates a linear color space between two colors

Usage

```r
LinColorSpace(color1, color2, n.out)
```

Arguments

- `color1`: the first color (must be of the class `colorspace::color`)
- `color2`: the second color (must be of the class `colorspace::color`)
- `n.out`: number of output colors

Value

a palette

Examples

```r
library(colorspace)
library(colorpatch)
pal <- LinColorSpace(sRGB(0, 1, 0), sRGB(0.0.1, 0), 32)
pal <- append(pal, sRGB(0, 0, 0))
pal <- append(pal, LinColorSpace(sRGB(0.1, 0, 0), sRGB(1, 0, 0), 32))
PlotUniformity(pal)
print(pal)
```
OptimBlueYellowLAB

Optimum RGB Blue/Yellow two-sided color scale in LAB color space.

Description

A two-sided color scale left side: blue, center: black, right side: yellow.

Usage

```r
OptimBlueYellowLAB
```

Format

An object of class `colorspace::color`.

OptimGreenRedLAB

Optimum RGB Green/Red two-sided color scale in LAB color space.

Description

A two-sided color scale left side: green, center: black, right side: red.

Usage

```r
OptimGreenRedLAB
```

Format

An object of class `colorspace::color`.

OptimizeBiColor

Optimizes a bicolor palette

Description

Optimizes a bicolor palette

Usage

```r
OptimizeBiColor(neg.col.min = colortspace::sRGB(0, 0.01, 0),
                 neg.col.max = colortspace::sRGB(0, 1, 0),
                 pos.col.min = colortspace::sRGB(0.01, 0, 0),
                 pos.col.max = colortspace::sRGB(1, 0, 0),
                 center.col = colortspace::sRGB(0, 0, 0),
                 n.out = 64, oversampling = 128,
                 col.dist.fun = DistColorFun("LAB"), reverse = FALSE)
```
Arguments

- `neg.col.min`: color representing the negative minimum value
- `neg.col.max`: color representing the negative maximum value
- `pos.col.min`: color for the positive minimum value
- `pos.col.max`: color representing the positive maximum value
- `center.col`: center color which maps to 0 (default: black)
- `n.out`: size of each half-palette
- `oversampling`: the oversampling rate
- `col.dist.fun`: color distance function (default: DistColorFun("LAB")) for optimizing the palette
- `reverse`: shall the palette be searched starting from the minimum color to the maximum (reverse=FALSE) or vice versa - defaults to FALSE

Value

- bicolor palette

Examples

```r
pal <- OptimizeBiColor(n.out = 8, oversampling = 32)
PlotUniformity(pal)
```

Description

Orders rows and columns of data.

Usage

```r
OrderData(dat, orderFn = OrderDataHclust, distFn = stats::dist)
```

Arguments

- `dat`: Ratio data
- `orderFn`: Ordering method (default: OrderDataHclust)
- `distFn`: Distance function (default: stats::dist)

Value

- ordered data
OrderDataHclust

Orders rows and column distances with \texttt{stats::hclust()}

Description

Orders rows and column distances with \texttt{stats::hclust()}

Usage

\texttt{OrderDataHclust(row.dist, col.dist, \ldots)}

Arguments

\begin{itemize}
 \item \texttt{row.dist} \quad row distances
 \item \texttt{col.dist} \quad column distances
 \item \ldots \quad optional parameters forwarded to the \texttt{stats::hclust()} function
\end{itemize}

Value

a list with \texttt{irow} and \texttt{icol} containing the orders of rows and columns

OrderDataTSP

Orders rows and column distances with traveling salesman ordering \texttt{TSP}

Description

Orders rows and column distances with traveling salesman ordering \texttt{TSP}

Usage

\texttt{OrderDataTSP(row.dist, col.dist, \ldots)}

Arguments

\begin{itemize}
 \item \texttt{row.dist} \quad row distances
 \item \texttt{col.dist} \quad column distances
 \item \ldots \quad optional parameters fed to the \texttt{TSP::solve_TSP()} function
\end{itemize}

Value

a list with \texttt{irow} and \texttt{icol} containing the orders of rows and columns
OrderWithTSP

Orders a data set given a distance matrix with TSP

Description

Orders a data set given a distance matrix with TSP

Usage

```
OrderWithTSP(dist, ...)
```

Arguments

- `dist` distance object or distance matrix
- `...` extra arguments fed to `TSP::solve_TSP()`

Value

a path (vector of integers)

PlotSymmetry

Plots the symmetry of a bivariate color scale

Description

Plots the symmetry of a bivariate color scale

Usage

```
PlotSymmetry(pal, color.space = "LAB")
```

Arguments

- `pal` A two-sided input palette `colorspace::color`
- `color.space` Color space where the distances shall be computed (default "LAB")

Value

a ggplot object

Examples

```r
data("OptimGreenRedLAB")
PlotSymmetry(OptimGreenRedLAB)
```
PlotUniformity

Plots the uniformity of a color palette

Description

Plots the uniformity of a color palette

Usage

```r
plotuniformity(pal, color.space = "LAB")
```

Arguments

- `pal`: A colorspace palette
- `color.space`: the color space (see `colorspace::color`)

Value

a ggplot instance

Examples

```r
data("OptimGreenRedLAB")
p <- plotuniformity(OptimGreenRedLAB)
plot(p)
```

ReadArraySRGB

 Reads a sRGB color table as CSV file

Description

Reads a sRGB color table as CSV file

Usage

```r
readarraysrgb(file.name)
```

Arguments

- `file.name`: the color file

Value

a colorspace palette
stat_bicolor

A `ggplot2::ggproto` class for showing color patches.

Description

A `ggplot2::ggproto` class for showing color patches.

Usage

StatColorPatch

Format

An object of class StatColorPatch (inherits from Stat.ggproto) of length 4.

stat_bicolor

Plots a ratio/confidence plot using a bivariate colormap

Description

Plots a ratio/confidence plot using a bivariate colormap

Usage

```r
stat_bicolor(mapping = NULL, data = NULL, geom = "tile",
position = "identity", na.rm = FALSE, show.legend = NA,
inherit.aes = TRUE, color.fun = HsvColorFun(), size.fun = HsvSizeFun(),
...)
```

Arguments

- `mapping` Set of aesthetic mappings created by `ggplot2::aes()`. If specified and `inherit.aes = TRUE` (the default), it is combined with the default mapping at the top level of the plot. You must supply mapping if there is no plot mapping.
- `data` The data to be displayed in this layer.
- `geom` Defaults to tile.
- `position` Position adjustment, either as a string, or the result of a call to a position adjustment function.
- `na.rm` If FALSE, the default, missing values are removed with a warning. If TRUE, missing values are silently removed.
- `show.legend` logical. Should this layer be included in the legends? NA, the default, includes if any aesthetics are mapped. FALSE never includes, and TRUE always includes.
stat_colorpatch

Inherit.aes

If FALSE, overrides the default aesthetics, rather than combining with them. This is most useful for helper functions that define both data and aesthetics and shouldn’t inherit behaviour from the default plot specification, e.g. borders.

color.fun

Color function mapping a (ratio,conf) pair to a color (defaults to `colorpatch::HsvColorFun()`).

size.fun

Size function mapping a (ratio,conf) pair to a rectangle size (defaults to `colorpatch::HsvSizeFun()` returning constantly 1).

... Further arguments given to the `StatColorPatch()` function

Value

A ggplot statistics layer for showing bicolored maps

Examples

library(ggplot2)
library(colorpatch)
dat <- CreateExampleData()
df <- ToDataFrame(dat)
p <- ggplot(df) + theme_colorpatch() + stat_bicolor(aes(ratio=ratio,conf=conf,x=x,y=y))

stat_colorpatch

An stat function for the use with ggplot2

Description

A stat function for the use with ggplot2

Usage

stat_colorpatch(mapping = NULL, data = NULL, geom = "tile", position = "identity", na.rm = FALSE, show.legend = NA, inherit.aes = TRUE, color.fun = ColorPatchColorFun(), size.fun = ColorPatchSizeFun(), ...)

Arguments

mapping

Set of aesthetic mappings created by `ggplot2::aes()`. If specified and `inherit.aes` = TRUE (the default), it is combined with the default mapping at the top level of the plot. You must supply mapping if there is no plot mapping.

data

The data to be displayed in this layer.

geom

Defaults to tile.

position

Position adjustment, either as a string, or the result of a call to a position adjust-

ment function.

na.rm

If FALSE, the default, missing values are removed with a warning. If TRUE, missing values are silently removed.
show.legend logical. Should this layer be included in the legends? NA, the default, includes if any aesthetics are mapped. FALSE never includes, and TRUE always includes.

inherit.aes If FALSE, overrides the default aesthetics, rather than combining with them. This is most useful for helper functions that define both data and aesthetics and shouldn’t inherit behaviour from the default plot specification, e.g. borders.

color.fun Color function mapping a (ratio,conf) pair to a color (defaults to colorpatch::ColorPatchColorFun()).

size.fun Size function mapping a (ratio,conf) pair to a rectangle size (defaults to colorpatch::ColorPatchSizeFun returning constantly 1).

... Further arguments given to the colorpatch::StatColorPatch ggproto object. Here thresh.ratio, thresh.conf are the most important parameters.

Value

a ggplot statistics layer for showing color patches

Description

A ggplot2 theme for rendering colorpatches (black background)

Usage

theme_colorpatch(fill = "black", plot.background = fill)

Arguments

fill background fill color (default: "black")
plot.background background fill color (default: "black")

Value

a theme function for showing color patches

Examples

library(ggplot2)
library(colorpatch)
dat <- CreateExampleData()
df <- ToDataFrame(dat)
p <- ggplot(df) + theme_colorpatch() + stat_colorpatch(aes(ratio=ratio,conf=conf,x=x,y=y))
ToDataFrame

Transforms a ratio/conf data set to a ggplot dataframe

Description

Transforms a ratio/conf data set to a ggplot dataframe

Usage

`ToDataFrame(dat)`

Arguments

- `dat` must be a list with two matrices `ratio` and `conf`

Value

- a data frame
Index

*Topic datasets
 GreenRedRGB, 12
 OptimBlueYellowLAB, 15
 OptimGreenRedLAB, 15
 StatColorPatch, 20

append, color-method, 4
apply.color, 4
as, 5
as.list, 5
as.list, color-method (as.list), 5

ColorDistance, 6
colorpatch, 3
colorpatch (colorpatch-package), 3
colorpatch-package, 3
colorpatch::ColorPatchColorFun(), 22
colorpatch::ColorPatchSizeFun(), 22
colorpatch::HsvColorFun(), 21
colorpatch::HsvSizeFun(), 21
colorpatch::OptimizeBiColor(), 3, 11
colorpatch::OrderData(), 3
colorpatch::stat_bicolor(), 3
colorpatch::stat_colorpatch(), 3
colorpatch::StatColorPatch, 22
ColorPatchColorFun, 6
ColorPatchSizeFun, 7
ColorRgbFun, 7
colorspace::color, 4, 5, 8, 10–15, 18, 19
colorspace::hex(), 7, 12, 13
ComputeSymmetry, 8
CreateClusteredData, 8
CreateExampleData, 9

data(), 6
DistColor, 9
DistColorFun, 10
DistColorFun(), 10

FindUniformSequence, 11

GeneratePalettes, 11
ggplot2, 13
ggplot2::aes(), 20, 21
ggplot2::ggproto, 20
GreenRedRGB, 12

HsvColorFun, 12
HsvSizeFun, 13

InterpolateColorFun, 13

length, color-method, 14
LinColorSpace, 14

OptimBlueYellowLAB, 15
OptimGreenRedLAB, 15
OptimizeBiColor, 15
OrderData, 16
OrderDataHclust, 16, 17
OrderDataTSP, 17
OrderWithTSP, 18

PlotSymmetry, 18
PlotUniformity, 19

ReadArraySRGB, 19

stat_bicolor, 20
stat_colorpatch, 21
StatColorPatch, 20
StatColorPatch(), 21
stats::dist, 16
stats::hclust(), 17

theme_colorpatch, 22
ToDataFrame, 23
TSP, 17
TSP::solve_TSP(), 17, 18